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Abstract

We consider the minimization of a convex objective functiefined on a Hilbert space,
which is only available through unbiased estimates of itslgants. This problem in-
cludes standard machine learning algorithms such as kévgistic regression and
least-squares regression, and is commonly referred to &schastic approximation
problem in the operations research community. We provideraasymptotic anal-
ysis of the convergence of two well-known algorithms, stamtit gradient descent
(a.k.a. Robbins-Monro algorithm) as well as a simple modiftm where iterates are
averaged (a.k.a. Polyak-Ruppert averaging). Our anatygjgests that a learning rate
proportional to the inverse of the number of iterations,levt@ading to the optimal con-
vergence rate in the strongly convex case, is not robustttattk of strong convexity or
the setting of the proportionality constant. This situai®remedied when using slower
decays together with averaging, robustly leading to thenadtrate of convergence. We
illustrate our theoretical results with simulations ontiatic and standard datasets.

1 Introduction

The minimization of an objective function which is only aedile through unbiased estimates of
the function values or its gradients is a key methodologicablem in many disciplines. Its anal-
ysis has been attacked mainly in three communities: sttichagproximation [1, 2, 3, 4, 5, 6],
optimization [7, 8], and machine learning [9, 10, 11, 12, 18, 15]. The main algorithms which
have emerged are stochastic gradient descent (a.k.a.isblminro algorithm), as well as a simple
modification where iterates are averaged (a.k.a. PolygipBu averaging).

Traditional results from stochastic approximation relystrong convexity and asymptotic analysis,
but have made clear that a learning rate proportional towWerse of the number of iterations, while
leading to the optimal convergence rate in the strongly erase, is not robust to the wrong setting
of the proportionality constant. On the other hand, usigvel decays together with averaging
robustly leads to optimal convergence behavior (both im$sof rates and constants) [4, 5].

The analysis from the convex optimization and machine legrtiteratures however has focused
on differences between strongly convex and non-stronglyeoobjectives, with learning rates and
roles of averaging being different in these two cases [1113214, 15].

A key desirable behavior of an optimization method is to begiste to the hardness of the problem,
and thus one would like a single algorithm to work in all sitaas, favorable ones such as strongly
convex functions and unfavorable ones such as non-straugiyex functions. In this paper, we
unify the two types of analysis and show that (1) a learnirig proportional to the inverse of the
number of iterations is not suitable because it is not robushe setting of the proportionality
constant and the lack of strong convexity, (2) the use ofamiag with slower decays allows (close
to) optimal rates irall situations.

More precisely, we make the following contributions:

— We provide a direct non-asymptotic analysis of stochastidignt descent in a machine learn-
ing context (observations of real random functions definea ¢lilbert space) that includes



kernel least-squares regression and logistic regressam$ection 2), with strong convexity
assumptions (Section 3) and without (Section 4).

— We provide a non-asymptotic analysis of Polyak-Ruppertayiag [4, 5], with and without
strong convexity (Sections 3.3 and 4.2). In particular, Wweve that slower decays of the
learning ratetogether with averagingare crucial taobustlyobtain fast convergence rates.

— We illustrate our theoretical results through experimentsynthetic and non-synthetic exam-
ples in Section 5.

Notation. We consider a Hilbert spack with a scalar product:,-). We denote by - || the
associated norm and use the same notation for the operatarorobounded linear operators from
H to H, defined ag|A|| = sup, < [[Az| (if H is a Euclidean space, thej|| is the largest
singular value ofd). We also use the notatiorwp.1” to mean “with probability one”. We denote
by E the expectation or conditional expectation with respethéounderlying probability space.

2 Problem set-up

We consider a sequenceadnvex differentiable randofanctions( f,,)»>1 from # to R. We con-
sider the following recursion, starting froflg € :

Vn 2 17 971 = 971—1 - ’Ynfyll(en—l)a (1)
where(v,)n>1 iS a deterministic sequence of positive scalars, which ier te as theearning
rate sequenceThe functionf,, is assumed to be differentiable (see, e.g., [16] for defingiand

properties of differentiability for functions defined onlbtrt spaces), and its gradient is an unbiased
estimate of the gradient of a certain functipme wish to minimize:

(H1) Let (F,)n>0 be an increasing family of-fields. 6, is Fo-measurable, and for eaéhe H,
the random variablg/ (9) is square-integrables,,-measurable and

VO e H, Yn =1, E(f.(0)|Fa_y) = f(0), w.p.l. @)

For an introduction to martingales;fields, and conditional expectations, see, e.g., [17].eNloat
depending whetheFy is a trivial o-field or not,§, may be random or not. Moreover, we could
restrict Eq. (2) to be satisfied only féf,_; andf* (which is a global minimizer of).

Given only the noisy gradient§, (6,,—1), the goal of stochastic approximation is to minimize the
function f with respect t@. Our assumptions include two usual situations, but alsludecmany
others (e.g., potentially, active learning):

— Stochastic approximation: in the so-called Robbins-Monro setting, for @lE # andn > 1,
fn(68) may be expressed ds(0) = f(0)+ (en, 0), where(e,, ), >1 is a square-integrable mar-
tingale difference (i.e., such th&{e, | F,_1) = 0), which corresponds to a noisy observation
f'(0n_1) + €, of the gradientf’(6,,_1).

— Learningfromi.i.d. observations: forall § € # andn > 1, f,,(0) = £(0, z,,) wherez,, is an
i.i.d. sequence of observations in a measurable sgaaed/ : H x Z is a loss function. Then
f(0) is the generalization error of the predictor defineddbyClassical examples are least-
squares or logistic regression (linear or non-linear tgtokernel methods [18, 19]), where
fn(0) = 3((zn, 0) — yn)?, OF f,(0) = log[l + exp(—yn (xn,0))], for z, € H, andy,, € R
(or {—1, 1} for logistic regression).

Throughout this paper, unless otherwise stated, we assuatesach functiory,, is convex and

smooth following the traditional definition of smoothness frometlptimization literature, i.e.,
Lipschitz-continuity of the gradients (see, e.g., [20]).owéver, we make two slightly different
assumptions(H2) where the functio® — E(f/ (0)|F,—1) is Lipschitz-continuous in quadratic

mean and a strengthening of this assumptfbi2’) in whichd — f/ (6) is almost surely Lipschitz-
continuous.

(H2) For eachm > 1, the functionf,, is almost surely convex, differentiable, and:
Vn > 1, V601,0: € H, E(|[f,(61) — f5,(62) || Fa-r) < L2[|61 — 6], wp.l.  (3)

(H2') For eachn > 1, the functionf, is almost surely convex, differentiable with Lipschitz-
continuous gradient/,, with constant, that is:

Vn > 1, V91,92 EH, ||f7/1(91) — frll(eg)H < LH91 — 92” ,  w.p.l. (4)



If f,. is twice differentiable, this corresponds to having therapm norm of the Hessian operator
of f, bounded byL. For least-squares or logistic regression, if we assume(Biae,, [|*)"/* <

R for all n € N, then we may takd. = R? (or evenL = R?/4 for logistic regression) for
assumptionKl2), while for assumptiorfH2'), we need to have an almost sure boljrd| < R.

3 Strongly convex objectives

In this section, following [21], we make the additional asgiion of strong convexity of, but not
of all functionsf,, (see [20] for definitions and properties of such functions):

(H3) The functionf is strongly convex with respect to the nofri|, with convexity constant > 0.
Thatis, for allgy, 0 € H, f(61) > f(02) + (f'(02), 01 — 02) + 4|61 — 62>

Note that(H3) simply needs to be satisfied f6s = 6* being the unique global minimizer ¢f
(such thatf’(6*) = 0). In the context of machine learning (least-squares orstagregression),
assumptior(H3) is satisfied as soon d5|¢||? is used as an additional regularizer. For all strongly
convex losses (e.g., least-squares), it is also satisfiemb@s as the expectatidi(x,, ® x,) IS
invertible. Note that this implies that the problem is finitienensional, otherwise, the expectation
is a compact covariance operator, and hence non-invefsbk, e.g., [22] for an introduction to
covariance operators). For non-strongly convex losseb ascthe logistic lossf can never be
strongly convex unless we restrict the domairdqfvhich we do in Section 3.2). Alternatively to
restricting the domain, replacing the logistic lass+ log(1 +e~%) by u + log(1 +e~%) +cu?/2,

for some smalk > 0, makes it strongly convex in low-dimensional settings.

By strong convexity off, if we assumeHl3), then f attains its global minimum at a unique vector
6* € H such thatf’(6*) = 0. Moreover, we make the following assumption (in the contefxt
stochastic approximation, it correspond&d|e,, ||| F.—1) < o?):

(H4) There existe? € R, such that for alh > 1, E(|| £/ (6%)||?|Fn-1) < 02, w.p.1.

3.1 Stochastic gradient descent

Before stating our first theorem (see proof in [23]), we idtroe the following family of functions
g : Ry \ {0} — R given by:
B
= if
wa(t)Z{ g, TE7D,

logt if 8 =0.
The functiong — ¢3(t) is continuous for alt > 0. Moreover, forg > 0, ps(t) < %, while for
B8 < 0, we haveps(t) < _iﬂ (both with asymptotic equality whenis large).

Theorem 1 (Stochastic gradient descent, strong convexity) Assume(H1,H2,H3,H4). Denote
5, = E||6,, — 0*||?, whered,, € H is then-th iterate of the recursion in Eq. (1), with, = Cn~.
We have, for € [0, 1]:

C 2 4Co%
2 exp (4L202<p1,2a(n)) exp <—MTTL1_O‘> <50 + %) —Ua, if 0<ax<l,
5, < " (5)
n exp(QLQC’Q) 0'2 2 2@#0/271(”) H
7’)}‘70 (50"’? +20’CW, |fOé:1.
Sketch of proof. Under our assumptions, it can be shown {ha) satisfies the following recursion:
8 < (1= 2p7ym + 2L%42) 6,1 + 20292, (6)

Note that it also appears in [3, Eq. (2)] under different agstions. Using thigleterministicecur-
sion, we then derive bounds using classical techniques $toghastic approximation [2], but in a
non-asymptotic way, by deriving explicit upper-bounds.

Related work. To the best of our knowledge, this non-asymptotic bound¢ctvbiepends explicitly
upon the parameters of the problem, is novel (see [1, Thetréitectronic companion paper] for a
simpler bound with no such explicit dependence). It showgairticular that there is convergence in
quadratic mean for any € (0, 1]. Previous results from the stochastic approximatiordiigne have
focused mainly on almost sure convergence of the sequenteraties. Almost-sure convergence
requires thaty > 1/2, with counter-examples far < 1/2 (see, e.g., [2] and references therein).



Bound on function values. The bounds above imply a corresponding a bound on the fursctio
values. Indeed, under assumptigi®), it may be shown thak[f(6,) — f(0*)] < één (see proof
in [23]).

Tightness for quadratic functions. Since the deterministic recursion in Eq. (6) is an equabty f
guadratic functiond,, the result in Eq. (5) is optimal (up to constants). Morepwer results are
consistent with the asymptotic results from [6].

Forgettinginitial conditions. Bounds depend on the initial conditién = E [||6, — 6*[|*] and the
variances? of the noise term. The initial condition is forgotten sulperentially fast forx € (0, 1),
but not fora = 1. Fora < 1, the asymptotic term in the boundf‘hgg.

Behavior for « = 1. Fora =1, we have“"“flfcjg(”) < #0/1271% if Cpu> 2, %fﬂfig/;(") e
if Cp = 2and “"“fl{fc’/;(") < 17z ey it On > 2. Therefore, forw = 1, the choice ofC is

critical, as already noticed by [8]: too sméllleads to convergence at arbitrarily small rate of the
form n=#¢/2, while too largeC leads to explosion due to the initial condition. This bebavs
confirmed in simulations in Section 5.

Setting C' too large. There is a potentially catastrophic term whénis chosen too large, i.e.,
exp (4L?C?p1-24(n)), which leads to an increasing bound wheis small. Note that for: < 1,

this catastrophic term is in front of a sub-exponentiallgalgng factor, so its effect is mitigated
once the term im!~“ takes overp; o, (n), and the transient term stops increasing. Moreover, the
asymptotic term is not involved in it (which is also obseruedimulations in Section 5).

Minimax rate. Note finally, that the asymptotic convergence rateditn—*) matches optimal
asymptotic minimax rate for stochastic approximation 5], Note that there is no explicit depen-
dence on dimension; this dependence is implicit in the defimbdf the constants and L.

3.2 Bounded gradients

In some cases such as logistic regression, we also haveamanipper-bound on the gradients, i.e.,
we assume (note that in Theorem 2, this assumption replati$Hbi2) and (H4)).

(H5) For eachn > 1, almost surely, the functioff,, if convex, differentiable and has gradients
uniformly bounded byB on the ball of cented and radiug), i.e., for alld € H and alln. > 0,
1] < D = [[f,(0)]l < B.

Note that no function may be strongly convex and Lipschdmtmuous (i.e., with uniformly
bounded gradients) over the entire Hilbert spicéMoreover, if H2') is satisfied, then we may take
D = ||6*]] and B = LD. The next theorem shows that with a slight modification ofréeursion
in Eq. (1), we get simpler bounds than the ones obtained irofEme 1, obtaining a result which
already appeared in a simplified form [8] (see proofin [23]):

Theorem 2 (Stochastic gradient descent, strong convexity, bounded gradients) Assume
(HLH3H5). Denoted, = E[[|6,, — 6||*], whered, € H is then-th iterate of the follow-
ing recursion:

Vn>1, 0, = HD[enfl - any/z(onfl)]a (7)

wherell, is the orthogonal projection operator on the b@dl : ||0|| < D}. Assumé|d*|| < D. If
= Cn~%, we have, forx € [0, 1]:
2 2 uC _, 2B%C? .
_ == 1);
(60 + B“C*pq ga(n)) exp ( 5 n ) + s if « €10,1); (®)
Son ¢ + 23202117“03%0_1(11), ifa=1.

on <

The proof follows the same lines than for Theorem 1, but wlih deterministic recursiod, <
(1 —247,)6,-1 + B%y2. Note that we obtain the same asymptotic terms than for Emedr(butB
replacesr). Moreover, the bound is simpler (no explosive multiplicatfactors), but it requires to
know D in advance, while Theorem 1 does not. Note that because veedmiy assumed Lipschitz-
continuity, we obtain a bound on function values of ordgn—/2), which is sub-optimal. For
bounds directly on function values, see [26].



33 Ponak—Ruppertaveraging

We now consideé,, = Z Hk and, following [4, 5], we make extra assumptions regardireg t
smoothness of each, and the fourth-order moment of the driving noise:

(H6) Foreachm > 1, thefunctionfn is almost surely twice differentiable with Lipschitz-contous
Hessian operat ', with Lipschitz constand/. That is, for allf;, 82 € H and for alln > 1,
I£7(61) — f7(02) H < M]||6; — 65|, where|| - || is the operator norm.

Note that H6) needs only to be satisfied fs = 6*. For least-square regression, we haye= 0,
while for logistic regression, we havd = R3/4.

(H7) There existsr € R, such that for each > 1, E(||f.(0%)||*|Fn-1) < 7* almost surely.
Moreover, there exists a nonnegative self-adjoint operfateuch that for alle, E(f/,(6*) ®
f1(0%)| Fn—1) < ¥ almost-surely.

The operato® (which always exists as soon asis finite) is here to characterize precisely the
variance term, which will be independent of the learning s&quenceéy,,), as we now show:
Theorem 3 (Averaging, strong convexity) AssumgH1, H2', H3, H4, H6, H7). Then, ford,, =
Ly~ 6, anda € (0,1), we have:

* * — 1/2 2
12 [tr f7(6") ' 2 f"(6) ] 60 1 MCr 172 P1—a(n)
(E|6, — 6*||7) NG + HOI/Q ey T 5,072 (14 (nC)Y )T
ALCY? o1 ()2 8A /1 1/2
* W n nul/Q(C )(50+L2)
MC/? E[6p — 6* 1/2
+ %Aexp (24L4C4) (50 + % +27°C3u + 8T202) , (9)

whereA is a constant that depends only pnC, L andc.

Sketch of proof. Following [4], we start from Eq. (1), write it 8, (6,—1) = %(9,1_1 —0,),and
notice that (a)f/ (0,,—1) ~ f (9*) + f”(e*)( h—1 — 0%), (b) f/(6*) has zero mean and behaves
like an i.i.d. sequence, and ( )Zk 15 L (0x_1 — 6) turns out to be negligible owing to a sum-

mation by parts and to the bound obtained in Theorem 1. Thigiésthatd, — 6* behaves like
— LS, f7(6*) 71 f1(6%). Note that we obtain a bound on tleot mean square error.

Forgetting initial conditions. There is no sub-exponential forgetting of initial conditsy but
rather a decay at rat®(n~2) (last two lines in Eqg. (9)). This is a known problem which may
slow down the convergence, a common practice being to stardging after a certain number of
iterations [2]. Moreover, the constadtmay be large whe C is large, thus the catastrophic terms
are more problematic than for stochastic gradient desbecfuse they do not appear in front of
sub-exponentially decaying terms (see [23]). This suggediakeC L small.

Asymptotically leading term. WhenM >0 anda > 1/2, the asymptotic term faf,, is independent
of (v,) and of ordelO(n~1). Thus, averaging allows to get from the slow rétg:~<) to the opti-
mal rateO(n~!). The next two leading terms (in the first line) have or@én>—2) andO(n—2%),
suggesting the setting=2/3 to make them equal. Whel =0 (quadratic functions), the leading
term has rat®(n—!) for all a € (0, 1) (with then a contribution of the first term in the second line)

Casea = 1. We get a simpler bound by directly averaging the bound in Téral, which leads
to an unchanged rate af !, i.e., averaging is not key far = 1, and does not solve the robustness
problem related to the choice 6f or the lack of strong convexity.

L eading term independent of (v,,). The terminO(n ') does not depend op,. Moreover, as no-
ticed in the stochastic approximation literature [4], ia ttontext of learning from i.i.d. observations,
this is exactly the Cramer-Rao bound (see, e.g., [27]), hod the leading term is asymptotically
optimal. Note that no explicit Hessian inversion has beafopmed to achieve this bound.

Relationship with prior work on online learning. There is no clear way of adding a bounded
gradient assumption in the general case (0, 1), because the proof relies on the recursion without
projections, but forx = 1, the rate ofO(n=!) (up to a logarithmic term) can be achieved in the
more general framework of online learning, where averaigitkgy to deriving bounds for stochastic
approximation from regret bounds. Moreover, bounds arainét in high probability rather than
simply in quadratic mean (see, e.g., [11, 12, 13, 14, 15]).

5



4 Non-strongly convex objectives

In this section, we do not assume that the funcifas strongly convex, but we repla¢e 3) by:
(H8) The functionf attains its global minimum at a certafih € H (which may not be unique).

In the machine learning scenario, this essentially implied the best predictor is in the function
class we considér.In the following theorem, sincé* is not unique, we only derive a bound on
function values. Not assuming strong convexity is esskintiaractice to make sure that algorithms
are robust anddaptiveto the hardness of the learning or optimization problem (miike gradient
descentis).

4.1 Stochastic gradient descent

The following theorem is shown in a similar way to Theorem &;fisst derive a deterministic recur-
sion, which we analyze with novel tools compared to the rtootemstic case (see details in [23]),
obtaining new convergence rates for non-averaged staclggatient descent :
Theorem 4 (Stochastic gradient descent, no strong convexity) AssumgH1,H2' ,H4,H8). Then,
if v, = Cn™, fora € [1/2,1], we have:
i 1 2 14+ 4L3/2¢C3/?
E[£(0n) = F(07)] < (%0 +

min{p1_o(n), Pas2(n)}

g

L2

) exp (4L202cp1,2a(n)) (10)

Whena = 1/2, the bound goes to zero only whérC' < 1/4, at rates which can be arbitrarily
slow. Fora € (1/2,2/3), we get convergence at ratgn—/2), while fora € (2/3,1), we get a
convergence rate @d(n®~1). Fora = 1, the upper bound is of ord€¥((logn) 1), which may be
very slow (but still convergent). The rate of convergenaanges atv = 2/3, where we get our best
rateO(n~'/3), which does not match the minimax rate@fn~'/?) for stochastic approximation
in the non-strongly convex case [25]. These rates for s&ichgradient descent without strong
convexity assumptions are new and we conjecture that tleegsyrmptotically minimax optimal (for
stochastic gradient descent, not for stochastic apprdiom@a Nevertheless, the proof of this result
falls out of the scope of this paper.

If we further assume that we have all gradients boundenB [fthat is, we assum® = oo in (H5)),
then, we have the following theorem, which allowse (1/3,1/2) with rateO(n—32/2+1/2):

Theorem 5 (Stochastic gradient descent, no strong convexity, bounded gradients) Assume
(H1,H2', H5,H8). Then, ify,, = Cn~°, for a € [1/3, 1], we have:

202 1+4L1/201/2 .
Ef(0n) — f(0)] < (50 + B<C 9017204(71)) Cmin{p1_a(n),@a/2(n)}’ if  €[1/2,1], a
n X 2 K} B2C2 1/2 (1+4L1/2BC3/2) ’
6( o+ ) (1-2a)1/2p34 )2-1/2(n)’ ITa e [1/3’1/2]

4.2 Polyak-Ruppert averaging

Averaging in the context of non-strongly convex functioms been studied before, in particular in
the optimization and machine learning literature, and tlleding theorems are similar in spirit to
earlier work [7, 8, 13, 14, 15]:

Theorem 6 (averaging, no strong convexity) AssumgH1,H2' ,H4,H8). Then, ify,, = Cn™, for
a € [1/2,1], we have

E[£(0,) - f0")] <&
If & = 1/2, then we only have convergence under < 1/4 (as in Theorem 4), with potentially
slow rate, while fore > 1/2, we have a rate o®(n~“), with otherwise similar behavior than for
the strongly convex case with no bounded gradients. Heezaging has allowed the rate to go from
O(max{n®~1,n=*/2})to O(n~).

a2C

[1+(2L0)1+é]+ —f1a(n). (12)

0—2) exp (2L?C?p1_24(n))

(ot 72

nlfa

'For least-squares regression with kernels, wher@®) = 1 (yn — (0, ®(zx)))?, with ®(z,,) being the
feature map associated with a reproducing kernel Hilbextsl with universal kernel [28], then we need that
z — E(Y|X = z) is a function within the RKHS. Taking care of situations wétis is not true is clearly of
importance but out of the scope of this paper.
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Figure 1: Robustness to lack of strong convexity for diffedearning rates and stochastic gradient
(sgd) and Polyak-Ruppert averaging (ave). From left totrigtt) = |0]? andf (9) = |6|*, (between
—1 and1, affine outside of—1, 1], continuously differentiable). See text for details.
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—»—sgd - C=1/5 5 —»—sgd - C=1/5
-»-ave - C=1/5 -%-ave - C=1/5
——sgd - C=1 —0—sgd - C=1
--ave-C=1 | .— -9-ave-C=1
—&-sgd-C=5 | T —8—sgd - C=5
-B-ave-C=5 | @ -B-ave - C=5
g

log(n) log(n)
Figure 2: Robustness to wrong constantsyipe= Cn~“. Left: a = 1/2, right: « = 1. See text for
details. Best seen in color.

Theorem 7 (averaging, no strong convexity, bounded gradients) AssumgH1,H5,H8). If v, =
Cn~“, fora € [0, 1], we have

_ nocfl B2

E [f(0n) — f(67)] < 50 (00 + C*B*p1_3q(n)) + %%fa(”)- (13)
With the bounded gradient assumption (and in fact withoubathness), we obtain the minimax
asymptotic rateD(n~'/2) up to logarithmic terms [25] fonr = 1/2, and, fora < 1/2, the rate
O(n=%) while for o« > 1/2, we getO(n®~!). Here, averaging has also allowed to increase the
range ofo which ensures convergenceas (0,1).

5 Experiments

Robustness to lack of strong convexity. Definef : R — R as|6|? for |§| < 1 and extended into
a continuously differentiable function, affine outside[efl, 1]. For all¢g > 1, we have a convex
function with Lipschitz-continuous gradient with congtén= ¢(¢—1). Itis strongly convex around
the origin forg € (1, 2], but its second derivative vanishes for- 2. In Figure 1, we plot in log-log
scale the average ¢f(6,,) — f(8*) over 100 replications of the stochastic approximation [mwb
(with i.i.d. Gaussian noise of standard deviation 4 addethé¢ogradient). Foy = 2 (left plot),
where we locally have a strongly convex case, all learnitegriead to good estimation with decay
proportional toa: (as shown in Theorem 1), while for the averaging case, allir¢lae exact same
convergence rate (as shown in Theorem 3). Howevel fer 4 where strong convexity does not
hold (right plot), without averagingy = 1 is still fastest but becomes the slowest after averaging;
on the contrary, illustrating Section 4, slower decayslisasn = 1/2) leads to faster convergence
when averaging is used. Note also the reduction in vartglidr the averaged iterations.

Robustness to wrong constants. We consider the function on the real liffe defined asf(9) =
%|t9|2 and consider standard i.i.d. Gaussian noise on the gradienFigure 2, we plot the average
performance over 100 replications, for various value§'@nda. Note that fora = 1/2 (left plot),
the 3 curves for stochastic gradient descent end up beiggealiand equally spaced, corroborating
a rate proportional t6” (see Theorem 1). Moreover, when averagingfer 1/2, the error ends up
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Figure 3: Comparison on non strongly convex logistic regjasproblems. Left: synthetic example,
right: “alpha” dataset. See text for details. Best seen larco

being independent af' anda (see Theorem 3). Finally, whefi is too large, there is an explosion
(up to10°), hinting at the potential instability of having too large. Forx = 1 (right plot), if C'is
too small, convergence is very slow (and not at the rat¥), as already observed (see, e.g., [8, 6]).

Medium-scale experiments with linear logistic regression. We consider two situations where
H = RP: (a) the “alpha” dataset from the Pascal large scale legrolmllenge it tp://

| argescal e. nl . tu-berlin.de/), for whichp = 500 andn = 50000, and (b) a synthetic ex-
ample where = 100, n = 100000; we generate the input data i.i.d. from a multivariate Geunss
distribution with mean zero and a covariance matrix samfiiech a Wishart distribution withp
degrees of freedom (thus with potentially bad condition bar, and the output is obtained through
a classification by a random hyperplane. For different \alofer, we choose” in an adaptive
way where we consider the lowest test error aftgr0 iterations, and report results in Figure 3. In
experiments reported in [23], we also consideequal tol/L suggested by our analysis to avoid
large constants, for which the convergence speed is veny stmgesting that our global bounds in-
volving the Lipschitz constants may be locally far too pesstic and that designing a truly adaptive
sequencéy,,) instead of a fixed one is a fruitful avenue for future research

6 Conclusion

In this paper, we have provided a non-asymptotic analysist@thastic gradient, as well as its
averaged version, for various learning rate sequencesedforim-~, = Cn~“ (see summary of
results in Table 1). Following earlier work from the optimiion, machine learning and stochastic
approximation literatures, our analysis highlights that 1 is not robust to the choice @f and to
the actual difficulty of the problem (strongly convex or ndtjowever, when using averaging with
a € (1/2,1), we get, both in strongly convex and non-strongly convexagibn, close to optimal
rates of convergence. Moreover, we highlight the fact tlabiems with bounded gradients have
better behaviors, i.e., logistic regression is easier torope than least-squares regression.

Our work can be extended in several ways: first, we have fatoseresults in quadratic mean
and we expect that some of our results can be extended tas@siligh probability (in the line
of [13, 3]). Second, we have focused on differentiable dbjes, but the extension to objective
functions with a differentiable stochastic part and a ndfexentiable deterministic (in the line
of [14]) would allow an extension to sparse methods.
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SGD | SGD | SGD SGD Aver. | Aver. | Aver.

« w L | u,B L L,B w, L L B

O , 13| « a X X 2a X a

(1/3 , 1/2) | « a X Ba-1)/2| 2« X a
(1/2 , 2/3) a a a2 a/2 1 l-al|ll-«a
2/3, 1| « a |[1-« 11—« 1 l—a|l-«

Table 1: Summary of results: For stochastic gradient deg&BD) or Polyak-Ruppert averaging
(Aver.), we provide their rates of convergence of the forn? corresponding to learning rate se-
guencesy, = Cn~“, whereg is shown as a function ak. For each method, we list the main
assumptions(: strong convexity/.: bounded Hessiari3: bounded gradients).
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