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Abstract

The difficulty in inverse reinforcement learning (IRL) assin choosing the best
reward function since there are typically an infinite numbgreward functions
that yield the given behaviour data as optimal. Using a Bayefsamework, we
address this challenge by using the maximum a posterioriRMéstimation for
the reward function, and show that most of the previous IRjoalhms can be
modeled into our framework. We also present a gradient nostthiothe MAP es-
timation based on the (sub)differentiability of the postedistribution. We show
the effectiveness of our approach by comparing the perfoomaf the proposed
method to those of the previous algorithms.

1 Introduction

The objective of inverse reinforcement learning (IRL) isdietermine the decision making agent’s
underlying reward function from its behaviour data and thedei of environment [1]. The signifi-
cance of IRL has emerged from problems in diverse reseasasatn animal and human behaviour
studies [2], the agent’s behaviour could be understood éyetvard function since the reward func-
tion reflects the agent’s objectives and preferences. loticb[3], IRL provides a framework for
making robots learn to imitate the demonstrator's behaviging the inferred reward function.
In other areas related to reinforcement learning, such asseience [4] and economics [5], IRL
addresses the non-trivial problem of finding an approprieteard function when building a com-
putational model for decision making.

In IRL, we generally assume that the agent is an expert in thblgm domain and hence it be-
haves optimally in the environment. Using the Markov dexigirocess (MDP) formalism, the IRL
problem is defined as finding the reward function that the expeptimizing given the behaviour
data of state-action histories and the environment mods{até transition probabilities. In the last
decade, a number of studies have addressed IRL in a diregr@tdearning) and indirect (policy
learning by inferring the reward functione., apprenticeship learning) fashions. Ng and Russell [6]
proposed a sufficient and necessary condition on the rewaiibns that guarantees the optimality
of the expert’s policy and formulated a linear programmih&) problem to find the reward func-
tion from the behaviour data. Extending their work, Abbeadl &g [7] presented an algorithm for
finding the expert’s policy from its behaviour data with afpemance guarantee on the learned pol-
icy. Ratliff et al.[8] applied the structured max-margin optimization to IRidgproposed a method
for finding the reward function that maximizes the marginiesn the expert’s policy and all other
policies. Neu and Szepemv [9] provided an algorithm for finding the policy that minizes the
deviation from the behaviour. Their algorithm unifies theedt method that minimizes a loss func-
tion of the deviation and the indirect method that finds annaglt policy from the learned reward
function using IRL. Syed and Schapire [10] proposed a methdihd a policy that improves the
expert's policy using a game-theoretic framework. Zieledral. [11] adopted the principle of the



maximum entropy for learning the policy whose feature exgians are constrained to match those
of the expert’'s behaviour. In addition, Neu and Szepegi2] provided a (non-Bayesian) unified
view for comparing the similarities and differences amongyjous IRL algorithms.

IRL is an inherently ill-posed problem since there may berdimite number of reward functions
that yield the expert’'s policy as optimal. Previous apphescsummarized above employ various
preferences on the reward function to address the non-anags. For example, Ng and Russell [6]
search for the reward function that maximizes the diffeeeincthe values of the expert’s policy and
the second best policy. More recently, Ramachandran and [AB{ipresented a Bayesian approach
formulating the reward preference as the prior and the Hehacompatibility as the likelihood, and
proposed a Markov chain Monte Carlo (MCMC) algorithm to fihd posterior mean of the reward
function.

In this paper, we propose a Bayesian framework subsuming aidee non-Bayesian IRL algo-
rithms in the literature. This is achieved by searching fa maximum-a-posteriori (MAP) reward
function, in contrast to computing the posterior mean. Wasthat the posterior mean can be prob-
lematic for the reward inference since the loss functiomtedrated over the entire reward space,
even including those inconsistent with the behaviour deence, the inferred reward function can
induce a policy much different from the expert’s policy. TMAP estimate, however, is more ro-
bust in the sense that the objective function (the postg@riobability in our case) is evaluated on
a single reward function. In order to find the MAP reward fuoict we present a gradient method
using the differentiability result of the posterior, anadshthe effectiveness of our approach through
experiments.

2 Preliminaries

21 MDPs

A Markov decision process (MDP) is defined as a tuffleA, T, R,~,«): S is the finite set of
states;A is the finite set of actions[ is the state transition function whe¥&s, a, s’) denotes the
probability P(s’|s, a) of changing to state’ from states by taking actioru; R is the reward function
whereR(s, a) denotes the immediate reward of executing action states, whose absolute value
is bounded byR,,...; v € [0,1) is the discount factory is the initial state distribution where
a(s) denotes the probability of starting in stateUsing matrix notations, the transition function is
denoted as affS||A| x |S| matrix T, and the reward function is denoted as|&H A|-dimensional
vectorR.

A policy is defined as a mapping : S — A. The value of policyr is the expected discounted
return of executing the policy and defined @8 = E[> .7 7' R(s:, a;)|a, 7] where the initial
statesg is determined according to initial state distributiorand actiona, is chosen by policyr

in states;. The value function of policyr for each state is computed by ™ (s) = R(s,w(s)) +

¥ ees T(s,m(s),s")V7(s") such that the value of polieyis calculated by/™ = >~ a(s)V7"(s).
Similarly, theQ-function is defined a®™(s,a) = R(s,a) + v . cqT(s,a,s)V7(s"). We can
rewrite the equations for the value function and €dunction in matrix notations as

V™ =R" +~4T°V™, QT = R"+~T°V" 1)

whereT™ is an|S| x |S| matrix with the(s, s’) element beind(s, 7 (s),s’), T is an|S| x |S]|
matrix with the (s, s’) element beindl'(s,a, s’), R" is an|S|-dimensional vector with the-th
element being?(s, 7(s)), R" is an|S|-dimensional vector with the-th element beind(s, ), and
Q7 is an|S|-dimensional vector with the-th element being)™ (s, a).

An optimal policy 7* maximizes the value function for all the states, and thuaulshsatisfy
the Bellman optimality equationr is an optimal policy if and only if for alls € S, 7(s) €
argmax,c 4 Q™ (s,a). We denotd/* = V™ andQ* = Q™ .

When the state space is large, the reward function is oftezatip parameterized:R(s, a)

Z?zl w;¢;(s,a) with the basis functiong); : S x A — R and the weight vectorw
[wi,we, - ,wy]. Each basis functiop; has a corresponding basis valig of policy 7 : V™
E[ 7207 i(se, ar)|a, 7).



We also assume that the expert’s behaviour is given as th& s#t M trajectories executed by
the expert's policyrg, where them-th trajectory is anH-step sequence of state-action pairs:
{(s7,a"), (s5*,al"), -+, (s, a%)}. Given the set of trajectories, the value and the basis value
of the expert’s policyrg can be empirically estimated by

> M H _ m .m m ,m
VE:ﬁZmﬁZh:ﬂ’h 1R(Sh’ah)a i = MZ Zh 17 ¢i(5hvah)~

In addition, we can empirically estimate the expert’s pplig; and its state visitation frequengys
from the trajectories:
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In the rest of the paper, we use the notatjqiR) or f(x; R) for function f in order to be explicit
that f is computed using reward functid®. For example, the value functidi™ (s; R) denotes the
value of policyr for states using reward functiorz.

2.2 Reward Optimality Condition

Ng and Russell [6] presented a necessary and sufficienttoamébr reward functionR of an MDP
to guarantee the optimality of policy: Q7 (R) < V™(R) for all @ € A. From the condition,
we obtain the following corollary (although it is a succimeformulation of the theorem in [6], the
proof is provided in the supplementary material).

Corollary 1 Given an MDRR (S, A, T, v, «), policy 7 is optimal if and only if reward functio®®
satisfies

I—(I*—~T)I —~T™)"'E"| R<0, )

whereE"™ is an|S| x |S||A| matrix with the(s, (s',a’)) element being 1 i§ = s’ andn(s") = o/,
and I is an|S||A| x | S| matrix constructed by stacking th&| x | S| identity matrix| A| times.

We refer to Equation (2) as theward optimality conditionw.r.t. policy 7. Since the linear in-
equalities define the region of the reward functions thaldypelicy = as optimal, we refer to the
region bounded by Equation (2) as ttesvard optimality regionw.r.t. policy 7. Note that there ex-
ist infinitely many reward functions in the reward optimgliegion even including constant reward
functions €.9. R = ¢1 wherec € [—R42, Rmaz))- In other words, even when we are presented
with the expert’s policy, there are infinitely many rewaraétions to choose from, including the de-
generate ones. To resolve this non-uniqueness in solytiehsalgorithms in the literature employ
various preferences on reward functions.

2.3 Bayesian framework for IRL (BIRL)

Ramachandran and Amir [13] proposed a Bayesian frameworkRb by encoding the reward
function preference as the prior and the optimality conftseof the behaviour data as the likelihood.
We refer to their work as BIRL.

Assuming the rewards are i.i.d., the prior in BIRL is combibg
P(R) = [l.cs.aea P(R(s,a)). ®)

Various distributions can be used as the prior. For exantipéeyniform prior can be used if we have
no knowledge about the reward function other than its raagd,a Gaussian or a Laplacian prior
can be used if we prefer rewards to be close to some specitiesal

The likelihood in BIRL is defined as an independent expoédistribution analogous to the soft-
max function:

m €Xp BQ Sh 7aZL7R))
P(X|R) = P(a , 4
| mHMH el A mH1 hH Seac(Q oL aR) O
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Figure 1: (a) 5-state chain MDP. (b) Posterior fofs; ) and R(s5) of the 5-state chain MDP.

wheref is a parameter that is equivalent to the inverse of temperatithe Boltzmann distribution.

The posterior over the reward function is then formulateddybining the prior and the likelihood,
using Bayes theorem:

P(R|X) x P(X|R)P(R). (5)

BIRL uses a Markov chain Monte Carlo (MCMC) algorithm to cantgthe posterior mean of the
reward function.

3 MAP Inferencein Bayesian IRL

In the Bayesian approach to IRL, the reward function can lerdened using different estimates,
such as the posterior mean, median, or maximum-a-posi@fidP). The posterior mean is com-
monly used since it can be shown to be optimal under the meaareeprror function. However,
the problem with the posterior mean in Bayesian IRL is thatdlror is integrated over the entire
space of reward functions, even including infinitely manyaeds that induce policies inconsistent
with the behaviour data. This can yield a posterior mean r@vi@nction with an optimal policy
again inconsistent with the data. On the other hand, the M#d3 diot involve an objective function
that is integrated over the reward function space; it is §nappoint that maximizes the posterior
probability. Hence, it is more robust to infinitely many imsistent reward functions. We present a
simple example that compares the posterior mean and the MA&d function estimation.

Consider an MDP with 5 states arranged in a chain, 2 actionktre discount factor 0.9. As shown
in Figure 1(a), we denote the leftmost statesagnd the rightmost state as. Action a; moves to
the state on the right with probability 0.6 and to the statéhenleft with probability 0.4. Actionu,
always moves to statg. The true reward of each state]is1, 0,0, 0, 1], hence the optimal policy
chooses:; in every state. Suppose that we already kn®(s.), R(s3), andR(s4) which are all 0,
and estimatez(s;) andR(ss) from the behaviour dat&” which contains optimal actions for all the
states. We can compute the postefgiR(s1 ), R(ss5)|X) using Equations (3), (4), and (5) under the
assumption thad < R < 1 and priorsP(R(s1)) being N (0.1,1), and P(R(s5)) being N (1,1).
The reward optimality region can be also computed using Boué2).

Figure 1(b) presents the posterior distribution of the melManction. The true reward, the MAP
reward, and the posterior mean reward are marked with theklsitar, the blue circle, and the red
cross, respectively. The black solid line is the boundarthefreward optimality region. Although

the prior mean is set to the true reward, the posterior meantside the reward optimality region.
An optimal policy for the posterior mean reward function oBes actioru, rather than actior,

in states;, while an optimal policy for the MAP reward function is idégl to the true one. The

situation gets worse when using the uniform prior. An optipwlicy for the posterior mean reward
function chooses actiam, in statess; andss, while an optimal policy for the MAP reward function
is again identical to the true one.

In the rest of this section, we additionally show that moghefIRL algorithms in the literature can
be cast as searching for the MAP reward function in Bayedn The main insight comes from
the fact that these algorithms try to optimize an objectivection consisting of a regularization term
for the preference on the reward function and an assesseremfdr the compatibility of the reward
function with the behaviour data. The objective functiomagurally formulated as the posterior in
a Bayesian framework by encoding the regularization ineoghor and the data compatibility into
the likelihood. In order to subsume different approache=dua the literature, we generalize the



Table 1: IRL algorithms and their equivalefitt’; R) and prior for the Bayesian formulatiog.
{1,2} is for representind.; or L, slack penalties.

Previous algorithm f(X;R) Prior
Ng and Russell's IRL from sampled trajectories [6] fv Uniform
MMP without the loss function [8] (fv)? Gaussian
MWAL [10] e Uniform
Policy matching [9] fr Uniform
MaxEnt [11] fE Uniform

likelihood in Equation (4) to the following:
P(X|R) o exp(8f(X; R))

wheref is a parameter for scaling the likelihood afi@¥’; R) is a function which will be defined
appropriately to encode the data compatibility assessossat in each IRL algorithm. We then have
the following result (the proof is provided in the suppleraey material):

Theorem 1 IRL algorithms listed in Table 1 are equivalent to computihg MAP estimates with
the prior and the likelihood using(X’; R) defined as follows:

o fv(X;R) = VE(R) - V*(R) © fa(X; R) = min; [V VE
o f5(X;R) ==Y, iin(s) (J(s,a; R) — 7p(s,0))* e fo(X; R) = log Puaen(X|T, R)

where 7*(R) is an optimal policy induced by the reward functid®, .J(s,aq; R) is a smooth
mapping from reward functiotR to a greedy policy such as the soft-max function, &#y@xent
is the distribution on the behaviour data (trajectory or ppsatisfying the principle of maximum
entropy.

The MAP estimation approach provides a rich framework fgrlaxing the previous non-Bayesian
IRL algorithms in a unified manner, as well as encoding varitypes of a priori knowledge into the

prior distribution. Note that this framework can exploietmsights behind apprenticeship learning
algorithms even if they do not explicitly learn a reward ftioo (e.g, MWAL [10]).

4 A Gradient Method for Finding the MAP Reward Function

We have proposed a unifying framework for Bayesian IRL arghssted that the MAP estimate can
be a better solution to the IRL problem. We can then reforteulae IRL problem into the posterior
optimization problem, which is finding®uap that maximizes the (log unnormalized) posterior:

Ryap = argmaxp P(R|X) = argmaxpg, [log P(X|R) + log P(R)]

Before presenting a gradient method for the optimizatiosbf@m, we show that the generalized
likelihood is differentiable almost everywhere.

The likelihood is defined for measuring the compatibilitytbé reward functionR with the be-
haviour dataX'. This is often accomplished using the optimal value fumcié® or the optimal
Q-function Q™ w.r.t. R. For example, the empirical value &f is compared withvV* [6, 8], X

is directly compared to the learned poliag.g.the greedy policy fronQ*) [9], or the probability
of following the trajectories int" is computing using?* [13]. Thus, we generally assume that
P(X|R) = g(X,V*(R)) or g(X,Q"(R)) whereg is differentiable w.r.t.V* or Q*. The remain-
ing question is the differentiability oF * and@Q™* w.r.t. R, which we address in the following two
theorems (The proofs are provided in the supplementarynahje

Theorem 2 V*(R) andQ*(R) are convex.

Theorem 3 V*(R) andQ* (R) are differentiable almost everywhere.

Theorems 2 and 3 relate to the previous work on gradient ndstfar IRL. Neu and Szepeati [9]
showed thaQ*(R) is Lipschitz continuous, and except on a set of measure zénwoét every-
where), it is Féchet differentiable by Rademacher’s theorem. We haver®iahe same result



based on the reward optimality region, and additionallyntdied the condition for whiclV*(R)
and Q*(R) are non-differentiable (refer to the proof for details). tiRa et al. [8] used a subgra-
dient of their objective function because it involves diffietiatingV"*(R). Using Theorem 3 for
computing the subgradient of their objective function gigean identical result.

Assuming a differentiable prior, we can compute the gradiéthe posterior using the result in The-
orem 3 and the chain rule. If the posterior is convex, we wildlfthe MAP reward function. Other-
wise, as in [9], we will obtain a locally optimal solution. the next section, we will experimentally
show that the locally optimal solutions are nonethelesgbétan the posterior mean in practice.
This is due to the property that they are generally found iwithe reward optimality region w.r.t.
the policy consistent with the behaviour data.

The gradient method uses the update llg,, — R + §;VrP(R|X) whered; is an appropriate
step-size (or learning rate). Since computiig P(R|X) involves computing an optimal policy
for the current reward function and a matrix inversion, dagtthese results helps reduce repetitive
computation. The idea is to compute the reward optimaligiaie for checking whether we can
reuse the cached result. Ry is inside the reward optimality region of an already visitediard
function R/, they share the same optimal policy and hence the sEm®& " (R) or VrRQ™ (R).
Given policy, the reward optimality region is defined ™ = I — (I —T)(I —T™)"'ET,
and we can reuse the cached resulHif - Rn,w < 0. The gradient method using this idea is
presented in Algorithm 1.

Algorithm 1 Gradient method for MAP inference in Bayesian IRL

Input: MDP\R, behaviour dat&’, step-size sequenéé; }, number of iterationsv
1: Initialize R

2: m «— solveMDPR)

3. H™ — computeRewardOptRgmn)

4: 11 — {(m,H™)}

5: for t =1to N do

6: Rnew— R+ 6:VrP(R|X)
7. if isNotiInRewardOptRg®Rnew, H ™) then
8: (m, H™) « findRewardOptRgMRnew, IT)
9 if isEmpty(w, H™)) then

10: 7 <« S0lveMDP Rew)

11: H™ «— computeRewardOptRgm)

12: II—Tu{{(r,H™)}

13: end if

14:  endif

15 R« Rnew

16: end for

5 Experimental Results

The first set of experiments was conductedVinx N gridworlds [7]. The agent can move west,
east, north, or south, but with probability 0.3, it fails amdves in a random direction. The grids
are partitioned intal/ x M non-overlapping regions, so there zﬁ%)Q regions. The basis function

is defined by a 0-1 indicator function for each region. Thedirty parameterized reward function
is determined by the weight vectar sampled i.i.d. from a zero mean Gaussian prior with variance
0.1 andw;| < 1 for all i. The discount factor is set to 0.99.

We compared the performance of our gradient method to thbsther IRL algorithms in the liter-
ature: Maximum Margin Planning (MMP) [8], Maximum EntropgyléxEnt) [11], Policy Matching
with natural gradient (NatPM) and the plain gradient (PPaif) [9], and Bayesian Inverse Rein-
forcement Learning (BIRL) [13]. We executed our gradienttime for finding MAP using three
different choices of the likelihood: B denotes the BIRL likeod, and E and J denote the likelihood
with fr andf;, respectively. For the Bayesian IRL algorithms (BIRL and R)Atwo types of the
prior are prepared: U denotes the uniform prior and G dertbeerue Gaussian prior. We evaluated
the performance of the algorithms using the difference betw * (the value of the expert’s policy)
and VX (the value of the optimal policy induced by the learned weigth measured on the true
weightw*) and the difference between* andw?’ usingL, norm.



Table 2: Results in the gridworld problems.
| w* —w" || ve-vt
|S| 24 x 24 32 x 32 24 x 24 32 x 32
dim(w) 36 144 576 64 256 1024 36 144 576 64 256 1024

NatPM 3.04 6.84 16.83 3.50 8.88 21.25 249 897 8.74 1.08 12887
PlainPM  3.77 6.63 16.60 5.21 9.05 17.36 0.15 0.67 0.51 0.41 1»81
MaxEnt  6.05 11.98 22.11 7.91 15.48 25.52 0.33 0.60 0.60 0.922 22.91
MMP 085 126 238 083 161 317 10.74 16.32 13.72 13.58910.8.87
BIRL-U 3.27 567 na 378 7.89 na. 1.38 0.80 n.a. 0.35 2.24a. n
BIRL-G 086 136 na. 098 171 na. 221 054 na 0.50 0.90a. n
MAP-B-U 445 8.46 13.87 5.68 10.50 18.21 013 0.57 1.06 163 134 217
MAP-B-G 083 130 240 094 162 3.17 0.16 0.45 0.40 0.4177 0.87
MAP-E-G 0.83 122 233 0.76 153 3.13 0.19 0.44 042 0.43 1.288
MAP-J-G 048 110 230 065 151 311 0.17 042 037 038 090 1.21

_____
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Figure 2: CPU timing results of BIRL and MAP-B inl x 24 gridworld problem. (a) dimf) = 36.
(b) dim(w) = 144.

We used training data with 10 trajectories of 50 time step#iected from the simulated runs of
the expert’s policy. Table 2 shows the average performanee 80 training data. Most of the
algorithms found the weight that induces an optimal polidyoge performance is as good as that
of the expert’s policyi(e., smallV* — V) except for MMP and NatPM. The poor performance of
MMP was due to the small size in the training data, as alreatigchin [14]. The poor performance
of NatPM may be due to the ineffectiveness of pseudo-meirligh dimensional reward spaces,
since PlainPM was able produce good performance. Regatignigarned weights, the algorithms
using the true prior (MMP, BIRL, and the variants of MAP) faltihe weight close to the true one
(i.e., small||w* — w’||5). Comparing BIRL and MAP-B is especially meaningful sinkeyt share
the same prior and likelihood. The only difference was in pating the mean versus MAP from the
posterior. MAP-B was consistently better than BIRL in temfi®oth [|w* — w’||; andV* — VL.
Finally, we note that the correct prior yields smgth* — w’||, andV* — V¥ when we compare
PlainPM, MaxEnt, BIRL-U, and MAP-B-U (uniform prior) to MAB-G, MAP-E-G, BIRL-G, and
MAP-B-G (Gaussian prior), respectively.

Figure 2 compares the CPU timing results of the MCMC algamith BIRL and the gradient method
in MAP-B for the 24x24 gridworld with 36 and 144 basis functions. BIRL takes mimhger
CPU time to converge than MAP-B since the former takes mudietanumber of iterations to
converge, and in addition, each iteration requires soland/DP with a sampled reward function.
The CPU time gap gets larger as we increase the dimensioreakthard function. Caching the
optimal policies and gradients sped up the gradient metldadbors of 1.5 to 4.2 until convergence,
although not explicitly shown in the figure.

The second set of experiments was performed on a simplifiedca problem, modified from [14].
The racetrack is shown in Figure 3. The shaded and white icglisate the off-track and on-track
locations, respectively. The state consists of the lonatitd velocity of the car. The velocities in the
vertical and horizontal directions are represented as 0r 2, and the net velocity is computed as
the squared sum of directional velocities. The net veldsitggarded as high if greater than 2, zero
if 0, and low otherwise. The car can increase, decrease, imtanaone of the directional velocities.
The control of the car succeeds wjik0.9 if the net velocity is low, but=0.6 if high. If the control
fails, the velocity is maintained, and if the car attemptsnwve outside the racetrack, it remains in
the previous location with velocity 0. The basis functioms @-1 indicator functions for the goal
locations, off-track locations, and 3 net velocity valuesrf, low, high) while the car is on track.
Hence, there are 3150 states, 5 actions, and 5 basis fusiclibe discount factor is set to 0.99.



Table 3: True and learned weights in the car race problem.

Goal Off-track Velocity while on track
Zero Low High
Fast expert 1.00 0.00 0.00 0.00 0.10

BIRL 0.96+0.02 -0.2@:0.03 -0.04:0.01 -0.12:0.02 0.32:0.02
MAP-B 1.00£0.00 -0.19-0.02 -0.030.01 -0.13:0.01 0.22:0.01

Table 4: Statistics of the policies simulated in the car @@dlem.

Avg. steps Avg. steps in locations Avg. steps in velocity
to goal Off-track On-track Zero Low High
Fast expert 20.41 1.56 17.85 2.01 3.40 12.44

BIRL 32.98+t6.42 2.13:0.60 29.8%6.03 3.33:0.52 4.34:0.79 22.184.84
MAP-B 24.7H1.92 1.680.26 22.0%*1.71 2.7@:0.16 3.380.18 16.03%1.48

We designed two experts. The slow expert prefers low velaitd avoids the off-track locations,
w = [1,-0.1,0,0.1, 0]. The fast expert prefers high velocity, = [1, 0, 0, 0, 0.1]. We compared the
posterior mean and the MAP using the pridfw; )=N(1,1) and P(ws)=P(w3)=P(w4)=P(ws)=
N (0, 1) assuming that we do not know the experts’ preference on ttaitms nor the velocity, but
we know the experts’ ultimate goal is to reach one of the goedtions. We used BIRL for the
posterior mean and MAP-B for the MAP estimation, hence uttiegdentical prior and likelihood.

We used 10 training data, each consisting of 5 trajectoviésomit
the results regarding the slow expert since both BIRL and MAP
B successfully found the weight similar with the true one,ickh
induced the slow expert’s policy as optimal. However for thet
expert, MAP-B was significantly better than BIR[Table 3 shows
the true and learned weights, and Table 4 shows some ststisti
characterizing the expert’'s and learned policies. Thecgdliom
BIRL tends to remain in high speed on the track for signifiant
more steps than the one from MAP-B since BIRL converged togetaatio ofws to w;.

Figure 3: Racetrack.

6 Conclusion

We have argued that, when using a Bayesian framework fonilegureward functions in IRL, the
MAP estimate is preferable over the posterior mean. Expamial results confirmed the effec-
tiveness of our approach. We have also shown that the MARastin approach subsumes non-
Bayesian IRL algorithms in the literature, and allows usrtoorporate various types of a priori
knowledge about the reward functions and the measuremethieodompatibility with behaviour
data.

We proved that the generalized posterior is differentiafeost everywhere, and proposed a gradi-
ent method to find a locally optimal solution to the MAP estiima We provided the theoretical
result equivalent to the previous work on gradient methodsibn-Bayesian IRL, but used a differ-
ent proof based on the reward optimality region.

Our work could be extended in a number of ways. For exampke|RL algorithm for partially
observable environments in [15] mostly relies on Ng and BIL§8]'s heuristics for MDPs, but our
work opens up new opportunities to leverage the insightrimebther IRL algorithms for MDPs.
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LAll the results in Table 4 except for the average number of steps in thigaok locations are statistically
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