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Abstract

Many species show avoidance reactions in response to looming object approaches.
In locusts, the corresponding escape behavior correlates with the activity of the
lobula giant movement detector (LGMD) neuron. During an object approach, its
firing rate was reported to gradually increase until a peak is reached, and then
it declines quickly. The η-function predicts that the LGMD activity is a product
between an exponential function of angular size exp(−Θ) and angular velocity Θ̇,
and that peak activity is reached before time-to-contact (ttc). The η-function has
become the prevailing LGMD model because it reproduces many experimental
observations, and even experimental evidence for the multiplicative operation was
reported. Several inconsistencies remain unresolved, though. Here we address
these issues with a new model (ψ-model), which explicitly connects Θ and Θ̇ to
biophysical quantities. The ψ-model avoids biophysical problems associated with
implementing exp(·), implements the multiplicative operation of η via divisive
inhibition, and explains why activity peaks could occur after ttc. It consistently
predicts response features of the LGMD, and provides excellent fits to published
experimental data, with goodness of fit measures comparable to corresponding fits
with the η-function.

1 Introduction: τ and η

Collision sensitive neurons were reported in species such different as monkeys [5, 4], pigeons
[36, 34], frogs [16, 20], and insects [33, 26, 27, 10, 38]. This indicates a high ecological relevance,
and raises the question about how neurons compute a signal that eventually triggers corresponding
movement patterns (e.g. escape behavior or interceptive actions). Here, we will focus on visual
stimulation. Consider, for simplicity, a circular object (diameter 2l), which approaches the eye at
a collision course with constant velocity v. If we do not have any a priori knowledge about the
object in question (e.g. its typical size or speed), then we will be able to access only two information
sources. These information sources can be measured at the retina and are called optical variables
(OVs). The first is the visual angle Θ, which can be derived from the number of stimulated photore-
ceptors (spatial contrast). The second is its rate of change dΘ(t)/dt ≡ Θ̇(t). Angular velocity Θ̇ is
related to temporal contrast.
How should we combine Θ and Θ̇ in order to track an imminent collision? The perhaps simplest
combination is τ(t) ≡ Θ(t)/Θ̇(t) [13, 18]. If the object hit us at time tc, then τ(t) ≈ tc − t will
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give us a running estimation of the time that is left until contact1. Moreover, we do not need to know
anything about the approaching object: The ttc estimation computed by τ is practically independent
of object size and velocity. Neurons with τ -like responses were indeed identified in the nucleus re-
tundus of the pigeon brain [34]. In humans, only fast interceptive actions seem to rely exclusively on
τ [37, 35]. Accurate ttc estimation, however, seems to involve further mechanisms (rate of disparity
change [31]).
Another function of OVs with biological relevance is η ≡ Θ̇ exp(−αΘ), with α = const. [10].
While η-type neurons were found again in pigeons [34] and bullfrogs [20], most data were gath-
ered from the LGMD2 in locusts (e.g. [10, 9, 7, 23]). The η-function is a phenomenological model
for the LGMD, and implies three principal hypothesis: (i) An implementation of an exponential
function exp(·). Exponentation is thought to take place in the LGMD axon, via active membrane
conductances [8]. Experimental data, though, seem to favor a third-power law rather than exp(·).
(ii) The LGMD carries out biophysical computations for implementing the multiplicative operation.
It has been suggested that multiplication is done within the LGMD itself, by subtracting the loga-
rithmically encoded variables log Θ̇ − αΘ [10, 8]. (iii) The peak of the η-function occurs before
ttc, at visual angle Θ(t̂) = 2 arctan(1/α) [9]. It follows ttc for certain stimulus configurations (e.g.
l/|v| / 5ms). In principle, t̂ > tc can be accounted for by η(t + δ) with a fixed delay δ < 0 (e.g.
−27ms). But other researchers observed that LGMD activity continuous to rise after ttc even for
l/|v| ' 5ms [28]. These discrepancies remain unexplained so far [29], but stimulation dynamics
perhaps plays a role.
We we will address these three issues by comparing the novel function “ψ” with the η-function.

2 LGMD computations with the ψ-function: No multiplication, no
exponentiation

A circular object which starts its approach at distance x0 and with speed v projects a visual angle
Θ(t) = 2 arctan[l/(x0−vt)] on the retina [34, 9]. The kinematics is hence entirely specified by the
half-size-to-velocity ratio l/|v|, and x0. Furthermore, Θ̇(t) = 2lv/((x0 − vt)2 + l2).
In order to define ψ, we consider at first the LGMD neuron as an RC-circuit with membrane poten-
tial3 V [17]

Cm
dV

dt
= β (Vrest − V ) + gexc (Vexc − V ) + ginh (Vinh − V ) (1)

Cm = membrane capacity4; β ≡ 1/Rm denotes leakage conductance across the cell membrane
(Rm: membrane resistance); gexc and ginh are excitatory and inhibitory inputs. Each conductance
gi (i = exc, inh) can drive the membrane potential to its associated reversal potential Vi (usually
Vinh ≤ Vexc). Shunting inhibition means Vinh = Vrest. Shunting inhibition lurks “silently” because
it gets effective only if the neuron is driven away from its resting potential. With synaptic input, the
neuron decays into its equilibrium state

V∞ ≡ Vrestβ + Vexcgexc + Vinhginh
β + gexc + ginh

(2)

according to V (t) = V∞(1 − exp(−t/τm)). Without external input, V (t � 1) → Vrest. The
time scale is set by τm. Without synaptic input τm ≡ Cm/β. Slowly varying inputs gexc, ginh > 0
modify the time scale to approximately τm/(1+ (gexc+ ginh)/β). For highly dynamic inputs, such
as in late phase of the object approach, the time scale gets dynamical as well. The ψ-model assigns
synaptic inputs5

gexc(t) = ϑ̇(t), ϑ̇(t) = ζ1ϑ̇(t−∆tstim) + (1− ζ1)Θ̇(t) (3a)

ginh(t) = [γϑ(t)]
e
, ϑ(t) = ζ0ϑ(t−∆tstim) + (1− ζ0)Θ(t) (3b)

1This linear approximation gets worse with increasing Θ, but turns out to work well until short before ttc (τ
adopts a minimum at tc − 0.428978 · l/|v|).

2LGMD activity is usually monitored via its postsynaptic neuron, the Descending Contralateral Movement
Detector (DCMD) neuron. This represents no problem as LGMD spikes follow DCMD spikes 1:1 under visual
stimulation [22] from 300Hz [21] to at least 400Hz [24].

3Here we assume that the membrane potential serves as a predictor for the LGMD’s mean firing rate.
4Set to unity for all simulations.
5LGMD receives also inhibition from a laterally acting network [21]. The η-function considers only direct

feedforward inhibition [22, 6], and so do we.
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Figure 1: (a) The continuous visual angle of an approaching object is shown along with its dis-
cretized version. Discretization transforms angular velocity from a continuous variable into a series
of “spikes” (rescaled). (b) The ψ function with the inputs shown in a, with nrelax = 25 relaxation
time steps. Its peak occurs tmax = 56ms before ttc (tc = 300ms). An η function (α = 3.29) that
was fitted to ψ shows good agreement. For continuous optical variables, the peak would occur 4ms
earlier, and η would have α = 4.44 with R2 = 1. For nrelax = 10, ψ is farther away from its
equilibrium at V∞, and its peak moves 19ms closer to ttc.
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Figure 2: The figures plot the relative time tmax ≡ tc − t̂ of the response peak of ψ, V (t̂), as a
function of half-size-to-velocity ratio (points). Line fits with slope α and intercept δ were added
(lines). The predicted linear relationship in all cases is consistent with experimental evidence [9].
(a) The stimulus time scale is held constant at ∆tstim = 1ms, and several LGMD time scales
are defined by nrelax (= number of intercalated relaxation steps for each integration time step).
Bigger values of nrelax move V (t) closer to its equilibrium V∞(t), implying higher slopes α in
turn. (b) LGMD time scale is fixed at nrelax = 25, and ∆tstim is manipulated. Because of the
discretization of optical variables (OVs) in our simulation, increasing ∆tstim translates to an overall
smaller number of jumps in OVs, but each with higher amplitude.

Thus, we say ψ(t) ≡ V (t) if and only if gexc and ginh are defined with the last equation. The time
scale of stimulation is defined by ∆tstim (by default 1ms). The variables ϑ and ϑ̇ are lowpass filtered
angular size and rate of expansion, respectively. The amount of filtering is defined by memory
constants ζ0 and ζ1 (no filtering if zero). The idea is to continue with generating synaptic input
after ttc, where Θ(t > tc) = const and thus Θ̇(t > tc) = 0. Inhibition is first weighted by γ,
and then potentiated by the exponent e. Hodgkin-Huxley potentiates gating variables n,m ∈ [0, 1]
instead (potassium ∝ n4, sodium ∝ m3, [12]) and multiplies them with conductances. Gabbiani
and co-workers found that the function which transforms membrane potential to firing rate is better
described by a power function with e = 3 than by exp(·) (Figure 4d in [8]).
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3 Dynamics of the ψ-function

Discretization. In a typical experiment, a monitor is placed a short distance away from the insect’s
eye, and an approaching object is displayed. Computer screens have a fixed spatial resolution, and
as a consequence size increments of the displayed object proceed in discrete jumps. The locust
retina is furthermore composed of a discrete array of ommatidia units. We therefore can expect
a corresponding step-wise increment of Θ with time, although optical and neuronal filtering may
smooth Θ to some extent again, resulting in ϑ (figure 1). Discretization renders Θ̇ discontinuous,
what again will be alleviated in ϑ̇. For simulating the dynamics of ψ, we discretized angular size
with floor(Θ), and Θ̇(t) ≈ [Θ(t + ∆tstim) − Θ(t)]/∆tstim. Discretized optical variables (OVs)
were re-normalized to match the range of original (i.e. continuous) OVs.
To peak, or not to peak? Rind & Simmons reject the hypothesis that the activity peak signals
impending collision on grounds of two arguments [28]: (i) If Θ(t+∆tstim)−Θ(t) ' 3o in consec-
utively displayed stimulus frames, the illusion of an object approach would be lost. Such stimulation
would rather be perceived as a sequence of rapidly appearing (but static) objects, causing reduced
responses. (ii) After the last stimulation frame has been displayed (that is Θ = const), LGMD
responses keep on building up beyond ttc. This behavior clearly depends on l/|v|, also according
to their own data (e.g. Figure 4 in [26]): Response build up after ttc is typically observed for suffi-
ciently small values of l/|v|. Input into ψ in situations where Θ = const and Θ̇ = 0, respectively,
is accommodated by ϑ and ϑ̇, respectively.
We simulated (i) by setting ∆tstim = 5ms, thus producing larger and more infrequent jumps in
discrete OVs than with ∆tstim = 1ms (default). As a consequence, ϑ(t) grows more slowly (de-
layed build up of inhibition), and the peak occurs later (tmax ≡ tc − t̂ = 10ms with everything else
identical with figure 1b). The peak amplitude V̂ = V (t̂) decreases nearly sixfold with respect to
default. Our model thus predicts the reduced responses observed by Rind & Simmons [28].
Linearity. Time of peak firing rate is linearly related to l/|v| [10, 9]. The η-function is consistent
with this experimental evidence: t̂ = tc − αl/|v| + δ (e.g. α = 4.7, δ = −27ms). The ψ-function
reproduces this relationship as well (figure 2), where α depends critically on the time scale of bio-
physical processes in the LGMD. We studied the impact of this time scale by choosing 10µs for the
numerical integration of equation 1 (algorithm: 4th order Runge-Kutta). Apart from improving the
numerical stability of the integration algorithm, ψ is far from its equilibrium V∞(t) in every moment
t, given the stimulation time scale ∆tstim = 1ms 6. Now, at each value of Θ(t) and Θ̇(t), respec-
tively, we intercalated nrelax iterations for integrating ψ. Each iteration takes V (t) asymptotically
closer to V∞(t), and limnrelax�1 V (t) = V∞(t). If the internal processes in the LGMD cannot keep
up with stimulation (nrelax = 0), we obtain slopes values that underestimate experimentally found
values (figure 2a). In contrast, for nrelax ' 25 we get an excellent agreement with the experimen-
tally determined α. This means that – under the reported experimental stimulation conditions (e.g.
[9]) – the LGMD would operate relatively close to its steady state7.
Now we fix nrelax at 25 and manipulate ∆tstim instead (figure 2b). The default value ∆tstim = 1ms
corresponds to α = 3.91. Slightly bigger values of ∆tstim (2.5ms and 5ms) underestimate the ex-
perimental α. In addition, the line fits also return smaller intercept values then. We see tmax < 0 up
to l/|v| ≈ 13.5ms – LGMD activity peaks after ttc! Or, in other words, LGMD activity continues
to increase after ttc. In the limit, where stimulus dynamics is extremely fast, and LGMD processes
are kept far from equilibrium at each instant of the approach, α gets very small. As a consequence,
tmax gets largely independent of l/|v|: The activity peak would cling to tmax although we varied
l/|v|.

4 Freeze! Experimental data versus steady state of “psi”

In the previous section, experimentally plausible values for α were obtained if ψ is close to equilib-
rium at each instant of time during stimulation. In this section we will thus introduce a steady-state

6Assuming one ∆tstim for each integration time step. This means that by default stimulation and biophys-
ical dynamics will proceed at identical time scales.

7Notice that in this moment we can only make relative statements - we do not have data at hand for defining
absolute time scales
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Figure 3: Each curve shows how the peak ψ̂∞ ≡ ψ∞(t̂) depends on the half-size-to-velocity ratio.
In each display, one parameter of ψ∞ is varied (legend), while the others are held constant (figure
title). Line slopes vary according to parameter values. Symbol sizes are scaled according to rmse
(see also figure 4). Rmse was calculated between normalized ψ∞(t) & normalized η(t) (i.e. both
functions ∈ [0, 1] with original minimum and maximum indicated by the textbox). To this end, the
peak of the η-function was placed at tc, by choosing, at each parameter value, α = |v| · (tc − t̂)/l (for
determining correlation, the mean value of α was taken across l/|v|).
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Figure 4: This figure complements figure 3. It visualizes the time averaged absolute difference
between normalized ψ∞(t) & normalized η(t). For η, its value of α was chosen such that the
maxima of both functions coincide. Although not being a fit, it gives a rough estimate on how the
shape of both curves deviate from each other. The maximum possible difference would be one.

version of ψ (i.e. equation 2 with Vrest = 0, Vexc = 1, and equations 3 plugged in),

ψ∞(t) ≡ Θ̇(t) + Vinh [γΘ(t)]
e

β + Θ̇(t) + [γΘ(t)]
e (4)

(Here we use continuous versions of angular size and rate of expansion). The ψ∞-function
makes life easier when it comes to fitting experimental data. However, it has its limitations, be-
cause we brushed the whole dynamic of ψ under the carpet. Figure 3 illustrates how the lin-
ear relationship (=“linearity”) between tmax ≡ tc − t̂ and l/|v| is influenced by changes in pa-
rameter values. Changing any of the values of e, β, γ predominantly causes variation in line
slopes. The smallest slope changes are obtained by varying Vinh (data not shown; we checked
Vinh = 0,−0.001,−0.01,−0.1). For Vinh / −0.01, linearity is getting slightly compromised, as
slope increases with l/|v| (e.g. Vinh = −1 α ∈ [4.2, 4.7]).
In order to get a notion about how well the shape of ψ∞(t) matches η(t), we computed time-
averaged difference measures between normalized versions of both functions (details: figure 3 & 4).
Bigger values of β match η better at smaller, but worse at bigger values of l/|v| (figure 4a). Smaller
β cause less variation across l/|v|. As to variation of e, overall curve shapes seem to be best aligned
with e = 3 to e = 4 (figure 4b). Furthermore, better matches between ψ∞(t) and η(t) correspond to
bigger values of γ (figure 4c). And finally, Vinh marches again to a different tune (data not shown).
Vinh = −0.1 leads to the best agreement (≈ 0.04 across l/|v|) of all Vinh, quite different from the
other considered values. For the rest, ψ∞(t) and η(t) align the same (all have maximum 0.094),
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(a) Θ̇ = 126o/s (b) Θ̇ = 63o/s

Figure 5: The original data (legend label “HaGaLa95”) were resampled from ref. [10] and show
DCMD responses to an object approach with Θ̇ = const. Thus, Θ increases linearly with time. The
η-function (fitting function: Aη(t+δ)+o) and ψ∞ (fitting function: Aψ∞(t)+o) were fitted to these data:
(a) (Figure 3 Di in [10]) Good fits for ψ∞ are obtained with e = 5 or higher (e = 3 R2 = 0.35 and
rmse = 0.644; e = 4 R2 = 0.45 and rmse = 0.592). “Psi” adopts a sigmoid-like curve form which
(subjectively) appears to fit the original data better than η. (b) (Figure 3 Dii in [10]) “Psi” yields an
excellent fit for e = 3.
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Figure 6: (a) DCMD activity in response to a black square (l/|v| = 30ms, legend label
“e011pos14”, ref. [30]) approaching to the eye center of a gregarious locust (final visual angle 50o).
Data show the first stimulation so habituation is minimal. The spike trace (sampled at 104Hz) was
full wave rectified, lowpass filtered, and sub-sampled to 1ms resolution. Firing rate was estimated
with Savitzky-Golay filtering (“sgolay”). The fits of the η-function (Aη(t+ δ) + o; 4 coefficients) and
ψ∞-function (Aψ∞(t) with fixed e, o, δ, Vinh; 3 coefficients) provide both excellent fits to firing rate.
(b) Fitting coefficient α (→ η-function) inversely correlates with β (→ ψ∞) when fitting firing rates
of another 5 trials as just described (continuous line = line fit to the data points). Similar correlation
values would be obtained if e is fixed at values e = 2.5, 4, 5 c = −0.95,−0.96,−0.91. If o was
determined by the fitting algorithm, then c = −0.70. No clear correlations with α were obtained for
γ.

despite of covering different orders of magnitude with Vinh = 0,−0.001,−0.01.
Decelerating approach. Hatsopoulos et al. [10] recorded DCMD activity in response to an ap-
proaching object which projected image edges on the retina moving at constant velocity: Θ̇ = const.
implies Θ(t) = Θ0 + Θ̇t. This “linear approach” is perceived as if the object is getting increasingly
slower. But what appears a relatively unnatural movement pattern serves as a test for the functions
η & ψ∞. Figure 5 illustrates that ψ∞ passes the test, and consistently predicts that activity sharply
rises in the initial approach phase, and subsequently declines (η passed this test already in the year
1995).
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Spike traces. We re-sampled about 30 curves obtained from LGMD recordings from a variety of
publications, and fitted η & ψ∞-functions. We cannot show the results here, but in terms of good-
ness of fit measures, both functions are in the same ballbark. Rather, figure 6a shows a representative
example [30]. When α and β are plotted against each other for five trials, we see a strong inverse
correlation (figure 6b). Although five data points are by no means a firm statistical sample, the
strong correlation could indicate that β and α play similar roles in both functions. Biophysically, β
is the leakage conductance, which determines the (passive) membrane time constant τm ∝ 1/β of
the neuron. Voltage drops within τm to exp(−1) times its initial value. Bigger values of β mean
shorter τm (i.e., “faster neurons”). Getting back to η, this would suggest α ∝ τm, such that higher
(absolute) values for α would possibly indicate a slower dynamic of the underlying processes.

5 Discussion (“The Good, the Bad, and the Ugly”)

Up to now, mainly two classes of LGMD models existed: The phenomenological η-function on the
one hand, and computational models with neuronal layers presynaptic to the LGMD on the other
(e.g. [25, 15]; real-world video sequences & robotics: e.g. [3, 14, 32, 2]). Computational models
predict that LGMD response features originate from excitatory and inhibitory interactions in – and
between – presynaptic neuronal layers. Put differently, non-linear operations are generated in the
presynaptic network, and can be a function of many (model) parameters (e.g. synaptic weights, time
constants, etc.). In contrast, the η-function assigns concrete nonlinear operations to the LGMD [7].
The η-function is accessible to mathematical analysis, whereas computational models have to be
probed with videos or artificial stimulus sequences. The η-function is vague about biophysical pa-
rameters, whereas (good) computational models need to be precise at each (model) parameter value.
The η-function establishes a clear link between physical stimulus attributes and LGMD activity: It
postulates what is to be computed from the optical variables (OVs). But in computational models,
such a clear understanding of LGMD inputs cannot always be expected: Presynaptic processing may
strongly transform OVs.
The ψ function thus represents an intermediate model class: It takes OVs as input, and connects them
with biophysical parameters of the LGMD. For the neurophysiologist, the situation could hardly be
any better. Psi implements the multiplicative operation of the η-function by shunting inhibition
(equation 1: Vexc ≈ Vrest and Vinh ≈ Vrest). The η-function fits ψ very well according to our
dynamical simulations (figure 1), and satisfactory by the approximate criterion of figure 4.
We can conclude that ψ implements the η-function in a biophysically plausible way. However, ψ
does neither explicitly specify η’s multiplicative operation, nor its exponential function exp(·). In-
stead we have an interaction between shunting inhibition and a power law (·)e, with e ≈ 3. So what
about power laws in neurons?
Because of e > 1, we have an expansive nonlinearity. Expansive power-law nonlinearities are well
established in phenomenological models of simple cells of the primate visual cortex [1, 11]. Such
models approximate a simple cell’s instantaneous firing rate r from linear filtering of a stimulus (say
Y ) by r ∝ ([Y ]+)e, where [·]+ sets all negative values to zero and lets all positive pass. Although
experimental evidence favors linear thresholding operations like r ∝ [Y − Ythres]

+, neuronal re-
sponses can behave according to power law functions if Y includes stimulus-independent noise [19].
Given this evidence, the power-law function of the inhibitory input into ψ could possibly be inter-
preted as a phenomenological description of presynaptic processes.
The power law would also be the critical feature by means of which the neurophysiologist could dis-
tinguish between the η function and ψ. A study of Gabbiani et al. aimed to provide direct evidence
for a neuronal implementation of the η-function [8]. Consequently, the study would be an evidence
for a biophysical implementation of “direct” multiplication via log Θ̇ − αΘ. Their experimental
evidence fell somewhat short in the last part, where “exponentation through active membrane con-
ductances” should invert logarithmic encoding. Specifically, the authors observed that “In 7 out of
10 neurons, a third-order power law best described the data” (sixth-order in one animal). Alea iacta
est.
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