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Abstract

We consider the minimization of a convex objective functiondefined on a Hilbert space,
which is only available through unbiased estimates of its gradients. This problem in-
cludes standard machine learning algorithms such as kernellogistic regression and
least-squares regression, and is commonly referred to as a stochastic approximation
problem in the operations research community. We provide a non-asymptotic anal-
ysis of the convergence of two well-known algorithms, stochastic gradient descent
(a.k.a. Robbins-Monro algorithm) as well as a simple modification where iterates are
averaged (a.k.a. Polyak-Ruppert averaging). Our analysissuggests that a learning rate
proportional to the inverse of the number of iterations, while leading to the optimal con-
vergence rate in the strongly convex case, is not robust to the lack of strong convexity or
the setting of the proportionality constant. This situation is remedied when using slower
decays together with averaging, robustly leading to the optimal rate of convergence. We
illustrate our theoretical results with simulations on synthetic and standard datasets.

1 Introduction

The minimization of an objective function which is only available through unbiased estimates of
the function values or its gradients is a key methodologicalproblem in many disciplines. Its anal-
ysis has been attacked mainly in three communities: stochastic approximation [1, 2, 3, 4, 5, 6],
optimization [7, 8], and machine learning [9, 10, 11, 12, 13,14, 15]. The main algorithms which
have emerged are stochastic gradient descent (a.k.a. Robbins-Monro algorithm), as well as a simple
modification where iterates are averaged (a.k.a. Polyak-Ruppert averaging).

Traditional results from stochastic approximation rely onstrong convexity and asymptotic analysis,
but have made clear that a learning rate proportional to the inverse of the number of iterations, while
leading to the optimal convergence rate in the strongly convex case, is not robust to the wrong setting
of the proportionality constant. On the other hand, using slower decays together with averaging
robustly leads to optimal convergence behavior (both in terms of rates and constants) [4, 5].

The analysis from the convex optimization and machine learning literatures however has focused
on differences between strongly convex and non-strongly convex objectives, with learning rates and
roles of averaging being different in these two cases [11, 12, 13, 14, 15].

A key desirable behavior of an optimization method is to be adaptive to the hardness of the problem,
and thus one would like a single algorithm to work in all situations, favorable ones such as strongly
convex functions and unfavorable ones such as non-stronglyconvex functions. In this paper, we
unify the two types of analysis and show that (1) a learning rate proportional to the inverse of the
number of iterations is not suitable because it is not robustto the setting of the proportionality
constant and the lack of strong convexity, (2) the use of averaging with slower decays allows (close
to) optimal rates inall situations.

More precisely, we make the following contributions:

− We provide a direct non-asymptotic analysis of stochastic gradient descent in a machine learn-
ing context (observations of real random functions defined on a Hilbert space) that includes
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kernel least-squares regression and logistic regression (see Section 2), with strong convexity
assumptions (Section 3) and without (Section 4).

− We provide a non-asymptotic analysis of Polyak-Ruppert averaging [4, 5], with and without
strong convexity (Sections 3.3 and 4.2). In particular, we show that slower decays of the
learning rate,together with averaging, are crucial torobustlyobtain fast convergence rates.

− We illustrate our theoretical results through experimentson synthetic and non-synthetic exam-
ples in Section 5.

Notation. We consider a Hilbert spaceH with a scalar product〈·, ·〉. We denote by‖ · ‖ the
associated norm and use the same notation for the operator norm on bounded linear operators from
H to H, defined as‖A‖ = sup‖x‖61 ‖Ax‖ (if H is a Euclidean space, then‖A‖ is the largest
singular value ofA). We also use the notation “w.p.1” to mean “with probability one”. We denote
byE the expectation or conditional expectation with respect tothe underlying probability space.

2 Problem set-up

We consider a sequence ofconvex differentiable randomfunctions(fn)n>1 from H to R. We con-
sider the following recursion, starting fromθ0 ∈ H:

∀n > 1, θn = θn−1 − γnf
′
n(θn−1), (1)

where(γn)n>1 is a deterministic sequence of positive scalars, which we refer to as thelearning
rate sequence. The functionfn is assumed to be differentiable (see, e.g., [16] for definitions and
properties of differentiability for functions defined on Hilbert spaces), and its gradient is an unbiased
estimate of the gradient of a certain functionf we wish to minimize:

(H1) Let (Fn)n>0 be an increasing family ofσ-fields. θ0 is F0-measurable, and for eachθ ∈ H,
the random variablef ′

n(θ) is square-integrable,Fn-measurable and

∀θ ∈ H, ∀n > 1, E(f ′
n(θ)|Fn−1) = f ′(θ), w.p.1. (2)

For an introduction to martingales,σ-fields, and conditional expectations, see, e.g., [17]. Note that
depending whetherF0 is a trivial σ-field or not,θ0 may be random or not. Moreover, we could
restrict Eq. (2) to be satisfied only forθn−1 andθ∗ (which is a global minimizer off ).

Given only the noisy gradientsf ′
n(θn−1), the goal of stochastic approximation is to minimize the

functionf with respect toθ. Our assumptions include two usual situations, but also include many
others (e.g., potentially, active learning):

− Stochastic approximation: in the so-called Robbins-Monro setting, for allθ ∈ H andn > 1,
fn(θ) may be expressed asfn(θ) = f(θ)+〈εn, θ〉, where(εn)n>1 is a square-integrable mar-
tingale difference (i.e., such thatE(εn|Fn−1) = 0), which corresponds to a noisy observation
f ′(θn−1) + εn of the gradientf ′(θn−1).

− Learning from i.i.d. observations: for all θ ∈ H andn > 1, fn(θ) = ℓ(θ, zn) wherezn is an
i.i.d. sequence of observations in a measurable spaceZ andℓ : H×Z is a loss function. Then
f(θ) is the generalization error of the predictor defined byθ. Classical examples are least-
squares or logistic regression (linear or non-linear through kernel methods [18, 19]), where
fn(θ) =

1
2 (〈xn, θ〉 − yn)

2, or fn(θ) = log[1 + exp(−yn 〈xn, θ〉)], for xn ∈ H, andyn ∈ R

(or {−1, 1} for logistic regression).

Throughout this paper, unless otherwise stated, we assume that each functionfn is convex and
smooth, following the traditional definition of smoothness from the optimization literature, i.e.,
Lipschitz-continuity of the gradients (see, e.g., [20]). However, we make two slightly different
assumptions:(H2) where the functionθ 7→ E(f ′

n(θ)|Fn−1) is Lipschitz-continuous in quadratic
mean and a strengthening of this assumption,(H2’) in whichθ 7→ f ′

n(θ) is almost surely Lipschitz-
continuous.

(H2) For eachn > 1, the functionfn is almost surely convex, differentiable, and:

∀n > 1, ∀θ1, θ2 ∈ H, E(‖f ′
n(θ1)− f ′

n(θ2)‖2|Fn−1) 6 L2‖θ1 − θ2‖2 , w.p.1. (3)

(H2’) For eachn > 1, the functionfn is almost surely convex, differentiable with Lipschitz-
continuous gradientf ′

n, with constantL, that is:

∀n > 1, ∀θ1, θ2 ∈ H, ‖f ′
n(θ1)− f ′

n(θ2)‖ 6 L‖θ1 − θ2‖ , w.p.1. (4)
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If fn is twice differentiable, this corresponds to having the operator norm of the Hessian operator
of fn bounded byL. For least-squares or logistic regression, if we assume that (E‖xn‖4)1/4 6

R for all n ∈ N, then we may takeL = R2 (or evenL = R2/4 for logistic regression) for
assumption (H2), while for assumption(H2’), we need to have an almost sure bound‖xn‖ 6 R.

3 Strongly convex objectives

In this section, following [21], we make the additional assumption of strong convexity off , but not
of all functionsfn (see [20] for definitions and properties of such functions):

(H3) The functionf is strongly convex with respect to the norm‖·‖, with convexity constantµ > 0.
That is, for allθ1, θ2 ∈ H, f(θ1) > f(θ2) + 〈f ′(θ2), θ1 − θ2〉+ µ

2 ‖θ1 − θ2‖2.
Note that(H3) simply needs to be satisfied forθ2 = θ∗ being the unique global minimizer off
(such thatf ′(θ∗) = 0). In the context of machine learning (least-squares or logistic regression),
assumption(H3) is satisfied as soon asµ2 ‖θ‖2 is used as an additional regularizer. For all strongly
convex losses (e.g., least-squares), it is also satisfied assoon as the expectationE(xn ⊗ xn) is
invertible. Note that this implies that the problem is finite-dimensional, otherwise, the expectation
is a compact covariance operator, and hence non-invertible(see, e.g., [22] for an introduction to
covariance operators). For non-strongly convex losses such as the logistic loss,f can never be
strongly convex unless we restrict the domain ofθ (which we do in Section 3.2). Alternatively to
restricting the domain, replacing the logistic lossu 7→ log(1+ e−u) by u 7→ log(1+ e−u)+ εu2/2,
for some smallε > 0, makes it strongly convex in low-dimensional settings.

By strong convexity off , if we assume (H3), thenf attains its global minimum at a unique vector
θ∗ ∈ H such thatf ′(θ∗) = 0. Moreover, we make the following assumption (in the contextof
stochastic approximation, it corresponds toE(‖εn‖2|Fn−1) 6 σ2):

(H4) There existsσ2 ∈ R+ such that for alln > 1, E(‖f ′
n(θ

∗)‖2|Fn−1) 6 σ2, w.p.1.

3.1 Stochastic gradient descent

Before stating our first theorem (see proof in [23]), we introduce the following family of functions
ϕβ : R+ \ {0} → R given by:

ϕβ(t) =

{

tβ−1
β if β 6= 0,

log t if β = 0.

The functionβ 7→ ϕβ(t) is continuous for allt > 0. Moreover, forβ > 0, ϕβ(t) <
tβ

β , while for

β < 0, we haveϕβ(t) <
1
−β (both with asymptotic equality whent is large).

Theorem 1 (Stochastic gradient descent, strong convexity) Assume(H1,H2,H3,H4). Denote
δn = E‖θn − θ∗‖2, whereθn ∈ H is then-th iterate of the recursion in Eq. (1), withγn = Cn−α.
We have, forα ∈ [0, 1]:

δn 6















2 exp
(

4L2C2ϕ1−2α(n)
)

exp

(

−µC

4
n1−α

)(

δ0 +
σ2

L2

)

+
4Cσ2

µnα
, if 0 6 α < 1,

exp(2L2C2)

nµC

(

δ0 +
σ2

L2

)

+ 2σ2C2ϕµC/2−1(n)

nµC/2
, if α = 1.

(5)

Sketch of proof. Under our assumptions, it can be shown that(δn) satisfies the following recursion:

δn 6 (1− 2µγn + 2L2γ2
n)δn−1 + 2σ2γ2

n. (6)

Note that it also appears in [3, Eq. (2)] under different assumptions. Using thisdeterministicrecur-
sion, we then derive bounds using classical techniques fromstochastic approximation [2], but in a
non-asymptotic way, by deriving explicit upper-bounds.

Related work. To the best of our knowledge, this non-asymptotic bound, which depends explicitly
upon the parameters of the problem, is novel (see [1, Theorem1, Electronic companion paper] for a
simpler bound with no such explicit dependence). It shows inparticular that there is convergence in
quadratic mean for anyα ∈ (0, 1]. Previous results from the stochastic approximation literature have
focused mainly on almost sure convergence of the sequence ofiterates. Almost-sure convergence
requires thatα > 1/2, with counter-examples forα < 1/2 (see, e.g., [2] and references therein).
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Bound on function values. The bounds above imply a corresponding a bound on the functions
values. Indeed, under assumption(H2), it may be shown thatE[f(θn) − f(θ∗)] 6 L

2 δn (see proof
in [23]).

Tightness for quadratic functions. Since the deterministic recursion in Eq. (6) is an equality for
quadratic functionsfn, the result in Eq. (5) is optimal (up to constants). Moreover, our results are
consistent with the asymptotic results from [6].

Forgetting initial conditions. Bounds depend on the initial conditionδ0 = E
[

‖θ0 − θ∗‖2
]

and the
varianceσ2 of the noise term. The initial condition is forgotten sub-exponentially fast forα ∈ (0, 1),
but not forα = 1. Forα < 1, the asymptotic term in the bound is4Cσ2

µnα .

Behavior for α = 1. Forα = 1, we have
ϕµC/2−1(n)

nµC/2 6
1

µC/2−1
1
n if Cµ > 2,

ϕµC/2−1(n)

nµC/2 = logn
n

if Cµ = 2 and
ϕµC/2−1(n)

nµC/2 6
1

1−µC/2
1

nµC/2 if Cµ > 2. Therefore, forα = 1, the choice ofC is
critical, as already noticed by [8]: too smallC leads to convergence at arbitrarily small rate of the
form n−µC/2, while too largeC leads to explosion due to the initial condition. This behavior is
confirmed in simulations in Section 5.

Setting C too large. There is a potentially catastrophic term whenC is chosen too large, i.e.,
exp

(

4L2C2ϕ1−2α(n)
)

, which leads to an increasing bound whenn is small. Note that forα < 1,
this catastrophic term is in front of a sub-exponentially decaying factor, so its effect is mitigated
once the term inn1−α takes overϕ1−2α(n), and the transient term stops increasing. Moreover, the
asymptotic term is not involved in it (which is also observedin simulations in Section 5).

Minimax rate. Note finally, that the asymptotic convergence rate inO(n−1) matches optimal
asymptotic minimax rate for stochastic approximation [24,25]. Note that there is no explicit depen-
dence on dimension; this dependence is implicit in the definition of the constantsµ andL.

3.2 Bounded gradients

In some cases such as logistic regression, we also have a uniform upper-bound on the gradients, i.e.,
we assume (note that in Theorem 2, this assumption replaces both (H2) and (H4)).

(H5) For eachn > 1, almost surely, the functionfn if convex, differentiable and has gradients
uniformly bounded byB on the ball of center0 and radiusD, i.e., for allθ ∈ H and alln > 0,
‖θ‖ 6 D ⇒ ‖f ′

n(θ)‖ 6 B.

Note that no function may be strongly convex and Lipschitz-continuous (i.e., with uniformly
bounded gradients) over the entire Hilbert spaceH. Moreover, if (H2’) is satisfied, then we may take
D = ‖θ∗‖ andB = LD. The next theorem shows that with a slight modification of therecursion
in Eq. (1), we get simpler bounds than the ones obtained in Theorem 1, obtaining a result which
already appeared in a simplified form [8] (see proof in [23]):

Theorem 2 (Stochastic gradient descent, strong convexity, bounded gradients) Assume
(H1,H3,H5). Denoteδn = E

[

‖θn − θ∗‖2
]

, whereθn ∈ H is the n-th iterate of the follow-
ing recursion:

∀n > 1, θn = ΠD[θn−1 − γnf
′
n(θn−1)], (7)

whereΠD is the orthogonal projection operator on the ball{θ : ‖θ‖ 6 D}. Assume‖θ∗‖ 6 D. If
γn = Cn−α, we have, forα ∈ [0, 1]:

δn 6







(

δ0 +B2C2ϕ1−2α(n)
)

exp

(

−µC

2
n1−α

)

+
2B2C2

µnα
, if α ∈ [0, 1) ;

δ0n
−µC + 2B2C2n−µCϕµC−1(n), if α = 1 .

(8)

The proof follows the same lines than for Theorem 1, but with the deterministic recursionδn 6

(1−2µγn)δn−1+B2γ2
n. Note that we obtain the same asymptotic terms than for Theorem 1 (butB

replacesσ). Moreover, the bound is simpler (no explosive multiplicative factors), but it requires to
knowD in advance, while Theorem 1 does not. Note that because we have only assumed Lipschitz-
continuity, we obtain a bound on function values of orderO(n−α/2), which is sub-optimal. For
bounds directly on function values, see [26].
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3.3 Polyak-Ruppert averaging

We now consider̄θn = 1
n

∑n−1
k=0 θk and, following [4, 5], we make extra assumptions regarding the

smoothness of eachfn and the fourth-order moment of the driving noise:

(H6) For eachn > 1, the functionfn is almost surely twice differentiable with Lipschitz-continuous
Hessian operatorf ′′

n , with Lipschitz constantM . That is, for allθ1, θ2 ∈ H and for alln > 1,
‖f ′′

n (θ1)− f ′′
n (θ2)‖ 6 M‖θ1 − θ2‖, where‖ · ‖ is the operator norm.

Note that (H6) needs only to be satisfied forθ2 = θ∗. For least-square regression, we haveM = 0,
while for logistic regression, we haveM = R3/4.

(H7) There existsτ ∈ R+, such that for eachn > 1, E(‖f ′
n(θ

∗)‖4|Fn−1) 6 τ4 almost surely.
Moreover, there exists a nonnegative self-adjoint operator Σ such that for alln, E(f ′

n(θ
∗) ⊗

f ′
n(θ

∗)|Fn−1) 4 Σ almost-surely.

The operatorΣ (which always exists as soon asτ is finite) is here to characterize precisely the
variance term, which will be independent of the learning rate sequence(γn), as we now show:

Theorem 3 (Averaging, strong convexity) Assume(H1, H2’, H3, H4, H6, H7). Then, forθ̄n =
1
n

∑n−1
k=0 θk andα ∈ (0, 1), we have:

(

E‖θ̄n − θ∗‖2
)1/2

6

[

tr f ′′(θ∗)−1Σf ′′(θ∗)−1
]1/2

√
n

+
6σ

µC1/2

1

n1−α/2
+

MCτ2

2µ3/2
(1+(µC)1/2)

ϕ1−α(n)

n

+
4LC1/2

µ

ϕ1−α(n)
1/2

n
+

8A

nµ1/2

( 1

C
+ L

)(

δ0 +
σ2

L2

)1/2

+
5MC1/2τ

2nµ
A exp

(

24L4C4
)

(

δ0 +
µE

[

‖θ0 − θ∗‖4
]

20Cτ2
+ 2τ2C3µ+ 8τ2C2

)1/2

, (9)

whereA is a constant that depends only onµ, C, L andα.

Sketch of proof. Following [4], we start from Eq. (1), write it asf ′
n(θn−1) =

1
γn

(θn−1 − θn), and
notice that (a)f ′

n(θn−1) ≈ f ′
n(θ

∗) + f ′′(θ∗)(θn−1 − θ∗), (b) f ′
n(θ

∗) has zero mean and behaves
like an i.i.d. sequence, and (c)1n

∑n
k=1

1
γk
(θk−1 − θk) turns out to be negligible owing to a sum-

mation by parts and to the bound obtained in Theorem 1. This implies thatθ̄n − θ∗ behaves like
− 1

n

∑n
k=1 f

′′(θ∗)−1f ′
k(θ

∗). Note that we obtain a bound on theroot mean square error.

Forgetting initial conditions. There is no sub-exponential forgetting of initial conditions, but
rather a decay at rateO(n−2) (last two lines in Eq. (9)). This is a known problem which may
slow down the convergence, a common practice being to start averaging after a certain number of
iterations [2]. Moreover, the constantA may be large whenLC is large, thus the catastrophic terms
are more problematic than for stochastic gradient descent,because they do not appear in front of
sub-exponentially decaying terms (see [23]). This suggests to takeCL small.

Asymptotically leading term. WhenM>0 andα>1/2, the asymptotic term forδn is independent
of (γn) and of orderO(n−1). Thus, averaging allows to get from the slow rateO(n−α) to the opti-
mal rateO(n−1). The next two leading terms (in the first line) have orderO(nα−2) andO(n−2α),
suggesting the settingα=2/3 to make them equal. WhenM =0 (quadratic functions), the leading
term has rateO(n−1) for all α∈(0, 1) (with then a contribution of the first term in the second line).

Case α = 1. We get a simpler bound by directly averaging the bound in Theorem 1, which leads
to an unchanged rate ofn−1, i.e., averaging is not key forα = 1, and does not solve the robustness
problem related to the choice ofC or the lack of strong convexity.

Leading term independent of (γn). The term inO(n−1) does not depend onγn. Moreover, as no-
ticed in the stochastic approximation literature [4], in the context of learning from i.i.d. observations,
this is exactly the Cramer-Rao bound (see, e.g., [27]), and thus the leading term is asymptotically
optimal. Note that no explicit Hessian inversion has been performed to achieve this bound.

Relationship with prior work on online learning. There is no clear way of adding a bounded
gradient assumption in the general caseα ∈ (0, 1), because the proof relies on the recursion without
projections, but forα = 1, the rate ofO(n−1) (up to a logarithmic term) can be achieved in the
more general framework of online learning, where averagingis key to deriving bounds for stochastic
approximation from regret bounds. Moreover, bounds are obtained in high probability rather than
simply in quadratic mean (see, e.g., [11, 12, 13, 14, 15]).
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4 Non-strongly convex objectives

In this section, we do not assume that the functionf is strongly convex, but we replace(H3) by:

(H8) The functionf attains its global minimum at a certainθ∗ ∈ H (which may not be unique).

In the machine learning scenario, this essentially impliesthat the best predictor is in the function
class we consider.1 In the following theorem, sinceθ∗ is not unique, we only derive a bound on
function values. Not assuming strong convexity is essential in practice to make sure that algorithms
are robust andadaptiveto the hardness of the learning or optimization problem (much like gradient
descent is).

4.1 Stochastic gradient descent

The following theorem is shown in a similar way to Theorem 1; we first derive a deterministic recur-
sion, which we analyze with novel tools compared to the non-stochastic case (see details in [23]),
obtaining new convergence rates for non-averaged stochastic gradient descent :

Theorem 4 (Stochastic gradient descent, no strong convexity) Assume(H1,H2’,H4,H8). Then,
if γn = Cn−α, for α ∈ [1/2, 1], we have:

E [f(θn)− f(θ∗)] 6
1

C

(

δ0 +
σ2

L2

)

exp
(

4L2C2ϕ1−2α(n)
) 1 + 4L3/2C3/2

min{ϕ1−α(n), ϕα/2(n)}
. (10)

Whenα = 1/2, the bound goes to zero only whenLC < 1/4, at rates which can be arbitrarily
slow. Forα ∈ (1/2, 2/3), we get convergence at rateO(n−α/2), while for α ∈ (2/3, 1), we get a
convergence rate ofO(nα−1). Forα = 1, the upper bound is of orderO((log n)−1), which may be
very slow (but still convergent). The rate of convergence changes atα = 2/3, where we get our best
rateO(n−1/3), which does not match the minimax rate ofO(n−1/2) for stochastic approximation
in the non-strongly convex case [25]. These rates for stochastic gradient descent without strong
convexity assumptions are new and we conjecture that they are asymptotically minimax optimal (for
stochastic gradient descent, not for stochastic approximation). Nevertheless, the proof of this result
falls out of the scope of this paper.

If we further assume that we have all gradients bounded byB (that is, we assumeD = ∞ in (H5)),
then, we have the following theorem, which allowsα ∈ (1/3, 1/2) with rateO(n−3α/2+1/2):

Theorem 5 (Stochastic gradient descent, no strong convexity, bounded gradients) Assume
(H1, H2’, H5, H8). Then, ifγn = Cn−α, for α ∈ [1/3, 1], we have:

E [f(θn)− f(θ∗)] 6







(

δ0 +B2C2ϕ1−2α(n)
)

1+4L1/2C1/2

C min{ϕ1−α(n),ϕα/2(n)}
, if α ∈ [1/2, 1],

2
C (δ0 +B2C2)1/2 (1+4L1/2BC3/2)

(1−2α)1/2ϕ3α/2−1/2(n)
, if α ∈ [1/3, 1/2].

(11)

4.2 Polyak-Ruppert averaging

Averaging in the context of non-strongly convex functions has been studied before, in particular in
the optimization and machine learning literature, and the following theorems are similar in spirit to
earlier work [7, 8, 13, 14, 15]:

Theorem 6 (averaging, no strong convexity) Assume(H1,H2’,H4,H8). Then, ifγn = Cn−α, for
α ∈ [1/2, 1], we have

E
[

f(θ̄n)− f(θ∗)
]

6
1

C

(

δ0 +
σ2

L2

)exp
(

2L2C2ϕ1−2α(n)
)

n1−α

[

1+(2LC)1+
1

α

]

+
σ2C

2n
ϕ1−α(n). (12)

If α = 1/2, then we only have convergence underLC < 1/4 (as in Theorem 4), with potentially
slow rate, while forα > 1/2, we have a rate ofO(n−α), with otherwise similar behavior than for
the strongly convex case with no bounded gradients. Here, averaging has allowed the rate to go from
O(max{nα−1, n−α/2}) toO(n−α).

1For least-squares regression with kernels, wherefn(θ) = 1

2
(yn − 〈θ,Φ(xn)〉)

2, with Φ(xn) being the
feature map associated with a reproducing kernel Hilbert spaceH with universal kernel [28], then we need that
x 7→ E(Y |X = x) is a function within the RKHS. Taking care of situations where this is not true is clearly of
importance but out of the scope of this paper.

6



0 1 2 3 4 5

−4

−3

−2

−1

0

1

log(n)

lo
g[

f(
θ n)−

f∗ ]

power 2

 

 
sgd − 1/3
ave − 1/3
sgd − 1/2
ave − 1/2
sgd − 2/3
ave − 2/3
sgd − 1
ave − 1

0 1 2 3 4 5

−6

−4

−2

0

2

log(n)

lo
g[

f(
θ n)−

f∗ ]

power 4

 

 
sgd − 1/3
ave − 1/3
sgd − 1/2
ave − 1/2
sgd − 2/3
ave − 2/3
sgd − 1
ave − 1

Figure 1: Robustness to lack of strong convexity for different learning rates and stochastic gradient
(sgd) and Polyak-Ruppert averaging (ave). From left to right: f(θ) = |θ|2 andf(θ) = |θ|4, (between
−1 and1, affine outside of[−1, 1], continuously differentiable). See text for details.
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Figure 2: Robustness to wrong constants forγn = Cn−α. Left: α = 1/2, right: α = 1. See text for
details. Best seen in color.

Theorem 7 (averaging, no strong convexity, bounded gradients) Assume(H1,H5,H8). If γn =
Cn−α, for α ∈ [0, 1], we have

E
[

f(θ̄n)− f(θ∗)
]

6
nα−1

2C
(δ0 + C2B2ϕ1−2α(n)) +

B2

2n
ϕ1−α(n). (13)

With the bounded gradient assumption (and in fact without smoothness), we obtain the minimax
asymptotic rateO(n−1/2) up to logarithmic terms [25] forα = 1/2, and, forα < 1/2, the rate
O(n−α) while for α > 1/2, we getO(nα−1). Here, averaging has also allowed to increase the
range ofα which ensures convergence, toα ∈ (0, 1).

5 Experiments

Robustness to lack of strong convexity. Definef : R → R as|θ|q for |θ| 6 1 and extended into
a continuously differentiable function, affine outside of[−1, 1]. For all q > 1, we have a convex
function with Lipschitz-continuous gradient with constantL = q(q−1). It is strongly convex around
the origin forq ∈ (1, 2], but its second derivative vanishes forq > 2. In Figure 1, we plot in log-log
scale the average off(θn) − f(θ∗) over 100 replications of the stochastic approximation problem
(with i.i.d. Gaussian noise of standard deviation 4 added tothe gradient). Forq = 2 (left plot),
where we locally have a strongly convex case, all learning rates lead to good estimation with decay
proportional toα (as shown in Theorem 1), while for the averaging case, all reach the exact same
convergence rate (as shown in Theorem 3). However, forq = 4 where strong convexity does not
hold (right plot), without averaging,α = 1 is still fastest but becomes the slowest after averaging;
on the contrary, illustrating Section 4, slower decays (such asα = 1/2) leads to faster convergence
when averaging is used. Note also the reduction in variability for the averaged iterations.

Robustness to wrong constants. We consider the function on the real linef , defined asf(θ) =
1
2 |θ|2 and consider standard i.i.d. Gaussian noise on the gradients. In Figure 2, we plot the average
performance over 100 replications, for various values ofC andα. Note that forα = 1/2 (left plot),
the 3 curves for stochastic gradient descent end up being aligned and equally spaced, corroborating
a rate proportional toC (see Theorem 1). Moreover, when averaging forα = 1/2, the error ends up
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Figure 3: Comparison on non strongly convex logistic regression problems. Left: synthetic example,
right: “alpha” dataset. See text for details. Best seen in color.

being independent ofC andα (see Theorem 3). Finally, whenC is too large, there is an explosion
(up to105), hinting at the potential instability of havingC too large. Forα = 1 (right plot), if C is
too small, convergence is very slow (and not at the raten−1), as already observed (see, e.g., [8, 6]).

Medium-scale experiments with linear logistic regression. We consider two situations where
H = R

p: (a) the “alpha” dataset from the Pascal large scale learning challenge (http://
largescale.ml.tu-berlin.de/), for which p = 500 andn = 50000, and (b) a synthetic ex-
ample wherep = 100, n = 100000; we generate the input data i.i.d. from a multivariate Gaussian
distribution with mean zero and a covariance matrix sampledfrom a Wishart distribution withp
degrees of freedom (thus with potentially bad condition number), and the output is obtained through
a classification by a random hyperplane. For different values of α, we chooseC in an adaptive
way where we consider the lowest test error aftern/10 iterations, and report results in Figure 3. In
experiments reported in [23], we also considerC equal to1/L suggested by our analysis to avoid
large constants, for which the convergence speed is very slow, suggesting that our global bounds in-
volving the Lipschitz constants may be locally far too pessimistic and that designing a truly adaptive
sequence(γn) instead of a fixed one is a fruitful avenue for future research.

6 Conclusion

In this paper, we have provided a non-asymptotic analysis ofstochastic gradient, as well as its
averaged version, for various learning rate sequences of the form γn = Cn−α (see summary of
results in Table 1). Following earlier work from the optimization, machine learning and stochastic
approximation literatures, our analysis highlights thatα = 1 is not robust to the choice ofC and to
the actual difficulty of the problem (strongly convex or not). However, when using averaging with
α ∈ (1/2, 1), we get, both in strongly convex and non-strongly convex situation, close to optimal
rates of convergence. Moreover, we highlight the fact that problems with bounded gradients have
better behaviors, i.e., logistic regression is easier to optimize than least-squares regression.

Our work can be extended in several ways: first, we have focused on results in quadratic mean
and we expect that some of our results can be extended to results in high probability (in the line
of [13, 3]). Second, we have focused on differentiable objectives, but the extension to objective
functions with a differentiable stochastic part and a non-differentiable deterministic (in the line
of [14]) would allow an extension to sparse methods.

Acknowledgements. Francis Bach was partially supported by the European Research Council
(SIERRA Project). We thank Mark Schmidt and Nicolas Le Roux for helpful discussions.

SGD SGD SGD SGD Aver. Aver. Aver.
α µ,L µ,B L L,B µ, L L B

(0 , 1/3) α α × × 2α × α
(1/3 , 1/2) α α × (3α− 1)/2 2α × α
(1/2 , 2/3) α α α/2 α/2 1 1− α 1− α
(2/3 , 1) α α 1− α 1− α 1 1− α 1− α

Table 1: Summary of results: For stochastic gradient descent (SGD) or Polyak-Ruppert averaging
(Aver.), we provide their rates of convergence of the formn−β corresponding to learning rate se-
quencesγn = Cn−α, whereβ is shown as a function ofα. For each method, we list the main
assumptions (µ: strong convexity,L: bounded Hessian,B: bounded gradients).
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