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Stochastic approximation

• Context: Large-scale learning (“large p, large n, large k”)

• Goal: Minimizing a function f defined on a Hilbert space H

– given only unbiased estimates f ′

n(θn) of its gradients f ′(θn) at

certain points θn ∈ H

• Stochastic approximation

– Observation of f ′

n(θn) = f ′(θn) + εn
– εn = additive noise (typically i.i.d.)

• Machine learning - statistics

– fn(θ) = ℓ(θ, zn) where zn is an i.i.d. sequence

– f(θ) = Efn(θ) = generalization error of predictor θ

– Typically fn(θ) =
1

2
(〈xn, θ〉 − yn)

2 or log[1 + exp(−yn 〈xn, θ〉)]



Convex stochastic approximation

• Key properties of f and/or fn

– Smoothness: f B-Lipschitz continuous, f ′ L-Lipschitz continuous

– Strong convexity: f µ-strongly convex

• Key algorithm: Stochastic gradient descent (a.k.a. Robbins-Monro)

θn = θn−1 − γnf
′

n(θn−1)

– Polyak-Ruppert averaging: θ̄n = 1

n

∑n−1

k=0
θk

– Which learning rate sequence γn? Classical setting: γn = Cn−α

• Desirable practical behavior

– Applicable (at least) to least-squares and logistic regression

– Robustness to (potentially unknown) constants (L,B,µ)

– Adaptivity to difficulty of the problem (e.g., strong convexity)



Summary of new results

• Stochastic gradient descent with learning rate γn = Cn−α

• Strongly convex smooth objective functions

– Old: O(n−1) rate achieved without averaging for α = 1

– New: O(n−1) rate achieved with averaging for α ∈ [1/2, 1]

– Non-asymptotic analysis with explicit constants

• Non-strongly convex smooth objective functions

– Old: O(n−1/2) rate achieved with averaging for α = 1/2

– New: O(max{n1/2−3α/2, n−α/2, nα−1}) rate achieved without

averaging for α ∈ [1/3, 1],

• Take-home message

– Use α = 1/2 with averaging to be adaptive to strong convexity


