The Kernel Beta Process

Lu Ren, Yingjian Wang, David Dunson, and Lawrence Carin

Presented by: David Carlson Duke University

david.carlson@duke.edu

The kernel beta process

• **Theorem:** Assume parameters $\{x_i^*, \psi_i^*, \pi_i, \omega_i\}$ are drawn from measure $\nu_{\mathcal{X}} = H(dx^*)Q(d\psi^*)\nu(d\pi, d\omega)$, and that the following measure is constituted for any covariate $x \in \mathcal{X}$:

$$\mathcal{B}_{x} = \sum_{i=1}^{\infty} \pi_{i} K(x, x_{i}^{*}; \psi_{i}^{*}) \delta_{\omega_{i}}$$

For any finite set of covariates $\mathcal{S} = \{x_1, \dots, x_{|\mathcal{S}|}\}$, define the random vector $\mathbf{K} = (K(x_1, x^*; \psi^*), \dots, K(x_{|\mathcal{S}|}, x^*; \psi^*))^T$. For $\forall \mathcal{A} \subset \mathcal{F}$, the characteristic function for measures at covariates in \mathcal{S} satisfies

$$\mathbb{E}[e^{j<\mathbf{u},\boldsymbol{\mathcal{B}}(\mathcal{A})>}] = \exp\{\int_{\mathcal{X}\times\Psi\times[0,1]\times\mathcal{A}} (e^{j<\mathbf{u},\mathbf{K}\pi>}-1)\nu_{\mathcal{X}}(d\mathbf{x}^*,d\psi^*,d\pi,d\omega)\}$$

with $\nu_{\mathcal{X}}$ the Lévy measure of the kernel beta process.

Properties of KBP

If \mathcal{B} is drawn from KBP, $x, x' \in \mathcal{X}$, for $\forall \mathcal{A} \in \mathcal{F}$:

- Expectation: $\mathbb{E}[\mathcal{B}_{x}(\mathcal{A})] = B_{0}(\mathcal{A})\mathbb{E}(\mathcal{K}_{x})$ with $\mathbb{E}(\mathcal{K}_{x}) = \int_{\mathcal{X} \times \Psi} \mathcal{K}(x, x^{*}; \psi^{*}) \mathcal{H}(dx^{*}) \mathcal{Q}(d\psi^{*})$.
- Covariance: $Cov(\mathcal{B}_{x}(\mathcal{A}), \mathcal{B}_{x'}(\mathcal{A})) = \mathbb{E}(K_{x}K_{x'}) \int_{\mathcal{A}} \frac{B_{0}(d\omega)(1-B_{0}(d\omega))}{c(\omega)+1} Cov(K_{x}, K_{x'}) \int_{\mathcal{A}} B_{0}^{2}(d\omega)$ (If $K(x, x^{*}; \psi^{*}) = 1$ for all $x \in \mathcal{X}$, $\mathbb{E}(K_{x}) = \mathbb{E}(K_{x}K_{x'}) = 1$, and $Cov(K_{x}, K_{x'}) = 0$, and the above results reduce to beta process.)
- Conditional covariance: With the kernel vectors \mathbf{K}_{x} , $\mathbf{K}_{x'}$ fixed, the conditional covariance is given as: $\operatorname{Corr}(\mathcal{B}_{x}(\mathcal{A}),\mathcal{B}_{x'}(\mathcal{A})) = \frac{\langle \mathbf{K}_{x},\mathbf{K}_{x'} \rangle}{\|\mathbf{K}_{x}\|_{2} \cdot \|\mathbf{K}_{x'}\|_{2}}$

Experiment - music analysis and image denoising

Figure: Music temporal correlation: (a) KBP-FA, (b) BP-FA, (c) dHDP-HMM.

Figure: Image denoising result