
Rapid Deformable Object Detection using Dual-Tree
Branch-and-Bound

Iasonas Kokkinos
Center for Visual Computing

Ecole Centrale de Paris
iasonas.kokkinos@ecp.fr

Abstract

In this work we use Branch-and-Bound (BB) to efficiently detect objects with de-
formable part models. Instead of evaluating the classifier score exhaustively over
image locations and scales, we use BB to focus on promising image locations.
The core problem is to compute bounds that accommodate part deformations; for
this we adapt the Dual Trees data structure [7] to our problem.
We evaluate our approach using Mixture-of-Deformable PartModels [4]. We ob-
tain exactly the same results but are 10-20 times faster on average. We also de-
velop a multiple-object detection variation of the system,where hypotheses for 20
categories are inserted in a common priority queue. For the problem of finding the
strongest category in an image this results in a 100-fold speedup.

1 Introduction

Deformable Part Models (DPMs) deliver state-of-the-art object detection results [4] on challenging
benchmarks when trained discriminatively, and have becomea standard in object recognition re-
search. At the heart of these models lies the optimization ofa merit function -the classifier score-
with respect to the part displacements and the global objectpose. In this work we take the classifier
for granted, using the models of [4], and focus on the optimization problem.

The most common detection algorithm used in conjunction with DPMs relies on Generalized Dis-
tance Transforms (GDTs) [5], whose complexity is linear in the image size. Despite its amazing
efficiency this algorithm still needs to first evaluate the score everywhere before picking its maxima.

In this work we use Branch-and-Bound in conjunction with part-based models. For this we exploit
the Dual Tree (DT) data structure [7], developed originallyto accelerate operations related to Kernel
Density Estimation (KDE). We use DTs to provide the bounds required by Branch-and-Bound.

Our method is fairly generic; it applies to any star-shape graphical model involving continuous
variables, and pairwise potentials expressed as separable, decreasing binary potential kernels. We
evaluate our technique using the mixture-of-deformable part models of [4]. Our algorithm delivers
exactly the same results, but is 15-30 times faster. We also develop a multiple-object detection
variation of the system, where all object hypotheses are inserted in the same priority queue. If our
task is to find the best (or k-best) object hypotheses in an image this can result in a 100-fold speedup.

2 Previous Work on Efficient Detection

Cascaded object detection [20] has led to a proliferation ofvision applications, but far less work
exists to deal with part-based models. The combinatorics ofmatching have been extensively studied
for rigid objects [8], while [17] usedA∗for detecting object instances. For categories, recent works
[1, 10, 11, 19, 6, 18, 15] have focused on reducing the high-dimensional pose search space during

1

detection by initially simplifying the cost function beingoptimized, mostly using ideas similar to
A∗and coarse-to-fine processing. In the recent work of [4] thresholds pre-computed on the training
set are used to prune computation and result in substantial speedups compared to GDTs.

Branch-and-bound (BB) prioritizes the search of promisingimage areas, as indicated by an upper
bound on the classifier’s score. A most influential paper has been the Efficient Subwindow Search
(ESS) technique of [12], where an upper bound of a bag-of-words classifier score delivers the bounds
required by BB. Later [16] combined Graph-Cuts with BB for object segmentation, while in [13] a
general cascade system was devised for efficient detection with a nonlinear classifier.

Our work is positioned with respect to these works as follows: unlike existing BB works [16, 12, 15],
we use the DPM cost and thereby accommodate parts in a rigorous energy minimization framework.
And unlike the pruning-based works [1, 6, 4, 18], we do not make any approximations or assump-
tions about when it is legitimate to stop computation; our method is exact.

We obtain the bound required by BB from Dual Trees. To the bestof our knowledge, Dual Trees
have been minimally been used in object detection; we are only aware of the work in [9] which used
DTs to efficiently generate particles for Nonparametric Belief Propagation. Here we show that DTs
can be used for part-based detection, which is related conceptually, but entirely different technically.

3 Preliminaries

We first describe the cost function used in DPMs, then outlinethe limitations of GDT-based detec-
tion, and finally present the concepts of Dual Trees relevantto our setting. Due to lack of space we
refer to [2, 4] for further details on DPMs and to [7] [14] for Dual Trees.

3.1 Merit function for DPMs

We consider a star-shaped graphical model consisting of a set of P + 1 nodes{n0, . . . nP }; n0 is
called the root and the part nodesn1, . . . , nP are connected to the root. Each nodep has a unary
observation potentialUp(x), indicating the fidelity of the image atx to the node; e.g. in [2]Up(x)
is the inner product of a HOG feature atx with a discriminantwp for p.

The locationxp = (hp, vp) of partp is constrained with respect to the root locationx0 = (h0, v0)
in terms of a quadratic binary potentialBp(xp, x0) of the form:

Bp(xp, x0)=− (xp − x0 − µp)
T
Ip (xp − x0 − µp)=−(hp − h0 − ηp)

2Hp − (vp − v0 − νp)
2Vp,

whereIp = diag(Hp, Vp) is a diagonal precision matrix andmp = (ηp, νp) is the nominal difference
of root-part locations. We will freely alternate between the vectorx and its horizontal/verticalh/v
coordinates. Moreover we considerη0 = 0, µ0 = 0 andH0, V0 large enough so thatB0(xp, x0) will
be zero forxp = x0 and practically infinite elsewhere.

If the root is atx0 the merit for partp being atxp is given by mp(xp, x0) = Up(xp) +
Bp(xp, x0); summing overp gives the score

∑
p mp(xp, x0) of a root-and-parts configuration

X = (x0, . . . , xP). The detector score at pointx is obtained by maximizing over thoseX with
x0 = x; this amounts to computing:

S(x)
.
=

P∑

p=0

max
xp

mp(xp, x) =

P∑

p=0

max
xp

Up(xp)− (hp − h− ηp)
2Hp − (vp − v − νp)

2Vp. (1)

A GDT can be used to maximize each summand in Eq. 1 jointly for all values ofx0 in timeO(N),
whereN is the number of possible locations. This is dramatically faster than the naiveO(N2)
computation. For a P-part model, complexity decreases fromO(N2P) toO(NP).

Still, theN factor can make things slow for large images. If we know that acertain threshold will
be used for detection, e.g.−1 for a classifier trained with SVMs, the GDT-based approach turns out
to be wasteful as it treats equally all image locations, eventhose where we can quickly realize that
the classifier score cannot exceed this threshold.

This is illustrated in Fig. 1: in (a) we show the part-root configuration that gives the maximum
score, and in (b) the score of a bicycle model from [4] over thewhole image domain. Our approach

2

(a) Input & Detection result (b) Detector scoreS(x) (c) BB for argmaxx S(x) (d) BB forS(x) ≥ −1.

Figure 1:Motivation for Branch-and-Bound (BB) approach: standard part-based models evaluate a classifier’s
scoreS(x) over the whole image domain. Typically only a tiny portion ofthe image domain should be positive-
in (b) we draw a black contour around{x : S(x) > −1} for an SVM-based classifier. BB ignores large
intervals with lowS(x) by upper bounding their values, and postponing their ‘exploration’ in favor of more
promising ones. In (c) we show as heat maps the upper bounds ofthe intervals visited by BB until the strongest
location was explored, and in (d) of the intervals visited until all locationsx with S(x) > −1 were explored.

speeds up detection by upper bounding the score of the detector within intervals of x while using
low-cost operations. This allows us to use a prioritized search strategy that can refine these bounds
on promising intervals, while postponing the exploration of less promising intervals.

This is demonstrated in Fig. 1(c,d) where we show as heat mapsthe upper bounds of the intervals
visited by BB: parts of the image where the heat maps are more fine grained correspond to image
locations that seemed promising. If our goal is to maximizeS(x) BB discards a huge amount of
computation, as shown in (c); even with a more conservative criterion, i.e. finding allx : S(x) > −1
(d), a large part of the image domain is effectively ignored and the algorithm obtains refined bounds
only around ‘interesting’ image locations.

3.2 Dual Trees: Data Structures for Set-Set interactions

The main technical challenge is to efficiently compute upperbounds for a model involving de-
formable parts; our main contribution consists in realizing that this can be accomplished with the
Dual Tree data structure of [7]. We now give a high-level description of Dual Trees, leaving con-
crete aspects for their adaptation to the detection problem; we assume the reader is familiar with
KD-trees.

Dual Trees were developed to efficiently evaluate expressions of the form:

P (xj) =

N∑

i=1

wiK(xj , xi), xi ∈ XS , i = 1, . . .N, xj ∈ XD j = 1, . . . ,M (2)

whereK(·, ·) is a separable, decreasing kernel, e.g. a Gaussian with diagonal covariance. We refer
to XS as ‘source’ terms, and toXD as ‘domain’ terms, the idea being that the source pointsXS

generate a ‘field’P , which we want evaluate at the domain locationsXP .

Naively performing the computation in Eq. 2 considers all source-domain interactions and takes
NM operations. The Dual Tree algorithm efficiently computes this sum by using two KD-trees,
one (S) for the source locationsXS and another (D) for the domain locationsXD. This allows for
substantial speedups when computing Eq. 2for all domain points, as illustrated in Fig. 2: if a ‘chunk’
of source points cannot affect a ‘chunk’ of domain points, weskip computing their domain-source
point interactions.

4 DPM opitimization using Dual Tree Branch and Bound

Brand and Bound (BB) is a maximization algorithm for non-parametric, non-convex or even non-
differentiable functions. BB searches for the interval containing the function’s maximum using a
prioritized search strategy; the priority of an interval isdetermined by the function’s upper bound
within it. Starting from an interval containing the whole function domain, BB increasingly narrows
down to the solution: at each step an interval of solutions ispopped from a priority queue, split
into sub-intervals (Branch), and a new upper bound for thoseintervals is computed (Bound). These
intervals are then inserted in the priority queue and the process repeats until a singleton interval is
popped. If the bound is tight for singletons, the first singleton will be the function’s global maximum.

3

Figure 2:Left: Dual Trees efficiently deal with the interaction of ‘source’ (red) and ‘domain’ points (blue),
using easily computable bounds. For instance points lying in square 6 cannot have a large effect on points in
square A, therefore we do not need to go to a finer level of resolution to exactly estimate their interactions.
Right: illustration of the terms involved in the geometric bound computations of Eq. 10.

Coming to our case, the DPM criterion developed in Sec. 3.1 isa sum of scores of the form:

sp(x0) = max
xP

mp(xp, x0) = max
(hp,vp)

Up(hp, vp)− (hp − h0 − ηp)
2Hp − (vp − v0 − νp)

2Vp. (3)

Using Dual Tree terminology the ‘source points’ correspondto part locationsxp, i.e.XSp
= {xp},

and the ‘domain points’ to object locationsx0, i.e. XD = {x0}. Dual Trees allow us to efficiently
derive bounds forsp(x0), x0 ∈ XD, the scores that a set of object locations can have due to a
set of partp locations. Once these are formed, we add over parts to bound the scoreS(x0) =∑

p sp(x0), x0 ∈ XD. This provides the bound needed by Branch-and Bound (BB).

We now present our approach through a series intermediate problems. These may be amenable to
simpler solutions, but the more complex solutions discussed finally lead to our algorithm.

4.1 Maximization for One Domain Point

We first introduce notation: we index the source/domain points inXS /XD usingi/j respectively. We
denote bywp

i = Up(xi) the unary potential of partp at locationxi. We shift the unary scores by the
nominal offsetsµ, which gives new source locations:xi → xi − µp, (hi, vi) → (hi − ηp, vi − νp).
Finally, we dropp frommp, Hp andVp unless necessary. We can now write Eq. 3 as:

m(h0, v0) = max
i∈Sp

wi −H(hi − h0)
2 − V (vi − v0)

2. (4)

To evaluate Eq. 4 at(h0, v0) we use prioritized search over intervals ofi ∈ Sp, starting fromSp

and gradually narrowing down to the besti. To prioritize intervals we use a KD-tree for the source
pointsxi ∈ XSp

to quickly compute bounds of Eq. 4. In specific, ifSn is the set of children of the
n-th node of the KD-tree forSp, consider the subproblem:

mn(h0, v0) = max
i∈Sn

wi −H(hi − h0)
2 − V (vi − v0)

2 = max
i∈Sn

wi + Gi, (5)

whereGi
.
= −H(hi − h0)

2 − V (vi − v0)
2 stands for the geometric part of Eq. 5. We know that for

all points(hi, vi) within Sn we havehi ∈ [ln, rn] andvi ∈ [bn, tn], wherel, r, b, t are the left, right,
bottom, top axes definingn’s bounding box,Bn. We can then boundGi within Sn as follows:

Gn = −H min(⌈l − h0⌉, ⌈h0 − r⌉)2 − V min(⌈b− v0⌉, ⌈v0 − t⌉)2 (6)

Gn = −H max(l − h0 , h0 − r)2 − V max(b− v0 , v0 − t)2, (7)

where⌈·⌉ = max(·, 0), andGn ≥ Gi ≥ Gn ∀i ∈ Sn. The upper bound is zero insideBn and uses
the boundaries ofBn that lie closest to(h0, v0), when(h0, v0) is outsideBn. The lower bound uses
the distance from(h0, v0) to the furthest point withinBn.

Regarding thewi term in Eq. 5, for both bounds we can use the valuewj , j = argmaxi∈Sn
wi.

This is clearly suited for the upper bound. For the lower bound, sinceGi > Gn ∀i ∈ Sn, we
havemaxi∈Sn

wi + Gi ≥ wj + Gj ≥ wj + Gn. Sowj + Gn provides a proper lower bound for
maxi∈Sn

wi + Gi. Summing up, we bound Eq. 5 as:wj + Gn ≥ mn(h0, v0) ≥ wj + Gn.

4

l

l1 l2

m 7
0

m1
4
2

m2
6
1

n 3
0

n1
2
0

n2
3
1

o 8
4

o1 5
4

o2 8
6

Figure 3: Supporter pruning: source nodes{m, n, o} are among the possible supporters of domain-nodel.
Their upper and lower bounds (shown as numbers to the right ofeach node) are used to prune them. Here, the
upper bound forn (3) is smaller than the maximal lower bound among supporters(4, fromo): this implies the
upper bound ofn’s children contributions tol’s children (shown here forl1) will not surpass the lower bound
of o’s children. We can thus safely removen from the supporters.

We can use the upper bound in a prioritized search for the maximum ofm(h0, v0), as described in
Table 1. Starting with the root of the KD-tree we expand its children nodes, estimate their priorities-
upper bounds, and insert them in a priority queue. The searchstops when the first leaf node is
popped; this provides the maximizer, as its upper and lower bounds coincide and all other elements
waiting in queue have smaller upper bounds. The lower bound is useful in Sec. 4.2.

4.2 Maximization for All Domain Points

Having described how KD-trees to provide bounds in the single domain point case, we now describe
how Dual Trees can speedup this operation in when treating multiple domain points simultaneously.
In specific, we consider the following maximization problem:

x∗ = arg max
x∈XD

m(x) = argmax
j∈D

max
i∈S

wi −H(hi − hj)
2 − V (vi − vj)

2, (8)

whereXD/D is the set of domain points/indices andS are the source indices. The previous algo-
rithm could deliverx∗ by computingm(x) repeatedly for eachx ∈ XD and picking the maximizer.
But this will repeat similar checks for neighboring domain points, which can instead be done jointly.

For this, as in the original Dual Tree work, we build a second KD-tree for the domain points (‘Do-
main tree’, as opposed to ‘Source tree’). The nodes in the Domain tree (‘domain-nodes’) correspond
to intervals of domain points that are processed jointly. This saves repetitions of similar bounding
operations, and quickly discards large domain areas with poor bounds.

For the bounding operations, as in Sec. 4.1 we consider the effect of source points contained in a
nodeSn of the Source tree. The difference is that now we bound the maximum of this quantity over
domain points contained in a domain-nodeDl. In specific, we consider the quantity:

ml,n = max
j∈Dl

max
i∈Sn

wi −H(hi − hj)
2 − V (vi − vj)

2 (9)

BoundingGi,j = −H(hi− hj)
2 −V (vi − vj)

2 involves two 2D intervals, one for the domain-node
l and one for the domain-noden. If the interval for noden is centered athn, vn, and has dimensions
dh,n, dv,n, we used̄h = 1

2 (dh,l + dh,n), d̄v = 1
2 (dv,l + dv,n) and write:

Gl,n = −H max(⌈hn − hl − d̄h⌉, ⌈hl − hn − d̄h⌉)
2 − V max(⌈vn − vl − d̄v⌉, ⌈vl − vn − d̄v⌉)

2

Gl,n = −H max(hn − hl + d̄h , hl − hn + d̄h)2 − V max(vn − vl − d̄v , vl − vn − d̄v)2

We illustrate these bounds in Fig. 2. The upper bound is zero if the boxes overlap, or else equals the
(scaled) distance of their closest points. The lower bound uses the furthest points of the two boxes.

As in Sec. 4.1, we usew∗
n = maxi∈Sn

wi for the first term in Eq. 9, and boundml,n as follows:

Gl,n + w∗
n ≤ ml,n ≤ Gl,n + w∗

n. (10)

This expression bounds the maximal valuem(x) that a pointx in domain-nodel can have using
contributions from points in source-noden. Our initial goal was to find the maximum using all
possible source point contributions. We now describe a recursive approach to limit the set of source-
nodes considered, in a manner inspired from the ‘multi-recursion’ approach of [7].

5

For this, we associate every domain-nodel with a setSl of ‘supporter’ source-nodes that can yield
the maximal contribution to points inl. We start by associating the root node of the Domain tree
with the root node of the Source-tree, which means that all domain-source point interactions are
originally considered.

We then recursively increase the ‘resolution’ of the Domain-tree in parallel with the ‘resolution’ of
the Source-tree. More specifically, to determine the supporters for a childm of domain-nodel we
consider only the children of the source-nodes inSl; formally, denoting bypa andch the parent and
child operations respectively we haveSm ⊂ ∪n∈Spa(m)

{ch(n)}.

Our goal is to reduce computation by keepingSm small. This is achieved by pruning based on both
the lower and upper bounds derived above. The main observation is that when we go from parents
to children we decrease the number of source/domain points;this tightens the bounds, i.e. makes
the upper bounds less optimistic and the lower bounds more optimistic. Denoting the maximal
lower bound for contributions to parent nodel by Gl = maxn∈Sl

Gl,n, this means thatGk ≥ Gl if

pa(k) = l. On the flip side,Gl,n ≤ Gk,q if pa(k) = l, pa(q) = n. This means that if for source-
noden at the parent levelGl,n < Gl, at the children level the children ofn will contribute something
worse thanGm, the lower bound onl’s child score. We therefore do not need to keepn amongSl - its
children’s contribution will be certainly worse than the best contribution from other node’s children.
Based on this observation we can reduce the set of supporters, while guaranteeing optimality.

Pseudocode summarizing this algorithm is provided in Table1. The bounds in Eq. 10 are used in a
prioritized search algorithm for the maximum ofm(x) overx. The algorithm uses a priority queue
for Domain tree nodes, initialized with the root of the Domain tree (i.e. the whole range of possible
locationsx). At each iteration we pop a Domain tree node from the queue, compute upper bounds
and supporters for its children, which are then pushed in thepriority queue. The first leaf node that
is popped contains the best domain location: its upper boundequals its lower bound, and all other
nodes in the priority queue have smaller upper bounds, therefore cannot result in a better solution.

4.3 Maximization over All Domain Points and Multiple Parts: Branch and Bound for DPMs

The algorithm we described in the previous subsection is essentially a Branch-and-Bound (BB)
algorithm for the maximization of a merit function

x∗ = argmax
x0

m(x0) = arg max
(h0,v0)

max
i∈Sp

wi −H(hi − h0)
2 − V (vi − v0)

2 (11)

corresponding to a DPM with a single-part (p). To see this, recall that at each step BB pops a
domain of the function being maximized from the priority queue, splits it into subdomains (Branch),
and computes a new upper bound for the subdomains (Bound). Inour case Branching amounts
to considering the two descendants of the domain node being popped, while Bounding amounts to
taking the maximum of the upper bounds of the domain node supporters.

The single-part DPM optimization problem is rather trivial, but adapting the technique to the multi-
part case is now easy. For this, we rewrite Eq. 1 in a convenient form as:

m(h0, v0) =

P∑

p=0

max
i∈S

wp,i −Hp(h
p
i − h0)

2 − Vp(v
p
i − v0)

2 (12)

using the conventions we used in Eq. 4. Namely, we only consider using points inS for object parts,
and subtractmp from hi, vi to yield simple quadratic forms; sincemp is part-dependent, we now
have ap superscript forhi, vi. Further, we have in general differentH,V variables for different
parts, so we brought back thep subscript for these. Finally,wp,i depends onp, since the same image
point will give different unary potentials for different object parts.

From this form we realize that computing the upper bound ofm(x) within a range of values of
x, as required by Branch-and-Bound is as easy as it was for the single terms in the previous sec-
tion. In specific we havem(x) =

∑P

p=1 mp(x), wheremp are the individual part contributions;

sincemaxx
∑P

p=0 mp(x) ≤
∑P

p=0 maxxmp(x). we can separately upper bound the individual part
contributions, and sum them up to get an overall upper bound.

Pseudocode describing the maximization algorithm is provided in Table 1. Note that each part has its
own KDtree (SourcT[p]): we build a separate Source-tree perpart using the part-specific coordinates

6

(hp, vp) and weightswp,i. Each part’s contribution to the score is computed using thesupporters it
lends to the node; the total bound is obtained by summing the individual part bounds.

Single Domain Point

IN: ST, x {Source Tree, Location x}
OUT: argmaxxi∈ST m(x, xi)
Push(S,ST.root);
while 1 do

Pop(S,popped);
if popped.UB = popped.LBthen

return popped;
end if
for side = [Left,Right]do

child = popped.side;
child.UB = BoundU(x,child);
child.LB = BoundL(x,child);
Push(S,child);

end for
end while

Multiple Domain Points

IN: ST, DT {Source/Domain Tree}
OUT: argmaxx∈DT maxi∈ST m(x, xi)
Seed = DT.root;
Seed.supporters = ST.Root;
Push(S,Seed);
while 1 do

Pop(S,popped);
if popped.UB = popped.LBthen

return popped;
end if
for side = [Left,Right]do

child = popped.side;
supp = Descend(popped.supp);
UB,supc = Bound(child,supp,DT,ST);
child.UB = UB;
child.supc = supc;
Push(S,child);

end for
end while

Multiple Domain Points, Multiple Parts

IN: ST[P], DT {P Source Trees/Domain Tree}
OUT: argmaxx∈DT

∑
p maxi∈ST [P]m(x, xp, i)

Seed = DT.root;
for p = 1 toP do

Seed.supporters[p] = ST[p].Root;
end for
Push(S,Seed);
while 1 do

Pop(S,popped);
if popped.UB = popped.LBthen

return popped;
end if
for side = [Left,Right]do

child = popped.side;
UB = 0;
for part = 1:Pdo

supp = Descend(popped.supp[part])
UP,s = Bound(child,supp,DT,ST[p]);
child.supp[part] = s;
UB = UB + UP;

end for
child.UB = UB;
Push(S,child);

end for
end while

Bounding Routine
IN: child,supporters,DT,ST
OUT: supch, LB{Chosen supporters, Max LB}
UB = −∞; LB = ∞;
for n∈ supportersdo

UB[n] = BoundU(DT.node[child],ST.node[n]);
LB[n] = BoundL(DT.node[child],ST.node[n]);

end for
MaxLB = max(LB);
supch = supporters(find(UB>MaxLB));
Return supch, MaxLB;

Table 1:Pseudocode for the algorithms presented in Section 4.

5 Results - Application to Deformable Object Detection

To estimate the merit of BB we first compare with the mixtures-of-DPMs developed and distributed
by [3]. We directly extend the Branch-and-Bound technique that we developed for a single DPM to
deal with multiple scales and mixtures (‘ORs’) of DPMs [4, 21], by inserting all object hypotheses
into the same queue. To detect multiple instances of objectsat multiple scales we continue BB after
getting the best scoring object hypothesis. As terminationcriterion we choose to stop when we pop
an interval whose upper bound is below a fixed threshold.

Our technique delivers essentially the same results as [4].One minuscule difference is that BB
uses floating point arithmetic for the part locations, whilein GDT they are necessarily processed at
integer resolution; other than that the results are identical. We therefore do not provide any detection
performance curves, but only timing results.

Coming to time efficiency, in Fig. 4 (a) we compare the resultsof the original DPM mixture model
and our implementation. We use 2000 images from the Pascal dataset and a mix of models for
different object clases (gains vary per category). We consider the standard detection scenario where
we want to detect all objects in an image having score above a certain threshold. We show how

7

10
0

10
1

10
2

Speedup: Single object

S
pe

ed
up

Image rank

t = −0.4
t = −0.6
t = −0.8
t = −1.0

10
0

10
1

10
2

Speedup: M−objects, 1−best

Image rank

M = 1
M = 5
M = 10
M = 20

10
0

10
1

10
2

Speedup: 20−objects, k−best

Image rank

k = 1
k = 2
k = 5
k = 10

10
0

10
1

10
2

Speedup − front−end

Image rank

k = 1

(a) (b) (c) (d)

Figure 4: (a) Single-object speedup of Branch and Bound compared to GDTs on images from the Pascal
dataset, (b,c) Multi-object speedup. (d) Speedup due to thefront-end computation of the unary potentials.
Please see text for details.

the threshold affects the speedup we obtain; for a conservative threshold the speedup is typically
tenfold, but as we become more aggressive it doubles.

As a second application, we consider the problem of identifying the ‘dominant’ object present in
the image, i.e. the category the gives the largest score. Typically simpler models, like bag-of-words
classifiers are applied to this problem, based on the understanding that part-based models can be
time-consuming, therefore applying a large set of models toan image would be impractical.

Our claim is that Branch-and-Bound allows us to pursue a different approach, where in fact having
more object categories canincrease the speed of detection, if we leave the unary potential com-
putation aside. In specific, our approach can be directly extended to the multiple-object detection
setting; as long as the scores computed by different object categories are commensurate, they can all
be inserted in the same priority queue. In our experiments weobserved that we can get a response
faster by introducing more models. The reason for this is that including into our object repertoire a
model giving a large score helps BB stop; otherwise BB keeps searching for another object.

In plots (b),(c) Fig. 4 we show systematic results on the Pascal dataset. We compare the time that
would be required by GDT to perform detection of all multipleobjects considered in Pascal, to that
of a model simultaneously exploring all models. In (b) we show how finding the first-best result is
accelerated as the number of objects (M) increases; while in(c) we show how increasing the ‘k’ in
‘k-best’ affects the speedup. For small values ofk the gains become more pronounced. Of course if
we use a fixed threshold the speedup would not change, when compared to plot (a), since essentially
the objects do not ‘interact’ in any way (we do not use nonmaximum suppression). But as we turn to
the best-first problem, the speedup becomes dramatic, ranging in the order of up to a hundred times.

We note that the timings refer to the ‘message passing’ part implemented with GDT and not the
computation of unary potentials, which is common for both models, and is currently the bottleneck.
Even though it is tangential to our contribution in this paper, we mention that as shown in plot (d)
we compute unary potentials approximately five times fasterthan the single-threaded convolution
provided by [3] by exploiting Matlab’s optimized matrix multiplication routines.

6 Conclusions

In this work we have introduced Dual-Tree Branch-and-Boundfor efficient part-based detection.
We have used Dual Trees to compute upper bounds on the cost function of a part-based model and
thereby derived a Branch-and-Bound algorithm for detection. Our algorithm is exact and makes no
approximations, delivering identical results with the DPMs used in [4], but in typically 10-15 less
time. Further, we have shown that the flexibility of prioritized search allows us to consider new
tasks, such as multiple-object detection, which yielded further speedups. The main challenge for
future work will be to reduce the unary term computation cost; we intend to use BB for this task too.

7 Acknowledgements

We are grateful to the authors of [3, 12, 9] for making their code available, and to the reviewers for
constructive feedback. This work was funded by grant ANR-10-JCJC -0205.

8

References

[1] Y. Chen, L. Zhu, C. Lin, A. L. Yuille, and H. Zhang. Rapid inference on a novel and/or graph for object
detection, segmentation and parsing. InNIPS, 2007.

[2] P. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively trained, multiscale, deformable part
model. InCVPR, 2008.

[3] P. F. Felzenszwalb, R. B. Girshick, and D. McAllester. Discriminatively trained deformable part models,
release 4. http://www.cs.brown.edu/ pff/latent-release4/.

[4] P. F. Felzenszwalb, R. B. Girshick, and D. A. McAllester.Cascade object detection with deformable part
models. InCVPR, 2010.

[5] P. F. Felzenszwalb and D. P. Huttenlocher. Distance transforms of sampled functions. Technical report,
Cornell CS, 2004.

[6] V. Ferrari, M. J. Marin-Jimenez, and A. Zisserman. Progressive search space reduction for human pose
estimation. InCVPR, 2008.

[7] A. G. Gray and A. W. Moore. Nonparametric density estimation: Toward computational tractability. In
SIAM International Conference on Data Mining, 2003.

[8] E. Grimson.Object Recognition by Computer. MIT Press, 1991.
[9] A. T. Ihler, E. B. Sudderth, W. T. Freeman, and A. S. Willsky. Efficient multiscale sampling from products

of gaussian mixtures. InNIPS, 2003.
[10] I. Kokkinos and A. Yuille. HOP: Hierarchical Object Parsing. InCVPR, 2009.
[11] I. Kokkinos and A. L. Yuille. Inference and learning with hierarchical shape models.International Journal

of Computer Vision, 93(2):201–225, 2011.
[12] C. Lampert, M. Blaschko, and T. Hofmann. Beyond slidingwindows: Object localization by efficient

subwindow search. InCVPR, 2008.
[13] C. H. Lampert. An efficient divide-and-conquer cascadefor nonlinear object detection. InCVPR, 2010.
[14] D. Lee, A. G. Gray, and A. W. Moore. Dual-tree fast gauss transforms. InNIPS, 2005.
[15] A. Lehmann, B. Leibe, and L. V. Gool. Fast PRISM: Branch and Bound Hough Transform for Object

Class Detection.International Journal of Computer Vision, 94(2):175–197, 2011.
[16] V. Lempitsky, A. Blake, and C. Rother. Image segmentation by branch-and-mincut. InECCV, 2008.
[17] P. Moreels, M. Maire, and P. Perona. Recognition by probabilistic hypothesis construction. InECCV,

page 55, 2004.
[18] M. Pedersoli, A. Vedaldi, and J. Gonzàlez. A coarse-to-fine approach for fast deformable object detection.

In CVPR, 2011.
[19] B. Sapp, A. Toshev, and B. Taskar. Cascaded models for articulated pose estimation. InECCV, 2010.
[20] P. Viola and M. Jones. Rapid Object Detection using a Boosted Cascade of Simple Features. InCVPR,

2001.
[21] S. C. Zhu and D. Mumford. Quest for a Stochastic Grammar of Images. Foundations and Trends in

Computer Graphics and Vision, 2(4):259–362, 2007.

9

