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Stochastic approximation

e Context: Large-scale learning (“large p, large n, large k")

e Goal: Minimizing a function f defined on a Hilbert space ‘H
— given only unbiased estimates f)(6,) of its gradients f'(6,) at
certain points 0,, € H

e Stochastic approximation

— Observation of f/(6,,) = f'(0,) + en
— &, = additive noise (typically i.i.d.)

e Machine learning - statistics

— fu(0) = £(0, z,,) where z, is an i.i.d. sequence
— f(0) = Ef,(0) = generalization error of predictor 6

— Typically f,,(0) = 5((xn,0) — yn)? or log[1 + exp(—yn (xy,0))]



Convex stochastic approximation

e Key properties of f and/or f,

— Smoothness: f B-Lipschitz continuous, f’ L-Lipschitz continuous
— Strong convexity: f u-strongly convex

e Key algorithm: Stochastic gradient descent (a.k.a. Robbins-Monro)

Hn — Hn—l — /anf;b(en—l)

— Polyak-Ruppert averaging: 6,, = Zk 0 0

— Which learning rate sequence ~,,? Classical setting: | v, = Cn™

e Desirable practical behavior

— Applicable (at least) to least-squares and logistic regression
— Robustness to (potentially unknown) constants (L,B,u)
— Adaptivity to difficulty of the problem (e.g., strong convexity)



Summary of new results

e Stochastic gradient descent with learning rate ~v,, = Cn™¢

e Strongly convex smooth objective functions

— Old: O(n~1) rate achieved without averaging for o = 1
— New: O(n™1) rate achieved with averaging for o € [1/2, 1]
— Non-asymptotic analysis with explicit constants

e Non-strongly convex smooth objective functions
— Old:  O(n~'/?) rate achieved with averaging for o = 1/2
— New: O(max{n!'/273%/2 n=/2 po=11) rate achieved without
averaging for o € [1/3,1],
e Take-home message

— Use a = 1/2 with averaging to be adaptive to strong convexity



