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Abstract

This paper presents an approach that predicts the effectiveness of HIV combina-
tion therapies by simultaneously addressing several problems affecting the avail-
able HIV clinical data sets: the different treatment backgrounds of the samples, the
uneven representation of the levels of therapy experience, the missing treatment
history information, the uneven therapy representation and the unbalanced ther-
apy outcome representation. The computational validation on clinical data shows
that, compared to the most commonly used approach that does not account for
the issues mentioned above, our model has significantly higher predictive power.
This is especially true for samples stemming from patients with longer treatment
history and samples associated with rare therapies. Furthermore, our approach is
at least as powerful for the remaining samples.

1 Introduction

According to [18], more than 33 million people worldwide are infected with the human immunod-
eficiency virus (HIV), for which there exists no cure. HIV patients are treated by administration of
combinations of antiretroviral drugs, which succeed in suppressing the virus much longer than the
monotherapies based on a single drug. Eventually, the drug combinations also become ineffective
and need to be replaced. On such occasion, the very large number of potential therapy combinations
makes the manual search for an effective therapy increasingly impractical. The search is particulary
challenging for patients in the mid to late stages of antiretroviral therapy because of the accumulated
drug resistance from all previous therapies. The availability of large clinical data sets enables the
development of statistical methods that offer an automated procedure for predicting the outcome
of potential antiretroviral therapies. An estimate of the therapy outcome can assist physicians in
choosing a successful regimen for an HIV patient.

However, the HIV clinical data sets suffer from several problems. First of all, the clinical data
comprise therapy samples that originate from patients with different treatment backgrounds. Also
the various levels of therapy experience ranging from therapy-naı̈ve to heavily pretreated are repre-
sented with different sample abundances. Second, the samples on different combination therapies
have widely differing frequencies. In particular, many therapies are only represented with very few
data points. Third, the clinical data do not necessarily have the complete information on all admin-
istered HIV therapies for all patients and the information on whether all administered therapies is
available or not is also missing for many of the patients. Finally, the imbalance between the effec-
tive and the ineffective therapies is increasing over time: due to the knowledge acquired from HIV
research and clinical practice the quality of treating HIV patients has largely increased in the recent
years rendering the amount of effective therapies in recently collected data samples much larger
than the amount of ineffective ones. These four problems create bias in the data sets which might
negatively affect the usefulness of the derived statistical models.
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In this paper we present an approach that addresses all these problems simultaneously. To tackle the
issues of the uneven therapy representation and the different treatment backgrounds of the samples,
we use information on both the current therapy and the patient’s treatment history. Additionally, our
method uses a distribution matching approach to account for the problems of missing information in
the treatment history and the growing gap between the abundances of effective and ineffective HIV
therapies over time. The performance of our history distribution matching approach is assessed by
comparing it with two common reference methods in the so called time-oriented validation scenario,
where all models are trained on data from the more distant past, while their performance is assessed
on data from the more recent past. In this way we account for the evolving trends in composing drug
combination therapies for treating HIV patients.

Related work. Various statistical learning methods, including artificial neural networks, decision
trees, random forests, support vector machines (SVMs) and logistic regression [19, 11, 14, 10, 16,
1, 15], have been used to predict the effectiveness of HIV combination therapies from clinical data.
None of these methods considers the problems affecting the available clinical data sets: different
treatment backgrounds of the samples, uneven representations of therapies and therapy outcomes,
and incomplete treatment history information. Some approaches [2, 4] deal with the uneven therapy
representation by training a separate model for each combination therapy on all available samples
with properly derived sample weights. The weights reflect the similarities between the target therapy
and all training therapies. However, the therapy-specific approaches do not address the bias orig-
inating from the different treatment backgrounds of the samples, or the missing treatment history
information.

2 Problem setting

Let z denote a therapy sample that comprises the viral genotype g represented as a binary vector in-
dicating the occurrence of a set of resistance-relevant mutations, the therapy combination z encoded
as a binary vector that indicates the individual drugs comprising the current therapy, the binary vec-
tor h representing the drugs administered in all known previous therapies, and the label y indicating
the success (1) or failure (−1) of the therapy z. Let D = {(g1, z1,h1, y1), . . . , (gm, zm,hm, ym)}
denote the training set and let s refer to the therapy sample of interest. Let start(s) refer to the point
of time when the therapy s was started and patient(s) refer to the patient identifier corresponding
to the therapy sample s. Then:

r(s) = {z | (start(z) ≤ start(s)) and (patient(z) = patient(s))}

denotes the complete treatment data associated with the therapy sample s and will be referred to as
therapy sequence. It contains all known therapies administered to patient(s) not later than start(s)
ordered by their corresponding starting times. We point out that each therapy sequence also contains
the current therapy, i.e., the most recent therapy in the therapy sequence r(s) is s. Our goal is to train
a model f(g, s,h) that addresses the different types of bias associated with the available clinical data
sets when predicting the outcome of the therapy s. In the rest of the paper we denote the set of input
features (g, s,h) by x.

3 History distribution matching method

The main idea behind the history distribution matching method we present in this paper is that the
predictions for a given patient should originate from a model trained using samples from patients
with treatment backgrounds similar as the one of the target patient. The details of this method are
summarized in Algorithm 1. In what follows, we explain each step of this algorithm.

3.1 Clustering based on similarities of therapy sequences

Clustering partitions a set of objects into clusters, such that the objects within each cluster are more
similar to one another than to the objects assigned to a different cluster [7]. In the first step of
Algorithm 1, all available training samples are clustered based on the pairwise dissimilarity of their
corresponding therapy sequences. In the following, we first describe a similarity measure for therapy
sequences and then present the details of the clustering.
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Algorithm 1: History distribution matching method
1. Cluster the training samples by using the pairwise dissimilarities of their corresponding

therapy sequences.
2. For each (target) cluster:

• Compute sample weights that match the distribution of all available training
samples to the distribution of samples in the target cluster.

• Train a sample-weighted logistic regression model using the sample weights
computed in the previous distribution matching step.

Similarity of therapy sequences. In order to quantify the pairwise similarity of therapy sequences
we use a slightly modified version of the alignment similarity measure introduced in [5]. It adapts
sequence alignment techniques [13] to the problem of aligning therapy sequences by considering the
specific therapies given to a patient, their respective resistance-relevant mutations, the order in which
they were applied and the length of the therapy history. The alphabet used for the therapy sequence
alignment comprises all distinct drug combinations making up the clinical data set. The pairwise
similarities between the different drug combinations are quantified with the resistance mutations
kernel [5], which uses the table of resistance-associated mutations of each drug afforded by the
International AIDS society [8]. First, binary vectors indicating resistance-relevant mutations for the
set of drugs occurring in a combination are calculated for each therapy. Then, the similarity score
of two therapies of interest is computed as normalized inner product between their corresponding
resistance mutation vectors. In this way, the therapy similarity also accounts for the similarity of the
genetic fingerprint of the potential latent virus populations of the compared therapies. Each therapy
sequence ends with the current (most recent) therapy – the one that determines the label of the sample
and the sequence alignment is adapted such that the most recent therapies are always matched.
Therefore, it also accounts for the problem of uneven representation of the different therapies in the
clinical data. It has one parameter that specifies the linear gap cost penalty.

For the history distribution matching method, we modified the alignment similarity kernel described
in the paragraph above such that it also takes the importance of the different resistance-relevant mu-
tations into account. This is achieved by updating the resistance mutations kernel, where instead of
using binary vectors that indicate the occurrence of a set of resistance-relevant mutations, we use
vectors that indicate their importance. If two or more drugs from a certain drug group, that com-
prise a target therapy share a resistance mutation, then we consider its maximum importance score.
Importance scores for the resistance-relevant mutations are derived from in-vivo experiments and
can be obtained from the Stanford University HIV Drug Resistance Database [12]. Furthermore, we
want to keep the cluster similarity measure parameter-free, such that in the process of model selec-
tion the clustering Step 1 in Algorithm 1 is decoupled from the Step 2 and is computed only once.
This is achieved by computing the alignments with zero gap costs and ensures time-efficient model
selection procedure. However, in this case only the similarities of the matched therapies comprising
the two compared therapy sequences contribute to the similarity score and thus the differing lengths
of the therapy sequences are not accounted for. Having a clustering similarity measure that addresses
the differing therapy lengths is important for tackling the uneven sample representation with respect
to the level of therapy experience. In order to achieve this we normalize each pairwise similarity
score with the length of the longer therapy sequence. This yields pairwise similarity values in the
interval [0, 1] which can easily be converted to dissimilarity values in the same range by subtracting
them from 1.

Clustering. Once we have a measure of dissimilarity of therapy sequences, we cluster our data
using the most popular version of K-medoids clustering [7], referred to as partitioning around
medoids (PAM) [9]. The main reason why we choose this approach instead of the simpler K-means
clustering [7] is that it can use any precomputed dissimilarity matrix. We select the number of
clusters with the silhouette validation technique [17], which uses the so-called silhouette value to
assess the quality of the clustering and select the optimal number of clusters.
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3.2 Cluster distribution matching

The clustering step of our method groups the training data into different bins based on their therapy
sequences. However, the complete treatment history is not necessarily available for all patients in
our clinical data set. Therefore, by restricting the prediction model for a target sample only to the
data from its corresponding cluster, the model might ignore relevant information from the other
clusters. The approach we use to deal with this issue is inspired by the multi-task learning with
distribution matching method introduced in [2].

In our current problem setting, the goal is to train a prediction model fc : x → y for each cluster
c of similar treatment sequences, where x denotes the input features and y denotes the label. The
straightforward approach to achieve this is to train a prediction model by using only the samples
in cluster c. However, since the available treatment history for some samples might be incomplete,
totally excluding the samples from all other clusters (6= c) ignores relevant information about the
model fc. Furthermore, the cluster-specific tasks are related and the samples from the other clusters
– especially those close to the cluster boundaries of cluster c – also carry valuable information
for the model fc. Therefore, we use a multi-task learning approach where a separate model is
trained for each cluster by not only using the training samples from the target cluster, but also the
available training samples from the remaining clusters with appropriate sample-specific weights.
These weights are computed by matching the distribution of all samples to the distribution of the
samples of the target cluster and they thereby reflect the relevance of each sample for the target
cluster. In this way, the model for the target cluster uses information from the input features to
extract relevant knowledge from the other clusters.

More formally, let D = {(x1, y1, c1), . . . , (xm, ym, cm)} denote the training data, where ci denotes
the cluster associated with the training sample (xi, yi) in the history-based clustering. The training
data are governed by the joint training distribution

∑
c p(c)p(x, y|c). The most accurate model for a

given target cluster t minimizes the loss with respect to the conditional probability p(x, y|t) referred
to as the target distribution. In [2] it is shown that:

E(x,y)∼p(x,y|t)[`(ft(x))] = E(x,y)∼
∑

c p(c)p(x,y|c)[rt(x, y)`(ft(x))], (1)

where:

rt(x, y) =
p(x, y|t)∑

c p(c)p(x, y|c)
. (2)

In other words, by using sample-specific weights rt(x, y) that match the training distribution∑
c p(c)p(x, y|c) to the target distribution p(x, y|t) we can minimize the expected loss with respect

to the target distribution by minimizing the expected loss with respect to the training distribution.
The weighted training data are governed by the correct target distribution p(x, y|t) and the sample
weights reflect the relevance of each training sample for the target model. The weights are derived
based on information from the input features. If a sample was assigned to the wrong cluster due to
the incompleteness of the treatment history, by matching the training to the target distribution it can
still receive high sample weight for the model of its correct cluster.

In order to avoid the estimation of the high-dimensional densities p(x, y|t) and p(x, y|c) in Equa-
tion 2, we follow the example of [3, 2] and compute the sample weights rt(x, y) using a discrimina-
tive model for a conditional distribution with a single variable:

rt(x, y) =
p(t|x, y)

p(t)
, (3)

where p(t|x, y) quantifies the probability that a sample (x, y) randomly drawn from the training set
D belongs to the target cluster t. p(t) is the prior probability which can easily be estimated from the
training data.

As in [2], p(t|x, y) is modeled for all clusters jointly using a kernelized version of multi-class logistic
regression with a feature mapping that separates the effective from the ineffective therapies:

Φ(x, y) =

[
δ(y,+1)x
δ(y,−1)x

]
, (4)

where δ is the Kronecker delta (δ(a, b) = 1, if a = b, and δ(a, b) = 0, if a 6= b). In this way, we can
train the cluster-discriminative models for the effective and the ineffective therapies independently,
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and thus, by proper time-oriented model selection address the increasing imbalance in their repre-
sentation over time. Formally, the multi-class model is trained by maximizing the log-likelihood
over the training data using a Gaussian prior on the model parameters:

arg max
v

∑
(xi,yi,ci)∈Dc

log(p(ci|xi, yi,v)) + vTΣ−1v,

where v are the model parameters (a concatenation of the cluster specific parameters vc), and Σ is
the covariance matrix of the Gaussian prior.

3.3 Sample-weighted logistic regression method

As described in the previous subsection, we use a multi-task distribution matching procedure to
obtain sample-specific weights for each cluster, which reflect the relevance of each sample for the
corresponding cluster. Then, a separate logistic regression model that uses all available training data
with the proper sample weights is trained for each cluster. More formally, let t denote the target
cluster and let rt(x, y) denote the weight of the sample (x, y) for the cluster t. Then, the prediction
model for the cluster t that minimizes the loss over the weighted training samples is given by:

arg min
wt

1

|D|
∑

(xi,yi)∈D

rt(xi, y)γ · `(ft(xi), yi) + σwT
t wt, (5)

where wt are the model parameters, σ is the regularization parameter, γ is a smoothing parameter
for the sample-specific weights and `(f(x,wt), y) = ln(1 + exp(−ywT

t x)) is the loss of linear
logistic regression.

All in all, our method first clusters the training data based on their corresponding therapy sequences
and then learns a separate model for each cluster by using relevant data from the remaining clusters.
By doing so it tackles the problems of the different treatment backgrounds of the samples and the
uneven sample representation in the clinical data sets with respect to the level of therapy experience.
Since the alignment kernel considers the most recent therapy and the drugs comprising this therapy
are encoded as a part of the input feature space, our method also deals with the differing therapy
abundances in the clinical data sets. Once we have the models for each cluster, we use them to
predict the label of a given test sample x as follows: First of all, we use the therapy sequence of the
target sample to calculate its dissimilarity to the therapy sequences of each of the cluster centers.
Then, we assign the sample x to the cluster c with the closest cluster center. Finally, we use the
logistic regression model trained for cluster c to predict the label y for the target sample x.

4 Experiments and results

4.1 Data

The clinical data for our model are extracted from the EuResist [16] database that contains informa-
tion on 93014 antiretroviral therapies administered to 18325 HIV (subtype B) patients from several
countries in the period from 1988 to 2008. The information employed by our model is extracted
from these data: the viral sequence g assigned to each therapy sample is obtained shortly before
the respective therapy was started (up to 90 days before); the individual drugs of the currently ad-
ministered therapy z; all available (known) therapies administered to each patient h, r(z); and the
response to a given therapy quantified with a label y (success or failure) based on the virus load val-
ues (copies of viral RNA per ml blood plasma) measured during its course (for more details see [4]
and the Supplementary material). Finally, our training set comprises 6537 labeled therapy samples
from 690 distinct therapy combinations.

4.2 Validation setting

Time-oriented validation scenario. The trends of treating HIV patients change over time as a
result of the gathered practical experience with the drugs and the introduction of new antiretroviral
drugs. In order to account for this phenomenon we use the time-oriented validation scenario [4]
which makes a time-oriented split when selecting the training and the test set. First, we order all
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available training samples by their corresponding therapy starting dates. We then make a time-
oriented split by selecting the most recent 20% of the samples as the test set and the rest as the
training set. For the model selection we split the training set further in a similar manner. We take
the most recent 25% of the training set for selecting the best model parameters (see Supplementary
material) and refer to this set as tuning set. In this way, our models are trained on the data from the
more distant past, while their performance is measured on the data from the more recent past. This
scenario is more realistic than other scenarios since it captures how a given model would perform on
the recent trends of combining the drugs. The details of the data sets resulting from this scenario are
given in Table 1, where one can also observe the large gap between the abundances of the effective
and ineffective therapies, especially for the most recent data.

Table 1: Details on the data sets generated in the time-oriented validation scenario.

Data set training tuning test
Sample count 3596 1634 1307
Success rate 69% 79% 83%

The search for an effective HIV therapy is particulary challenging for patients in the mid to late
stages of antiretroviral therapy when the number of therapy options is reduced and effective ther-
apies are increasingly hard to find because of the accumulated drug resistance mutations from all
previous therapies. The therapy samples gathered in the HIV clinical data sets are associated with
patients whose treatment histories differ in length: while some patients receive their first antiretrovi-
ral treatment, others are heavily pretreated. These different sample groups, from treatment naı̈ve to
heavily pretreated, are represented unevenly in the HIV clinical data with fewer samples associated
to therapy-experienced patients (see Figure 1 (a) in the Supplementary material). In order to assess
the ability of a given target model to address this problem, we group the therapy samples in the test
set into different bins based on the number of therapies administered prior to the therapy of interest
– the current therapy (see Table 1 in the Supplementary material). Then, we assess the quality of a
given target model by reporting its performance for each of the bins. In this way we can assess the
predictive power of the models in dependence on the level of therapy experience.

Another important property of an HIV model is its ability to address the uneven representation of
the different therapies (see Figure 1 (b) in the Supplementary material). In order to achieve this we
group the therapies in the test set based on the number of samples they have in the training set, and
then we measure the model performance on each of the groups. The details on the sample counts in
each of the bins are given in Table 2 of the Supplementary material. In this manner we can evaluate
the performance of the models for the rare therapies. Due to the lack of data and practical experience
for the rare HIV combination therapies, predicting their efficiency is more challenging compared to
estimating the efficiency of the frequent therapies.

Reference methods. In our computational experiments we compare the results of our history dis-
tribution matching approach, denoted as transfer history clustering validation scenario, to those of
three reference approaches, namely the one-for-all validation scenario, the history-clustering val-
idation scenario, and the therapy-specific validation scenario. The one-for-all method mimics the
most common approaches in the field [16, 1, 19] that train a single model (here logistic regression)
on all available therapy samples in the data set. The information on the individual drugs comprising
the target (most recent) therapy and the drugs administered in all its available preceding therapies
are encoded in a binary vector and supplied as input features. The history-clustering method imple-
ments a modified version of Algorithm 1 that skips the distribution matching step. In other words, a
separate model is trained for each cluster by using only the data from the respective cluster. We intro-
duce this approach to assess the importance of the distribution matching step. The therapy-specific
scenario implements the drugs kernel therapy similarity model described in [4]. It represents the
approaches that train a separate model for each combination therapy by using not only the sam-
ples from the target therapy but also the available samples from similar therapies with appropriate
sample-importance weights.

Performance measures. The performance of all considered methods is assessed by reporting their
corresponding accuracies (ACC) and AUCs (Area Under the ROC Curve). The accuracy reflects the
ability of the methods to make correct predictions, i.e., to discriminate between successful and fail-
ing HIV combination therapies. With the AUC we are able to assess the quality of the ranking based
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on the probability of therapy success. For this reason, we carry out the model selection based on
both accuracy and AUC and then use accuracy or AUC, respectively, to assess the model perfor-
mance. In order to compare the performance of two methods on a separate test set, the significance
of the difference of two accuracies as well as their standard deviations are calculated based on a
paired t-test. The standard deviations of the AUC values and the significance of the difference of
two AUCs used for the pairwise method comparison are estimated as described in [6].

4.3 Experimental results

According to the results from the silhouette validation technique [17] displayed in Figure 2 in the
Supplementary material, the first clustering step of Algorithm 1 divides our training data into two
clusters – one comprises the samples with longer therapy sequences (with average treatment history
length of 5.507 therapies), and the other one those with shorter therapy sequences (with average
treatment history length of 0.308 therapies). Thus, the transfer history distribution matching method
trains two models, one for each cluster. The clustering results are depicted in Figure 3 in the Sup-
plementary material. In what follows, we first present the results of the time-oriented validation
scenario stratified for the length of treatment history, followed by the results stratified for the abun-
dance of the different therapies. In both cases we report both the accuracies and the AUCs for all
considered methods.

The computational results for the transfer history method and the three reference methods stratified
for the length of the therapy history are summarized in Figure 1, where (a) depicts the accuracies,
and (b) depicts the AUCs. For samples with a small number (≤ 5) of previously administered ther-
apies, i.e., with short treatment histories, all considered models have comparable accuracies. For
test samples from patients with longer (> 5) treatment histories, the transfer history clustering ap-
proach achieves significantly better accuracy (p-values ≤ 0.004) compared to those of the reference
methods. According to the paired difference test described in [6], the transfer history approach has
significantly better AUC performance for test samples with longer (> 5) treatment histories com-
pared to the one-for-all (p-value = 0.043) and the history-clustering (p-value = 0.044) reference
methods. It also has better AUC performance compared to the one of the therapy-specific model, yet
this improvement is not significant (p-value = 0.253). Furthermore, the transfer history approach
achieves better AUCs for test samples with less than five previously administered therapies com-
pared to all reference methods. However, the improvement is only significant for the one-for-all
method (p-value = 0.007). The corresponding p-values for the history-clustering method and the
therapy-specific method are 0.080 and 0.178, respectively.
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Figure 1: Accuracy (a) and AUC (b) results of the different models obtained on the test set in the
time-oriented validation scenario. Error bars indicate the standard deviations of each model. The
test samples are grouped based on their corresponding number of known previous therapies.

The experimental results, stratified for the abundance of the therapies summarizing the accuracies
and AUCs for all considered methods, are depicted in Figure 2 (a) and (b), respectively. As can
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be observed from Figure 2 (a), all considered methods have comparable accuracies for the test
therapies with more than seven samples. The transfer history method achieves significantly better
accuracy (p-values ≤ 0.0001) compared to all reference methods for the test therapies with few
(0− 7) available training samples. Considering the AUC results in Figure 2 (b), the transfer history
approach outperforms all the reference models for the rare test therapies (with 0 − 7 training sam-
ples) with estimated p-values of 0.05 for the one-for-all, 0.042 for the therapy-specific and 0.1 for
the history-clustering model. The one-for-all and the therapy-specific models have slightly better
AUC performance compared to the transfer history and the history-clustering approaches for test
therapies with 8 − 30 available training samples. However, according to the paired difference test
described in [6], the improvements are not significant with p-values larger than 0.141 for all pair-
wise comparisons. Moreover, considering the test therapies with more than 30 training samples the
transfer history approach significantly outperforms the one-for-all approach with estimated p-value
of 0.037. It also has slightly better AUC performance than the history-clustering model and the
therapy-specific model, however these improvements are not significant with estimated p-values of
0.064 and 0.136, respectively.
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Figure 2: Accuracy (a) and AUC (b) results of the different models obtained on the test set in the
time-oriented validation scenario. Error bars indicate the standard deviations of each model. The
test samples are grouped based on the number of available training examples for their corresponding
therapy combinations.

5 Conclusion

This paper presents an approach that simultaneously considers several problems affecting the avail-
able HIV clinical data sets: the different treatment backgrounds of the samples, the uneven repre-
sentation of the different levels of therapy experience, the missing treatment history information,
the uneven therapy representation and the unbalanced therapy outcome representation especially
pronounced in recently collected samples. The transfer history clustering model has its prime ad-
vantage for samples stemming from patients with long treatment histories and for samples associated
with rare therapies. In particular, for these two groups of test samples it achieves significantly better
accuracy than all considered reference approaches. Moreover, the AUC performance of our method
for these test samples is also better than all reference methods and significantly better compared
to the one-for-all method. For the remaining test samples both the accuracy and the AUC perfor-
mance of the transfer history method are at least as good as the corresponding performances of all
considered reference methods.
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