Rapid Deformable Object Detection using Dual-Tree
Branch-and-Bound

lasonas Kokkinos
Center for Visual Computing
Ecole Centrale de Paris
i asonas. kokki nos@cp. fr

Abstract

In this work we use Branch-and-Bound (BB) to efficiently d¢bjects with de-
formable part models. Instead of evaluating the classifieresexhaustively over
image locations and scales, we use BB to focus on promisiagéntocations.
The core problem is to compute bounds that accommodate @farndations; for
this we adapt the Dual Trees data structure [7] to our problem

We evaluate our approach using Mixture-of-Deformable Raxdels [4]. We ob-
tain exactly the same results but are 10-20 times faster erage. We also de-
velop a multiple-object detection variation of the systarhere hypotheses for 20
categories are inserted in a common priority queue. Forrbigigm of finding the
strongest category in an image this results in a 100-folddpe.

1 Introduction

Deformable Part Models (DPMs) deliver state-of-the-ajeobdetection results [4] on challenging
benchmarks when trained discriminatively, and have becarstndard in object recognition re-
search. At the heart of these models lies the optimizatica merit function -the classifier score-
with respect to the part displacements and the global opjesg. In this work we take the classifier
for granted, using the models of [4], and focus on the optatidn problem.

The most common detection algorithm used in conjunctioh WiPMs relies on Generalized Dis-
tance Transforms (GDTSs) [5], whose complexity is lineartia tmage size. Despite its amazing
efficiency this algorithm still needs to first evaluate thersceverywhere before picking its maxima.

In this work we use Branch-and-Bound in conjunction withtgeased models. For this we exploit
the Dual Tree (DT) data structure [7], developed originadlpccelerate operations related to Kernel
Density Estimation (KDE). We use DTs to provide the boundsied by Branch-and-Bound.

Our method is fairly generic; it applies to any star-shapappical model involving continuous
variables, and pairwise potentials expressed as sepadsueeasing binary potential kernels. We
evaluate our technique using the mixture-of-deformabtemadels of [4]. Our algorithm delivers
exactly the same results, but is 15-30 times faster. We also develop a makHifiject detection
variation of the system, where all object hypotheses a®rtied in the same priority queue. If our
task is to find the best (or k-best) object hypotheses in agéntas can result in a 100-fold speedup.

2 Previous Work on Efficient Detection

Cascaded object detection [20] has led to a proliferationigibn applications, but far less work

exists to deal with part-based models. The combinatoriosai€hing have been extensively studied
for rigid objects [8], while [17] usedi*for detecting object instances. For categories, receritsvor
[1, 10, 11, 19, 6, 18, 15] have focused on reducing the highedsional pose search space during

detection by initially simplifying the cost function beiraptimized, mostly using ideas similar to
A*and coarse-to-fine processing. In the recent work of [4]sthoéds pre-computed on the training
set are used to prune computation and result in substap&abisips compared to GDTSs.

Branch-and-bound (BB) prioritizes the search of promisingge areas, as indicated by an upper
bound on the classifier's score. A most influential paper fesnlithe Efficient Subwindow Search
(ESS) technique of [12], where an upper bound of a bag-ofisiclassifier score delivers the bounds
required by BB. Later [16] combined Graph-Cuts with BB fojjestt segmentation, while in [13] a
general cascade system was devised for efficient detecttbrawmonlinear classifier.

Our work is positioned with respect to these works as foltawdike existing BB works [16, 12, 15],
we use the DPM cost and thereby accommodate parts in a rigerargy minimization framework.
And unlike the pruning-based works [1, 6, 4, 18], we do not enaky approximations or assump-
tions about when it is legitimate to stop computation; outhrod is exact.

We obtain the bound required by BB from Dual Trees. To the besur knowledge, Dual Trees
have been minimally been used in object detection; we ageawre of the work in [9] which used
DTs to efficiently generate particles for Nonparametrid&dPropagation. Here we show that DTs
can be used for part-based detection, which is related pomaky, but entirely different technically.

3 Preliminaries

We first describe the cost function used in DPMs, then outhedimitations of GDT-based detec-
tion, and finally present the concepts of Dual Trees relet@matir setting. Due to lack of space we
refer to [2, 4] for further details on DPMs and to [7] [14] fouBl Trees.

3.1 Merit function for DPMs

We consider a star-shaped graphical model consisting of af 98 + 1 nodes{ng,...np}; ng is
called the root and the part nodes, ..., np are connected to the root. Each ngdbkas a unary
observation potentidl, (), indicating the fidelity of the image atto the node; e.g. in [2V,(z)
is the inner product of a HOG featureaatvith a discriminantw,, for p.

The locationz,, = (h,,v,) of partp is constrained with respect to the root locatian= (ho, vo)
in terms of a quadratic binary potenti&i},(z,, x¢) of the form:

T
By(@p, wo)=— (2p — 20 — pp)" Ip (xp — 0 — pip)=—(hp — ho — np)QHp — (vp —vo — Vp)QVpa
wherel,, = diag(H,, V},) is a diagonal precision matrix amel, = (7,, v,) is the nominal difference
of root-part locations. We will freely alternate between thectorz and its horizontal/vertical /v
coordinates. Moreover we considgr= 0, o = 0 andHy, V; large enough so tha(z,, o) will
be zero forr,, = x¢ and practically infinite elsewhere.

If the root is atzy the merit for partp being atz, is given by m,(z,,z0) = Uy(zp) +
By(zp,20); summing overp gives the score my(zp,z9) of a root-and-parts configuration
X = (xo,...,zp). The detector score at pointis obtained by maximizing over thos€ with
xo = x; this amounts to computing:

P P
S(z) = Zniaxmp(xpax) = anlcax Up(p) = (hp = h —1p) 2 Hy — (vp — v = 15)*V;,. (1)
p:() P p:0 P

A GDT can be used to maximize each summand in Eq. 1 jointly forsdues ofz in time O(N),
where N is the number of possible locations. This is dramaticallstéa than the naive(N?)
computation. For a P-part model, complexity decreases i¢ni> P) to O(N P).

Still, the NV factor can make things slow for large images. If we know the¢rain threshold will
be used for detection, e.g-1 for a classifier trained with SVMs, the GDT-based approaaoimstout

to be wasteful as it treats equally all image locations, dfiese where we can quickly realize that
the classifier score cannot exceed this threshold.

This is illustrated in Fig. 1: in (a) we show the part-root figaration that gives the maximum
score, and in (b) the score of a bicycle model from [4] oventhele image domain. Our approach

(a) Input & Detection result (b) Detector scof¢x) (c) BB for arg max, S(x) (d) BB for S(z) > —1.

Figure 1:Motivation for Branch-and-Bound (BB) approach: standaad{based models evaluate a classifier's
scoreS(x) over the whole image domain. Typically only a tiny portiortteé image domain should be positive-
in (b) we draw a black contour aroudd: : S(z) > —1} for an SVM-based classifier. BB ignores large
intervals with lowS(z) by upper bounding their values, and postponing their ‘epgtion’ in favor of more
promising ones. In (c) we show as heat maps the upper bourths itervals visited by BB until the strongest
location was explored, and in (d) of the intervals visitetiluadl locationsx with S(z) > —1 were explored.

speeds up detection by upper bounding the score of the deteithin intervals of x while using
low-cost operations. This allows us to use a prioritizedaeatrategy that can refine these bounds
on promising intervals, while postponing the exploratiéiegs promising intervals.

This is demonstrated in Fig. 1(c,d) where we show as heat thapspper bounds of the intervals
visited by BB: parts of the image where the heat maps are mueegfiained correspond to image
locations that seemed promising. If our goal is to maxinfiZe) BB discards a huge amount of
computation, as shown in (c); even with a more conservatiterion, i.e. finding allkz : S(z) > —1
(d), a large part of the image domain is effectively ignored the algorithm obtains refined bounds
only around ‘interesting’ image locations.

3.2 Dual Trees: Data Structures for Set-Set interactions

The main technical challenge is to efficiently compute ugpsunds for a model involving de-
formable parts; our main contribution consists in realizihat this can be accomplished with the
Dual Tree data structure of [7]. We now give a high-level digsion of Dual Trees, leaving con-
crete aspects for their adaptation to the detection prablegnassume the reader is familiar with
KD-trees.

Dual Trees were developed to efficiently evaluate exprassibthe form:
N
P(:Ej):ZwiK(xj,wi), r; € Xg, i=1,...N, ,TjEXD j=1....M (2)
i=1

whereK (-, -) is a separable, decreasing kernel, e.g. a Gaussian withrdihgovariance. We refer
to Xg as ‘source’ terms, and t& p as ‘domain’ terms, the idea being that the source palfgs
generate a ‘fieldP, which we want evaluate at the domain locatids.

Naively performing the computation in Eq. 2 considers aliree-domain interactions and takes
N M operations. The Dual Tree algorithm efficiently computés sum by using two KD-trees,
one (S) for the source location¥ ¢ and another®) for the domain locationX . This allows for
substantial speedups when computing Bgr 21l domain points, as illustrated in Fig. 2: if a ‘chunk’
of source points cannot affect a ‘chunk’ of domain points,skip computing their domain-source
point interactions.

4 DPM opitimization using Dual Tree Branch and Bound

Brand and Bound (BB) is a maximization algorithm for nongaetric, non-convex or even non-
differentiable functions. BB searches for the intervaltadming the function’s maximum using a
prioritized search strategy; the priority of an intervatlistermined by the function’s upper bound
within it. Starting from an interval containing the wholenfttion domain, BB increasingly narrows
down to the solution: at each step an interval of solutiongoigped from a priority queue, split
into sub-intervals (Branch), and a new upper bound for tihmteevals is computed (Bound). These
intervals are then inserted in the priority queue and thegs® repeats until a singleton interval is
popped. If the bound is tight for singletons, the first sibghawill be the function’s global maximum.

— co— |
- d U : Dnmx
[1 2 5 i Dinin % (o)) | oy
= = T (hn,- 'l,‘“,) /
[3 4 6 dv,n / dh.l
g o | | '

Figure 2:Left: Dual Trees efficiently deal with the interaction of tsoe’ (red) and ‘domain’ points (blue),
using easily computable bounds. For instance points Iyinggjuare 6 cannot have a large effect on points in
square A, therefore we do not need to go to a finer level of uéisol to exactly estimate their interactions.
Right: illustration of the terms involved in the geometrimimd computations of Eq. 10.

Coming to our case, the DPM criterion developed in Sec. 3Zlsism of scores of the form:

sp(zo) = rr;z;xmp(:cp, o) = (max) Up(hp,vp) = (hy = ho —11p)Hpy — (vp — vo — 1)*Vp. (3)
p>Up

Using Dual Tree terminology the ‘source points’ corresptingart locations:,, i.e. X5, = {z,},

and the ‘domain points’ to object locatioms, i.e. Xp = {x¢}. Dual Trees allow us to efficiently

derive bounds fos,(z¢),z0 € Xp, the scores that a set of object locations can have due to a

set of partp locations. Once these are formed, we add over parts to bdwnddoreS(zy) =

>, Sp(20), 2o € Xp. This provides the bound needed by Branch-and Bound (BB).

We now present our approach through a series intermediabdgons. These may be amenable to
simpler solutions, but the more complex solutions disadi§isally lead to our algorithm.

4.1 Maximization for One Domain Point

We first introduce notation: we index the source/domain{somX s/ X p usingi/;j respectively. We
denote byw? = U, (z;) the unary potential of pagtat locationz;. We shift the unary scores by the
nominal offsetg:, which gives new source locations; — x; — p, (hi, vi) = (hi — 1p, vi — Vp).
Finally, we dropp from m,, H, andV,, unless necessary. We can now write Eq. 3 as:

m(ho,’Uo) = I_II%X’UJZ' — H(hl — h0)2 — V(’Ul — 'UO)Q. (4)

1€5p

To evaluate Eq. 4 athg,vo) we use prioritized search over intervalsioE S, starting fromS,,
and gradually narrowing down to the béstTo prioritize intervals we use a KD-tree for the source
pointsz; € X, to quickly compute bounds of Eq. 4. In specificSif is the set of children of the
n-th node of the KD-tree fof,,, consider the subproblem:

My (ho,vo) = max w; — H(h; — ho)® — V(v; —vp)® = max w; + G, %)
1ESK 1E€ESn
whereG; = —H (h; — ho)? — V (v; — vp)? stands for the geometric part of Eq. 5. We know that for
all points(h;, v;) within S,, we haveh; € [l,,,r,] andv; € [b,,t,], wherel, r, b, t are the left, right,
bottom, top axes defining’'s bounding boxB,,. We can then boung; within S,, as follows:

Gn = —Hmin([l — hol, [ho —r])* = Vmin([b— o], [vo — t]) (6)

G, = —Hmax(l—ho, ho—7)*> — Vmax(b—ug, vo—1t)> (")
where[-] = max(-,0), andg,, > G; > Gn Vi € Sp. The upper bound is zero insidg, and uses
the boundaries aoB,, that lie closest tdhg, vy), when(hg, vo) is outsideB,,. The lower bound uses
the distance fronfhg, vy) to the furthest point withir3,,.

Regarding thew; term in Eq. 5, for both bounds we can use the valyej = argmax;eg,, w;.
This is clearly suited for the upper bound. For the lower lmhwinceg; > G, Vi € S,, we
havemax;cg, w; + G; > w; +G; > w; + Gn. Sow; + G, provides a proper lower bound for

max;es, w; + G;. Summing up, we bound Eq. 5 as; + G,, > my, (ho, v0) > wj + Gn.

4

Figure 3: Supporter pruning: source nodés:, n, o} are among the possible supporters of domain-riode
Their upper and lower bounds (shown as numbers to the righaclfi node) are used to prune them. Here, the
upper bound forn (3) is smaller than the maximal lower bound among suppofttersom o): this implies the
upper bound ofv’s children contributions té's children (shown here fak) will not surpass the lower bound
of o’s children. We can thus safely remonerom the supporters.

We can use the upper bound in a prioritized search for themaxi of m(hg, vo), as described in
Table 1. Starting with the root of the KD-tree we expand itddrkn nodes, estimate their priorities-
upper bounds, and insert them in a priority queue. The sestogs when the first leaf node is
popped; this provides the maximizer, as its upper and lowands coincide and all other elements
waiting in queue have smaller upper bounds. The lower basindéful in Sec. 4.2.

4.2 Maximization for All Domain Points

Having described how KD-trees to provide bounds in the sidgimain point case, we now describe
how Dual Trees can speedup this operation in when treatirtijpleudomain points simultaneously.
In specific, we consider the following maximization probtem

T = = i — H(hi — hy)* = V(v —v;), 8
2" = arg max m(z) argrjneag(xzneagcw (i) (vi —vj) (8)

whereX /D is the set of domain points/indices afdare the source indices. The previous algo-
rithm could deliverz* by computingn(x) repeatedly for each € X and picking the maximizer.
But this will repeat similar checks for neighboring domaairgs, which can instead be done jointly.

For this, as in the original Dual Tree work, we build a secorattiee for the domain points (‘Do-
main tree’, as opposed to ‘Source tree’). The nodes in theddotree (‘domain-nodes’) correspond
to intervals of domain points that are processed jointlyis Baves repetitions of similar bounding
operations, and quickly discards large domain areas with pounds.

For the bounding operations, as in Sec. 4.1 we consider fheteff source points contained in a
nodesS,, of the Source tree. The difference is that now we bound thémman of this quantity over
domain points contained in a domain-nadg In specific, we consider the quantity:

_ o R A VA)2
My, = jné%)l(?61%1(w; — H(h; — hj)* — V(v; — vj) (9)
BoundingG; ; = —H (h; — h;)? — V (v; — v;)? involves two 2D intervals, one for the domain-node

[and one for the domain-node If the interval for node: is centered at,,, v,,, and has dimensions

A, don, We Usedy, = 3 (dni + dhn), dy = 3 (dvy + dy,n) and write:

1)?

)2

We illustrate these bounds in Fig. 2. The upper bound is Z¢he iboxes overlap, or else equals the
(scaled) distance of their closest points. The lower bowsed the furthest points of the two boxes.

% = —Hmax((hn—hl—czh],fhl—hn—Jh])Q—VmaX((vn—vl—Jﬂ, [v — vy,
& = —Hmax(hy —h;+dp , hy—hy +dp)? = Vmax(v, —v —dy , v —vp

)

—d,
—d,

Asin Sec. 4.1, we use;, = max;es, w; for the first term in Eq. 9, and bound, ,, as follows:

Gin +wy, <M < Gy +wp, (10)

This expression bounds the maximal vatluéx) that a pointz in domain-node can have using
contributions from points in source-node Our initial goal was to find the maximum using all
possible source point contributions. We now describe arsa@iapproach to limit the set of source-
nodes considered, in a manner inspired from the ‘multi4sion’ approach of [7].

For this, we associate every domain-nédéth a setS; of ‘supporter’ source-nodes that can yield
the maximal contribution to points ih We start by associating the root node of the Domain tree
with the root node of the Source-tree, which means that atiapn-source point interactions are
originally considered.

We then recursively increase the ‘resolution’ of the Dorviag@® in parallel with the ‘resolution’ of
the Source-tree. More specifically, to determine the suppofor a childm of domain-node we
consider only the children of the source-nodes;informally, denoting bypa andch the parent and
child operations respectively we ha¥g, C Uyes, (.., {ch(n)}.

Our goal is to reduce computation by keep#g small. This is achieved by pruning based on both
the lower and upper bounds derived above. The main obsenvatthat when we go from parents
to children we decrease the number of source/domain pdhisstightens the bounds, i.e. makes
the upper bounds less optimistic and the lower bounds matieniggic. Denoting the maximal
lower bound for contributions to parent nodby G, = max,cs, Gi,», this means thag, > G if
pa(k) = [. On the flip sideG;,, < Gy, if pa(k) = [, pa(q) = n. This means that if for source-
noden at the parent IeveIZT < G, at the children level the children afwill contribute something
worse tharg;,,,, the lower bound ofis child score. We therefore do not need to keegmongs; - its
children’s contribution will be certainly worse than thesbeontribution from other node’s children.
Based on this observation we can reduce the set of suppartate guaranteeing optimality.

Pseudocode summarizing this algorithm is provided in Tabl€he bounds in Eq. 10 are used in a
prioritized search algorithm for the maximumsaf{x) overz. The algorithm uses a priority queue
for Domain tree nodes, initialized with the root of the Domtee (i.e. the whole range of possible
locationsz). At each iteration we pop a Domain tree node from the quearapate upper bounds

and supporters for its children, which are then pushed iptloeity queue. The first leaf node that
is popped contains the best domain location: its upper begudils its lower bound, and all other
nodes in the priority queue have smaller upper bounds, fivereannot result in a better solution.

4.3 Maximization over All Domain Points and Multiple Parts: Branch and Bound for DPMs

The algorithm we described in the previous subsection isrgisdly a Branch-and-Bound (BB)
algorithm for the maximization of a merit function

x* = argmaxm(zg) = arg max max w; — H(h; — ho)? — Vv, — U0)2 (12)

zo (ho,vo) 1€Sp

corresponding to a DPM with a single-papi).(To see this, recall that at each step BB pops a
domain of the function being maximized from the priority gaesplits it into subdomains (Branch),
and computes a new upper bound for the subdomains (Boundjurlicase Branching amounts
to considering the two descendants of the domain node beppeaul, while Bounding amounts to
taking the maximum of the upper bounds of the domain nodetes.

The single-part DPM optimization problem is rather triyialit adapting the technique to the multi-
part case is now easy. For this, we rewrite Eq. 1 in a convéfoem as:
P

miho,v0) = 3 maxwy = Hy(H = ho)? = V(o] = vo)® (12)
p=0

using the conventions we used in Eq. 4. Namely, we only censising points irt for object parts,
and subtractn,, from h;, v; to yield simple quadratic forms; sinee, is part-dependent, we now
have ap superscript forh;,v;. Further, we have in general differefft V' variables for different
parts, so we brought back thesubscript for these. Finallyy, ; depends op, since the same image
point will give different unary potentials for different et parts.

From this form we realize that computing the upper bounehgf) within a range of values of
x, as required by Branch-and-Bound is as easy as it was forinlgeederms in the previous sec-
tion. In specific we haven(x) = 25:1 my(x), wherem,, are the individual part contributions;
sincemax, Z;I)D:o mp(z) < Z;I)D:o max, mp(z). we can separately upper bound the individual part
contributions, and sum them up to get an overall upper bound.

Pseudocode describing the maximization algorithm is pledin Table 1. Note that each part has its
own KDtree (SourcT[p]): we build a separate Source-tre@pérusing the part-specific coordinates

(h?,vP) and weightaw, ;. Each part’s contribution to the score is computed usingstipgporters it
lends to the node; the total bound is obtained by summingnitigidual part bounds.

Single Domain Point

Multiple Domain Points, Multiple Parts
IN: ST[P], DT {P Source Trees/Domain Trge

IN: ST, x {Source Tree, Location}x
OUT: arg maxs, e s m(z, ;)

Push(S,ST.root); OUT: arg maxyec pr Zp max;c gy p] m(x,z?, 1)
while 1 do Seed = DT.root;
Pop(S,popped); for p =1to P do
if popped.UB = popped.LEhen Seed.supporters[p] = ST[p].Root;
return popped:; end for
end if Pu§h(S,Seed);
for side = [Left,RightJdo while 1 do
child = popped.side; Pop(S,popped);
child.UB = BoundU(x,child); if popped.UB = popped.LEhen
child.LB = BoundL(x,child); return popped;
Push(S,child); end if .
end for for side = [Left,Right]do
end while child = popped.side;
UB =0;
for part = 1:Pdo
Multiple Domain Points supp = Descend(popped.supp[part])
UP,s = Bound(child,supp,DT,ST[p]);
IN: ST, DT {Source/Domain Tree child.supp[part] = s;
OUT: arg maxze pr maxiest m(x, &) UB =UB + UP;
Seed = DT.root; end for
Seed.supporters = ST.Root; child.UB = UB;
Push(S,Seed); Push(S,child);
while 1 do end for
Pop(S,popped); end while
if popped.UB = popped.LEhen
return popped; Bounding Routine
end if IN: child,supporters,DT,ST
for side = [Left,Right]do OUT: supch, LB{Chosen supporters, Max B
child = popped.side; UB = —00; LB = oc;
supp = Descend(popped.supp); for n e supportersio
UB,supc = Bound(child,supp,DT,ST); UB[n] = BoundU(DT.node[child],ST.node[n]);
child.UB = UB; LB[n] = BoundL(DT.node[child],ST.node[n]);
child.supc = supc; end for
Push(S,child); MaxLB = max(LB);
end for supch = supporters(find(UBMaxLB));
end while Return supch, MaxLB;

Table 1:Pseudocode for the algorithms presented in Section 4.
5 Results - Application to Deformable Object Detection

To estimate the merit of BB we first compare with the mixtuoé$PMs developed and distributed
by [3]. We directly extend the Branch-and-Bound technidwa tve developed for a single DPM to
deal with multiple scales and mixtures (‘ORs’) of DPMs [4],2dy inserting all object hypotheses
into the same queue. To detect multiple instances of obgctailtiple scales we continue BB after
getting the best scoring object hypothesis. As terminati@ierion we choose to stop when we pop
an interval whose upper bound is below a fixed threshold.

Our technique delivers essentially the same results as@4e minuscule difference is that BB
uses floating point arithmetic for the part locations, wiil&DT they are necessarily processed at
integer resolution; other than that the results are idahtit/e therefore do not provide any detection
performance curves, but only timing results.

Coming to time efficiency, in Fig. 4 (a) we compare the resofthe original DPM mixture model
and our implementation. We use 2000 images from the Pastadataand a mix of models for
different object clases (gains vary per category). We amrghe standard detection scenario where
we want to detect all objects in an image having score abowrtaio threshold. We show how

Speedup: Single object Speedup: M-objects, 1-best Speedup: 20-objects, k-best Speedup — front-end

2| —k=1
10’ 10° 107 10
= _/
8 10 —t=-0.4] 10! —M=1] 4o 10"
& _——t=-0.6 M=5 L
—t=-0.8 —M =10
ol —t=-1.0 0 —M =20 o ol
10 Image rank 10 Image rank 10 Image rank 10 Image rank
@ (b) (© (d)

Figure 4: (a) Single-object speedup of Branch and Bound compared t6sGid images from the Pascal
dataset, (b,c) Multi-object speedup. (d) Speedup due tdrtimt-end computation of the unary potentials.
Please see text for details.

the threshold affects the speedup we obtain; for a conseevlireshold the speedup is typically
tenfold, but as we become more aggressive it doubles.

As a second application, we consider the problem of ideintifghe ‘dominant’ object present in
the image, i.e. the category the gives the largest scorecdypsimpler models, like bag-of-words
classifiers are applied to this problem, based on the uradetistg that part-based models can be
time-consuming, therefore applying a large set of mode#smtonage would be impractical.

Our claim is that Branch-and-Bound allows us to pursue &ufit approach, where in fact having
more object categories cancrease the speed of detection, if we leave the unary potential com-
putation aside. In specific, our approach can be directlgreded to the multiple-object detection
setting; as long as the scores computed by different objéegories are commensurate, they can all
be inserted in the same priority queue. In our experimentsheerved that we can get a response
faster by introducing more models. The reason for this isitiduding into our object repertoire a
model giving a large score helps BB stop; otherwise BB keepsching for another object.

In plots (b),(c) Fig. 4 we show systematic results on the &atataset. We compare the time that
would be required by GDT to perform detection of all multiplgiects considered in Pascal, to that
of a model simultaneously exploring all models. In (b) wewhmw finding the first-best result is
accelerated as the number of objects (M) increases; wh{le) we show how increasing the 'k’ in
‘k-best’ affects the speedup. For small valueg dfie gains become more pronounced. Of course if
we use a fixed threshold the speedup would not change, wheparenhto plot (a), since essentially
the objects do not ‘interact’ in any way (we do not use honmmaxh suppression). But as we turn to
the best-first problem, the speedup becomes dramatic ngirgthe order of up to a hundred times.

We note that the timings refer to the ‘message passing’ pgtemented with GDT and not the
computation of unary potentials, which is common for bottdedls, and is currently the bottleneck.
Even though it is tangential to our contribution in this pgpee mention that as shown in plot (d)
we compute unary potentials approximately five times faten the single-threaded convolution
provided by [3] by exploiting Matlab’s optimized matrix ntiglication routines.

6 Conclusions

In this work we have introduced Dual-Tree Branch-and-Boforcefficient part-based detection.
We have used Dual Trees to compute upper bounds on the casivfuof a part-based model and
thereby derived a Branch-and-Bound algorithm for detect@ur algorithm is exact and makes no
approximations, delivering identical results with the D®Nbed in [4], but in typically 10-15 less
time. Further, we have shown that the flexibility of priaréd search allows us to consider new
tasks, such as multiple-object detection, which yieldethfer speedups. The main challenge for
future work will be to reduce the unary term computation pastintend to use BB for this task too.

7 Acknowledgements

We are grateful to the authors of [3, 12, 9] for making theideavailable, and to the reviewers for
constructive feedback. This work was funded by grant ANRICJC -0205.

References

(1]
(2]
(3]
(4]
(5]

Y. Chen, L. Zhu, C. Lin, A. L. Yuille, and H. Zhang. Rapidference on a novel and/or graph for object
detection, segmentation and parsingNI®S, 2007.

P. Felzenszwalb, D. McAllester, and D. Ramanan. A disaratively trained, multiscale, deformable part
model. INnCVPR, 2008.

P. F. Felzenszwalb, R. B. Girshick, and D. McAllesters@iminatively trained deformable part models,
release 4. http://www.cs.brown.edu/ pff/latent-reldése

P. F. Felzenszwalb, R. B. Girshick, and D. A. McAllest€ascade object detection with deformable part
models. InNCVPR, 2010.

P. F. Felzenszwalb and D. P. Huttenlocher. Distancesfoams of sampled functions. Technical report,
Cornell CS, 2004.

[6] V. Ferrari, M. J. Marin-Jimenez, and A. Zisserman. Pesgive search space reduction for human pose

estimation. INCVPR, 2008.

[7] A. G. Gray and A. W. Moore. Nonparametric density estiimat Toward computational tractability. In

(8]

SAM International Conference on Data Mining, 2003.
E. Grimson.Object Recognition by Computer. MIT Press, 1991.

[9] A.T.lhler, E. B. Sudderth, W. T. Freeman, and A. S. Willskfficient multiscale sampling from products

[10]
[11]

[12]
[13]
[14]
[15]

[16]
[17]

[18]

[19]
[20]

[21]

of gaussian mixtures. INIPS, 2003.

I. Kokkinos and A. Yuille. HOP: Hierarchical Object Ramg. InCVPR, 2009.

I. Kokkinos and A. L. Yuille. Inference and learning Wwihierarchical shape modelsiternational Journal

of Computer Vision, 93(2):201-225, 2011.

C. Lampert, M. Blaschko, and T. Hofmann. Beyond slidimmdows: Object localization by efficient
subwindow search. I€VPR, 2008.

C. H. Lampert. An efficient divide-and-conquer casctatenonlinear object detection. BVPR, 2010.

D. Lee, A. G. Gray, and A. W. Moore. Dual-tree fast gauasisforms. IMNIPS 2005.

A. Lehmann, B. Leibe, and L. V. Gool. Fast PRISM: Branctd @8ound Hough Transform for Object
Class Detectionlnternational Journal of Computer Vision, 94(2):175-197, 2011.

V. Lempitsky, A. Blake, and C. Rother. Image segmentatly branch-and-mincut. IECCV, 2008.

P. Moreels, M. Maire, and P. Perona. Recognition by philistic hypothesis construction. ECCV,
page 55, 2004.

M. Pedersoli, A. Vedaldi, and J. Gonzalez. A coarsditie approach for fast deformable object detection.
In CVPR, 2011.

B. Sapp, A. Toshev, and B. Taskar. Cascaded modelstioukated pose estimation. BCCV, 2010.

P. Viola and M. Jones. Rapid Object Detection using aded Cascade of Simple Features.CMPR,
2001.

S. C. Zhu and D. Mumford. Quest for a Stochastic Gramnfdmages. Foundations and Trends in
Computer Graphics and Vision, 2(4):259-362, 2007.

