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Abstract

Given a set V of n vectors in d-dimensional space, we provide an efficient method
for computing quality upper and lower bounds of the Euclidean distances between
a pair of vectors in V. For this purpose, we define a distance measure, called the
MS-distance, by using the mean and the standard deviation values of vectors in
V. Once we compute the mean and the standard deviation values of vectors in V'
in O(dn) time, the MS-distance provides upper and lower bounds of Euclidean
distance between any pair of vectors in V' in constant time. Furthermore, these
bounds can be refined further in such a way to converge monotonically to the
exact Euclidean distance within d refinement steps. An analysis on a random se-
quence of refinement steps shows that the MS-distance provides very tight bounds
in only a few refinement steps. The MS-distance can be used to various applica-
tions where the Euclidean distance is used to measure the proximity or similarity
between objects. We provide experimental results on the nearest and the farthest
neighbor searches.

1 Introduction

The Euclidean distance between two vectors x and y in d-dimensional space is a typical distance
measure that reflects their proximity in the space. Measuring the Euclidean distance is a fundamental
operation in computer science, including the areas of database, computational geometry, computer
vision and computer graphics. In machine learning, the Euclidean distance, denoted by dist(x,y),
or it’s variations(for example, e/ *~¥Il) are widely used to measure data similarity for clustering [1],
classification [2] and so on.

A typical problem is as follows. Given two sets X and Y of vectors in d-dimensional space, our
goal is to find a pair (x,y), forx € X andy € Y, such that dist(x, y) is the optimum (minimum or
maximum) over all such pairs. For the nearest or farthest neighbor searches, X is the set consisting
of a single query point while Y consists of all candidate data points. If the dimension is low, a
brute-force computation would be fast enough. However, data sets in areas such as optimization,
computer vision, machine learning or statistics often live in spaces of dimensionality in the order
of thousands or millions. In d dimensional space, a single distance computation already takes O(d)
time, thus the cost for finding the nearest or farthest neighbor becomes O(dnm) time, where n and
m are the cardinalities of X and Y, respectively.

Several techniques have been proposed to reduce computation cost for computing distance. Probably
PCA (principal component analysis) is the most frequently used technique for this purpose [3], in
which we use an orthogonal transformation based on PCA to convert a set of given data so that
the dimensionality of the transformed data is reduced. Then it computes distances between pairs of
transformed data efficiently. However, this transformation does not preserve the pairwise distances
of data in general, therefore there is no guarantee on the computation results.



If we restrict ourselves to the nearest neighbor search, some methods using space partitioning trees
such as KD-tree [4], R-tree [5], or their variations have been widely used. However, they become
impractical for high dimensions because of their poor performance in constructing data structures
for queries. Recently, cover tree [6] has been used for high dimensional nearest neighbor search, but
its construction time increases drastically as the dimension increases [7].

Another approach that has attracted some attention is to compute a good bound of the exact Eu-
clidean distance efficiently such that it can be used to filter off some unnecessary computation, for
example, the distance computation between two vectors that are far apart from each other in near-
est neighbor search. One of such methods is to compute a distance bound using the inner product
approximation [8]. This method, however, requires the distribution of the input data to be known in
advance, and works only on data in some predetermined distribution. Another method is to com-
pute a distance bound using bitwise operations [9]. But this method works well only on uniformly
distributed vectors, and requires O(2%) bitwise operations in d dimension. A method using an index
structure [10] provides an effective filtering method based on the triangle inequality. But this works
well only when data are well clustered.

In this paper, we define a distance measure, called the MS-distance, by using the mean and the
standard deviation values of vectors in V. Once we compute the mean and the standard deviation
values of vectors in V' in O(dn) time, the MS-distance provides tight upper and lower bounds of
Euclidean distance between any pair of vectors in V' in constant time. Furthermore, these bounds can
be refined further in such a way to converge monotonically to the exact Euclidean distance within d
refinement steps. Each refinement step takes constant time.

We provide an analysis on a random sequence of & refinement steps for 0 < k& < d, which shows
a good expectation on the lower and upper bounds. This can justify that the MS-distance provides
very tight bounds in a few refinement steps of a typical sequence. We also show that the MS-distance
can be used in fast filtering. Note that we do not use any assumption on data distribution.

The MS-distance can be used to various applications where the Euclidean distance is a measure
for proximity or similarity between objects. Among them, we provide experimental results on the
nearest and the farthest neighbor searches.

2 An Upper and A Lower Bounds of the Euclidean Distance

. . . d .
For a d-dimensional vector x = [z1, 2, ..., 4], we denote its mean by uyx = % > iy x; and its

variance by 02 = % Z?Zl (2; — px)?. For a pair of vectors x and y, we can reformulate the squared
Euclidean distance between x and y as follows. Let a = [a1, ag,...,aq) and b = [by, ba, ..., b4]
such that a; = x; — uyx and b; = y; — iy
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By the definitions of a; and b;, we have >0 a; = % b; = 0,and 2 3> a? = 02. By the first
properties, equation (1) is simplified to (2), and by the second property, equations (2) becomes (3)
and (4).

Note that equations (3) and (4) are composed of the mean and variance values (their products and
squared values, multiplied by d) of x and y, except the last summations. Thus, once we preprocess
V of n vectors such that both px and ox for all x € V' are computed in O(dn) time and stored in a
table of size O(n), this sum can be computed in constant time for any pair of vectors, regardless of
the dimension.

The last summation, Zfl a;b;, is the inner product (a, b), and therefore by applying the Cauchy-
Schwarz inequality we get
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This gives us the following upper and lower bounds of the squared Euclidean distance from equa-
tions (3) and (4).

Lemma 1 For two d-dimensional vectors X,y, the followings hold.

dist(x,y)? > d ((ux — py)* + (0x — 0y)?) ©)
dist(x,y)* < d ((ux — py)* + (0x + 0y)?) )

3 The MS-distance

The lower and upper bounds in inequalities (6) and (7) can be computed in constant time once we
compute the mean and standard variance values of each vector in V' in the preprocessing. However,
in some applications these bounds may not be tight enough. In this section, we introduce the MS-
distance which not only provides lower and upper bounds of the Euclidean distance in constant time,
but also could be refined further in such a way to converge to the exact Euclidean distance within d
steps.

To do this, we reformulate the last term of equations (3) and (4), that is, the inner product (a, b). If

the norms |[a|| = /32, a2 or [|b|| = \/32%, b2 are zero, then 3., a;b; = 0, thus the upper
and lower bounds become the same. This implies that we can compute the exact Euclidean distance
in constant time. So from now on, we assume that both ||a|| and ||b|| are non-zero. We reformulate

the inner product (a, b).
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Equation (8) is because of 3.7 a7 = do2 and ¢, b? = do2. We can also get equation (10) by
switching the roles of the term —doxoy and the term doyoy, in the above equations.



Definition. Now we define the MS-distance between x and y in its lower bound form, denoted by
MSL(x,y, k), by replacing the last term of equation (3) with equation (9), and in its upper bound
form, denoted by MSU(x,y, k) by replacing the last term of equation (4) with equation (10). The
MS-distance makes use of the nonincreasing intermediate values for its upper bound and the nonde-
creasing intermediate values for its lower bound. We let ag = by = 0.

k 2
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MSL(x,y, k) =d ((Nx - My)2 + (ox — Uy)2) + Oox0y Z (0’ o ;) (an
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MsU(x,y, k) = d ((Nx - My)2 + (ox + Uy)2) — 0x0y Z (01 + UZ) (12)
i=0 ~ Y *

Properties. Note that equation (11) is nondecreasing and equation (12) is nonincreasing while ¢
increases from 0 to d, because d, o, and oy, are all nonnegative, and (Ub—y — g—x)z and (é’—y + g—x)Z are
also nonnegative for all . This is very useful because, in equation (11), the first term, MSL(x, y, 0),
is already a lower bound of dist(x, y)? by inequality (6) , and the lower bound can be refined further
nondecreasingly over the summation in the second term. If we stop the summation at ¢ = k, for
k < d, the intermediate result is also a refined lower bounds of dist(x, y)2. Similarly, in equation
(12), the first term, MSU(x, y, 0), is already an upper bound of dist(x, y)? by inequality (7) , and
the upper bound can be refined further nonincreasingly over the summation in the second term. This
means we can stop the summation as soon as we find a bound good enough for the application
under consideration. If we need the exact Euclidean distance, we can get it by continuing to the full
summation. We summarize the above properties in the following.

Lemma 2 (Monotone Convergence) Let MSL(X,y, k) and MSU(x,y, k) be the lower and upper
bounds of MS-distance as defined above, respectively. Then the following properties hold.

e MSL(X,y,0) < MSL(x,y,1) < --- < MSL(X,y,d — 1) < MSL(x,y, d) = dist(x, y)%

e MSU(X,y,

> MSU(x,y,1) > -+ > MSU(x,y,d — 1) > MSU(x,y, d) = dist(x,y)>
= MSL(x,y, k + 1) if and only if by11/0y = ak+1/0x.

0)
0)
e MSL(x,y, k)
o MSU(x,y, k) = MSU(x,y,k + 1) ifand only if by41/0y = —aj+1/0x.

Lemma 3 For 0 < k < d, we can update MSL(x,y, k) to MSL(X,y, k + 1), and MSU(X, y, k) to
MSU(X,y, k + 1) in constant time.

Fast Filtering. We must emphasize that MSL(x, y,0) and MSU(x, y, 0) can be used for fast filter-
ing. Let ¢ denote a threshold for filtering defined in some proximity search problem under consider-
ation. If ¢ < MSL(x,y,0) in case of nearest search or ¢ > MSL(x,y,0) in case of farthest search,
we do not need to consider this pair (x,y) as a candidate, thus we can save time from computing
their exact Euclidean distance.

Precisely speaking, we map each d-dimensional vector x = [z, x2,..., x| into a pair of points,

xT and X, in the 2-dimensional plane such that X = [y, 0x] and X~ = [ux, —0x]. Then
dist(xT,y7)? = MsL(x,y,0)/d (13)
dist(xT,y7)? = Msu(x,y,0)/d. (14)

To see why it is useful in fast filtering, consider the case of finding the nearest vector. For d-
dimensional vectors in V' of size n, we have n pairs of points in the plane as in Figure 1. Since ox
is nonnegative, exactly n points lie on or below u-axis. Let q be a query vector, and let @™ denote
the point mapped in the plane as defined above. Among these n points lying on or below p-axis, let
x; be the point that is nearest to §*. Note that the closest point from the query can be computed
efficiently in 2-dimensional space, for example, after constructing some space partitioning structures
such as kd-trees or R-trees, each query can be answered in poly-logarithmic search time.



Then we can ignore all d-dimensional vectors x whose mapped point X lies outside the circle
centered at q* and of radius dist(q™",%; ) in the plane, because they are strictly farther than x;
from q.

A

v

Figure 1: Fast filtering using MSL(x,y,0) and MSU(x,y,0). All d-dimensional vectors x whose
mapped point X lies outside the circle are strictly farther than x; from q.

4 Estimating the Expected Difference Between Two Bounds

We now turn to estimating the expected difference between MSL(x, y, k) and MSU(x, y, k). Observe
that MSL(x, y, k) is almost the same as MSL(x,y, k — 1) if by /oy =~ ai/ox. Hence, in the worst
case, MSL(x,y,0) = MSL(x,y,d — 1) < MSL(x,y,d) = dist(x,y)? when by /oy = ay/ox for
allk = 0,1,...,d — 1, except k£ = d. Therefore, if we need a lower bound strictly better than
MSL(x,y,0), then we need to go through all d refinement steps, which takes O(d) time. It is not
difficult to see that this also applies to the case of MSU(X,y, k).

However, this is unlikely to happen. Consider a random order for the last term in equation
MSL(x,y, k) and for the last term in equation MSU(x, y, k). We show below that their expected val-
ues increase and decrease linearly, respectively, as & increases from 0 to d. Formally, let (a;y, b))
denote the ith pair in the random order. We measure the expected quality of the bounds by the dif-
ference between the bounds, that is, MSU(x,y, k) — MSL(x, y, k) as follows.

k 2 2
MSU(X, y, k) — MSL(X,y, k) = 4doxay — 20x0y 3 ((%( >) + ( ;< )> ) (15)

=0 Ix y
d 2 2
k a; bl
= ddoxoy — QUXO'yg ; (<0x> + (03’) ) (16)
= 4doxoy — 4koxoy (17)
= doxoy(d — k) (18)

Let us explain how we get Equation (16) from (15). Let N denote the set of all pairs, and let N*
denote the set of first k pairs in the random order. Since each pair in NN is treated equally, N* is a

random subset of N of size k. Therefore, Zle(a.y(i) /0x)? is equivalent to take the total sum of

(ai/ox)? with i from 1 to d and divide it by d/k. We can also show this for S5 (b(;)/ay)? by a
similar augment.

Equations (17) and (18) are because 2%, a2 = do2 and Y37, b2 = do? by definitions of a; and b;.
By replacing each squared sum with d, that is , by applying >0, (a;/0x)? = Y0, (bi/oy)? = d,
we have Equation (18).

Lemma 4 The expected value of MSU(X,y, k) — MSL(x,y, k) is doxoy(d — k).



Because dist(x, y)? always lies in between the two bounds, the following also holds.

Corollary 1 Both expected values of MSU(x,y, k) — dist(x,y)? and dist(x,y)? — MSL(x,y, k)
are at most 4oxoy (d — k).

This shows a good theoretical expectation on the lower and upper bounds. This can justify that the
MS-distance provides very tight bounds in a few refinement steps of a typical sequence.

S Applications : Proximity Searches

The MS-distance can be used to application problems where the Euclidean distance is a measure
for proximity or similarity of objects. As a case study, we implemented the nearest neighbor search
(NNS) and the farthest neighbor search (FNS) using the MS-distance.

Given a set X of d-dimensional vectors x;, for © = 1,...,n, and a d-dimensional query vector
q, we use the following simple randomized algorithm for NNS. Initially, we set ¢ to the threshold
given from the application under consideration or computed from the fast filtering in 2-dimension in
Section 3.

1. Consider the vectors in X one at a time according to this sequence. At the ¢th stage, we do
the followings.

if MSL(q,x;,0) < ¢:
for j=1,2,....d:
if MSL(q,x;,7) > ¢:
break;
if j=d
¢ = MSL(q7 Xi7d);
NN = 3;

2. return NN as the nearest neighbor of q with the squared Euclidean distance ¢.

Note that the first line of the pseudocodes filters out the vectors whose distance to q is larger than ¢
as in the fast filtering in Section 3. In the for loop, we compute MSL(q, X;, j) from MSL(q, x;,7—1)
in constant time. From the last two lines of the pseudocodes, we update ¢ to the exact Euclidean
distance between q and x; and store the index as the current nearest neighbor (NN). The algorithm
for the farthest neighbor search is similar to this one, except that it uses MSU(X;, ¥, j) and maintains
the maximum distance.

For empirical comparison, we implemented a linear search algorithm that simply computes distances
from q to every x; and chooses the one with the minimum distance. We also used the implementation
of the cover tree [6]. A cover tree is a data structure that supports fast nearest neighbor queries given
a fixed intrinsic dimensionality [7].

We tested these implementations on data sets from UCI machine learning archive [11]. We selected
data sets D from various dimensions (from 10 to 100, 000), and randomly selected 30 queries points
Q C D, and queried them on D \ Q. We labelled the data set on d-dimension as “Dd”. The
data sets D500, D5000, D10000, D20000, D100000 were used in NIPS 2003 challenge on feature
selection [12]. The test machine has one CPU, Intel Q6600 with 2.4GHz, 3GB memory, and 32bit
Ubuntu 10 operating system running on the machine.

Figure 2 shows the percentage of data filtered off. For the data sets on relaxed dimensions, the
MS-distance filtered off over 95% of data without lose of accuracy. For high dimensional data,
MS-distance failed to filter off many data. Probably this is because the distances from queries to
their nearest vectors tend to converge to the distances to their farthest vectors as described in [13].
This makes it hard to decrease (or increase in FNS) the threshold ¢ for the MS-distance enough to
filter off many data. However, on such high dimensions, both the linear search and the cover tree
algorithm also show poor performance.

Figure 3 shows the preprocessing time of the MS-distance and the cover tree for NNS. The time axis
is log-scaled second. This shows that the preprocessing time of the MS-distance is up to 1000 times
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Figure 2: Data filtered off in percentage. Figure 3: Preprocessing time for nearest neigh-
bor search in log-scaled second.

faster than the one in the cover tree. This is because for the MS-distance it requires only O(dn) time
to compute the mean and the standard deviation values.
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Figure 4: Relative running time for the nearest Figure 5: Relative running time for the farthest
neighbor search queries, normalized by linear neighbor search queries, normalized by linear
search time. search time.

Figure 4 shows the time spent for NNS queries. The graph shows the query time that is normalized
by the linear search time. It is clear that the filtering algorithm based on the MS-distance beats
the linear search algorithm, even on high dimensional data in the results. The cover tree, which is
designed exclusively for NNS, shows slightly better query performance than ours. However, the
MS-distance is more general and flexible: it supports addition of a new vector to the data set (our
data structure) in O(d) time for computing the mean and the standard deviation values of the vector.
Deletion of a vector from the data set can be done in constant time. Furthermore, the data structure
for NNS can also be used for FNS.

Figure 5 shows the time spent for FNS queries. This is outstanding compared to the linear search
algorithm. We hardly know any other previous work achieving better performance than this.

6 Conclusion

We introduce a fast distance bounding technique, called the MS-distance, by using the mean and the
standard deviation values. The MS-distance between two vectors provides upper and lower bounds
of Euclidean distance between them in constant time, and these bounds converge monotonically to
the exact Euclidean distance over iteration. The MS-distance can be used to application problems
where the Euclidean distance is a measure for proximity or similarity of objects. The experimental
results show that our method is efficient enough even to replace the best known algorithms for
proximity searches.



Table 1: Data sets

Data Label Name # of vectors \ Data Label Name # of vectors
D10 Page Blocks 5473 | D64 Optical Recognition 5620
DI1 Wine Quality 6497 | D86 Insurance Company 5822
D16 Letter Recognition 20000 | D90 YearPredictionMSD 515345
D19 Image Segmentation 2310 | D167 Musk2 6597
D22 Parkinsons Tel 5875 | D255 Semeion 1593
D27 Steel Plates Faults 1941 | D500 Madelon 4400
D37 Statlog Satellite 6435 | D617 ISOLET 7795
D50 MiniBooNE 130064 | D5000 Gisette 13500
D55 Covertype 581012 | D10000 Arcene 900
D57 Spambase 4601 | D20000 Dexter 2600
D61 IPUMS Census 233584 | D100000 Dorothea 1950
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