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Abstract

Layered models are a powerful way of describing natural scenes containing
smooth surfaces that may overlap and occlude each other. Forimage motion es-
timation, such models have a long history but have not achieved the wide use or
accuracy of non-layered methods. We present a new probabilistic model of optical
flow in layers that addresses many of the shortcomings of previous approaches. In
particular, we define a probabilistic graphical model that explicitly captures: 1)
occlusions and disocclusions; 2) depth ordering of the layers; 3) temporal con-
sistency of the layer segmentation. Additionally the optical flow in each layer is
modeled by a combination of a parametric model and a smooth deviation based
on an MRF with a robust spatial prior; the resulting model allows roughness in
layers. Finally, a key contribution is the formulation of the layers using an image-
dependent hidden field prior based on recent models for static scene segmentation.
The method achieves state-of-the-art results on the Middlebury benchmark and
produces meaningful scene segmentations as well as detected occlusion regions.

1 Introduction

Layered models of scenes offer significant benefits for optical flow estimation [8, 11, 25]. Splitting
the scene into layers enables the motion in each layer to be defined more simply, and the estimation
of motion boundaries to be separated from the problem of smooth flow estimation. Layered models
also make reasoning about occlusion relationships easier.In practice, however, none of the current
top performing optical flow methods use a layered approach [2]. The most accurate approaches
are single-layered, and instead use some form of robust smoothness assumption to cope with flow
discontinuities [5]. This paper formulates a new probabilistic, layered motion model that addresses
the key problems of previous layered approaches. At the timeof writing, it achieves the lowest
average error of all tested approaches on the Middlebury optical flow benchmark [2]. In particular,
the accuracy at occlusion boundaries is significantly better than previous methods. By segmenting
the observed scene, our model also identifies occluded and disoccluded regions.

Layered models provide a segmentation of the scene and this segmentation, because it corresponds
to scene structure, should persist over time. However, thispersistence is not a benefit if one is only
computing flow between two frames; this is one reason that multi-layer models have not surpassed
their single-layer competitors on two-frame benchmarks. Without loss of generality, here we use
three-frame sequences to illustrate our method. In practice, these three frames can be constructed
from an image pair by computing both the forward and backwardflow. The key is that this gives
two segmentations of the scene, one at each time instant, both of which must be consistent with the
flow. We formulate thistemporal layer consistencyprobabilistically. Note that the assumption of
temporal layer consistency is much more realistic than previous assumptions of temporal motion
consistency [4]; while the scene motion can change rapidly,scene structure persists.
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One of the main motivations for layered models is that, conditioned on the segmentation into layers,
each layer can employ affine, planar, or other strong models of optical flow. By applying a single
smooth motion across the entire layer, these models combineinformation over long distances and
interpolate behind occlusions. Such rigid parametric assumptions, however, are too restrictive for
real scenes. Instead one can model the flow within each layer as smoothly varying [26]. While
the resulting model is more flexible than traditional parametric models, we find that it is still not as
accurate as robust single-layer models. Consequently, we formulate a hybrid model that combines a
base affine motion with a robust Markov random field (MRF) model of deformationsfrom affine [6].
This roughness in layersmodel, which is similar in spirit to work on plane+parallax [10, 14, 19],
encourages smooth flow within layers but allows significant local deviations.

Because layers are temporally persistent, it is also possible to reason about their relative depth or-
dering. In general, reliable recovery of depth order requires three or more frames. Our probabilistic
formulation explicitly orders layers by depth, and we show that the correct order typically produces
more probable (lower energy) solutions. This also allows explicit reasoning about occlusions, which
our model predicts at locations where the layer segmentations for consecutive frames disagree.

Many previous layered approaches are not truly “layered”: while they segment the image into mul-
tiple regions with distinct motions, they do not model what is in front of what. For example, widely
used MRF models [27] encourage neighboring pixels to occupythe same region, but do not capture
relationships between regions. In contrast, building on recent state-of-the-art results in static scene
segmentation [21], our model determines layer support via an ordered sequence of occluding binary
masks. These binary masks are generated by thresholding a series of random, continuous functions.
This approach uses image-dependent Gaussian random field priors and favors partitions which ac-
curately match the statistics of real scenes [21]. Moreover, the continuous layer support functions
play a key role in accurately modeling temporal layer consistency. The resulting model produces
accurate layer segmentations that improve flow accuracy at occlusion boundaries, and recover mean-
ingful scene structure.

As summarized in Figure 1, our method is based on a principled, probabilistic generative model
for image sequences. By combining recent advances in dense flow estimation and natural image
segmentation, we develop an algorithm that simultaneouslyestimates accurate flow fields, detects
occlusions and disocclusions, and recovers the layered structure of realistic scenes.

2 Previous Work

Layered approaches to motion estimation have long been seenas elegant and promising, since spatial
smoothness is separated from the modeling of discontinuities and occlusions. Darrell and Pentland
[7, 8] provide the first full approach that incorporates a Bayesian model, “support maps” for seg-
mentation, and robust statistics. Wang and Adelson [25] clearly motivate layered models of image
sequences, while Jepson and Black [11] formalize the problem using probabilistic mixture models.
A full review of more recent methods is beyond our scope [1, 3,12, 13, 16, 17, 20, 24, 27, 29].

Early methods, which use simple parametric models of image motion within layers, are not highly
accurate. Observing that rigid parametric models are too restrictive for real scenes, Weiss [26] uses a
more flexible Gaussian process to describe the motion withineach layer. Even using modern imple-
mentation methods [22] this approach does not achieve state-of-the-art results. Allocating a separate
layer for every small surface discontinuity is impracticaland fails to capture important global scene
structure. Our approach, which allows “roughness” within layers rather than “smoothness,” provides
a compromise that captures coarse scene structure as well asfine within-layer details.

One key advantage of layered models is their ability to realistically model occlusion boundaries.
To do this properly, however, one must know the relative depth order of the surfaces. Performing
inference over the combinatorial range of possible occlusion relationships is challenging and, con-
sequently, only a few layered flow models explicitly encode relative depth [12, 30]. Recent work
revisits the layered model to handle occlusions [9], but does not explicitly model the layer ordering
or achieve state-of-the-art performance on the Middleburybenchmark. While most current optical
flow methods are “two-frame,” layered methods naturally extend to longer sequences [12, 29, 30].

Layered models all have some way of making either a hard or soft assignment of pixels to layers.
Weiss and Adelson [27] introduce spatial coherence to theselayer assignments using a spatial MRF
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Figure 1:Left: Graphical representation for the proposed layered model.Right: Illustration of variables from
the graphical model for the “Schefflera” sequence. Labeled sub-images correspond to nodes in the graph. The
left column shows the flow fields for three layers, color codedas in [2]. Theg ands images illustrate the
reasoning about layer ownership (see text). The composite flow field (u,v) and layer labels (k) are also shown.

model. However, the Ising/Potts MRF they employ assigns lowprobability to typical segmentations
of natural scenes [15]. Adapting recent work on static imagesegmentation by Sudderth and Jor-
dan [21], we instead generate spatially coherent, ordered layers by thresholding a series of random
continuous functions. As in the single-image case, this approach realistically models the size and
shape properties of real scenes. For motion estimation there are additional advantages: it allows
accurate reasoning about occlusion relationships and modeling of temporal layer consistency.

3 A Layered Motion Model

Building on this long sequence of prior work, our generativemodel of layered image motion is
summarized in Figure 1. Below we describe how the generativemodel captures piecewise smooth
deviation of the layer motion from parametric models (Sec. 3.1), depth ordering and temporal con-
sistency of layers (Sec. 3.2), and regions of occlusion and disocclusion (Sec. 3.3).

3.1 Roughness in Layers

Our approach is inspired by Weiss’s model of smoothness in layers [26]. Given a sequence of
imagesIt, 1 ≤ t ≤ T , we model the evolution from the current frameIt, to the subsequent frame
It+1, via K locally smooth, but potentially globally complex, flow fields. Letutk andvtk denote
the horizontal and vertical flow fields, respectively, for layer k at timet. The corresponding flow
vector for pixel(i, j) is then denoted by(uij

tk, v
ij
tk).

Each layer’s flow field is drawn from a distribution chosen to encourage piecewise smooth motion.
For example, a pairwise Markov random field (MRF) would modelthe horizontal flow field as

p(utk) ∝ exp{−Emrf(utk)} = exp

{

−
1

2

∑

(i,j)

∑

(i′,j′)∈Γ(i,j)

ρs(u
ij
tk − ui′j′

tk )

}

. (1)

Here,Γ(i, j) is the set of neighbors of pixel(i, j), often its four nearest neighbors. The potential
ρs(·) is some robust function [5] that encourages smoothness, butallows occasional significant de-
viations from it. The vertical flow fieldvtk can then be modeled via an independent MRF prior as
in Eq. (1), as justified by the statistics of natural flow fields[18].

While such MRF priors are flexible, they capture very little dependence between pixels separated by
even moderate image distances. In contrast, real scenes exhibit coherent motion over large scales,
due to the motion of (partially) rigid objects in the world. To capture this, we associate an affine (or
planar) motion model, with parametersθtk, to each layerk. We then use an MRF to allow piecewise
smoothdeformationsfrom the globally rigid assumptions of affine motion:

Eaff(utk, θtk) =
1

2

∑

(i,j)

∑

(i′,j′)∈Γ(i,j)

ρs

(

(uij
tk − ūij

θtk
)− (ui′j′

tk − ūi′j′

θtk
)
)

. (2)
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Here, ūij
θtk

denotes the horizontal motion predicted for pixel(i, j) by an affine model with pa-
rametersθtk. Unlike classical models that assume layers are globally well fit by a single affine
motion [6, 25], this prior allows significant, locally smooth deviations from rigidity. Unlike the ba-
sic smoothness prior of Eq. (1), this semiparametric construction allows effective global reasoning
about non-contiguous segments of partially occluded objects. More sophisticated flow deformation
priors may also be used, such as those based on robust non-local terms [22, 28].

3.2 Layer Support and Spatial Contiguity

The support for whether or not a pixel belongs to a given layerk is defined using a hidden random
field gk. We associate each of the firstK − 1 layers at timet with a random continuous function
gtk, defined over the same domain as the image. This hidden support field is illustrated in Figure 1.

We assume a single, unique layer is observable at each location and that the observed motion of
that pixel is determined by its assigned layer. Analogous tolevel set representations, the discrete
support of each layer is determined by thresholdinggtk: pixel (i, j) is considered visible when
gtk(i, j) ≥ 0. Let stk(i, j) equal one if layerk is visible at pixel(i, j), and zero otherwise; note that
∑

k stk(i, j) = 1. For pixels(i, j) for whichgtk(i, j) < 0, we necessarily havestk(i, j) = 0.

We define the layers to be ordered with respect to the camera, so that layerk occludes layersk′ > k.
Given the full set of support functionsgtk, the unique layerkijt∗ for whichs

tk
ij
t∗
(i, j) = 1 is then

kijt∗ = min ({k | 1 ≤ k ≤ K − 1, gtk(i, j) ≥ 0} ∪ {K}) . (3)

Note that layerK is essentially a background layer that captures all pixels not assigned to the first
K − 1 layers. For this reason, onlyK − 1 hidden fieldsgtk are needed (see Figure 1).

Our use of thresholded, random continuous functions to define layer support is partially motivated
by known shortcomings of discrete Ising/Potts MRF models for image partitions [15]. They also
provide a convenient framework for modeling the temporal and spatial coherence observed in real
motion sequences. Spatial coherence is captured via a Gaussian conditional random field in which
edge weights are modulated by local differences in Lab colorvectors,Ict(i, j):

Espace(gtk) =
1

2

∑

(i,j)

∑

(i′,j′)∈Γ(i,j)

wij
i′j′(gtk(i, j)− gtk(i

′, j′))2, (4)

wij
i′j′ = max

{

exp
{

−
1

2σ2
c

||Ict (i, j)− Ict(i
′, j′)||2

}

, δc

}

. (5)

The thresholdδc > 0 adds robustness to large color changes in internal object texture. Temporal
coherence of surfaces is then encouraged via a corresponding Gaussian MRF:

Etime(gtk,gt+1,k,utk,vtk) =
∑

(i,j)

(gtk(i, j)− gt+1,k(i + uij
tk, j + vijtk))

2. (6)

Critically, this energy function uses the corresponding flow field to non-rigidly align the layers at
subsequent frames. By allowing smooth deformation of the support functionsgtk, we allow layer
support to evolve over time, as opposed to transforming a single rigid template [12].

Our model of layer coherence is inspired by a recent method for image segmentation, based on
spatially dependent Pitman-Yor processes [21]. That work makes connections between layered oc-
clusion processes andstick breakingrepresentations of nonparametric Bayesian models. By as-
signing appropriate stochastic priors to layer thresholds, the Pitman-Yor model captures the power
law statistics of natural scene partitions and infers an appropriate number of segments for each
image. Existing optical flow benchmarks employ artificiallyconstructed scenes that may have dif-
ferent layer-level statistics. Consequently our experiments in this paper employ a fixed number of
layersK.

3.3 Depth Ordering and Occlusion Reasoning

The preceding generative process defines a set ofK ordered layers, with corresponding flow
fields utk,vtk and segmentation masksstk. Recall that the layer assignment maskss are a

4



deterministic function (threshold) of the underlying continuous layer support functionsg (see
Eq. (3)). To consistently reason about occlusions, we examine the layer assignmentsstk(i, j) and
st+1,k(i + uij

tk, j + vijtk) at locations corresponded by the underlying flow fields. Thisleads to a far
richer occlusion model than standard spatially independent outlier processes: geometric consistency
is enforced via the layered sequence of flow fields.

Let Ist (i, j) denote an observed image feature for pixel(i, j); we work with a filtered
version of the intensity images to provide some invariance to illumination changes. If
stk(i, j) = st+1,k(i + uij

tk, j + vijtk) = 1, the visible layer for pixel(i, j) at time t remains unoc-
cluded at timet+ 1, and the image observations are modeled using a standard brightness (or, here,
feature) constancy assumption. Otherwise, that pixel has become occluded, and is instead generated
from a uniform distribution. The image likelihood model canthen be written as

p(Ist | I
s
t+1,ut,vt,gt,gt+1) ∝ exp{−Edata(ut,vt,gt,gt+1)}

= exp
{

−
∑

k

∑

(i,j)

(

ρd(I
s
t (i, j)− Ist+1(i + uij

tk, j + vijtk))stk(i, j)st+1,k(i+ uij
tk, j + vijtk)

+ λdstk(i, j)(1 − st+1,k(i + uij
tk, j + vijtk))

)}

whereρd(·) is a robust potential function and the constantλd arises from the difference of the log
normalization constants for the robust and uniform distributions. With algebraic simplifications, the
data error term can be written as

Edata(ut,vt,gt,gt+1) =
∑

k

∑

(i,j)

(

ρd(I
s
t (i, j)− Ist+1(i+ uij

tk, j + vijtk))− λd

)

stk(i, j)st+1,k(i+ uij
tk, j + vijtk) (7)

up to an additive, constant multiple ofλd. The shifted potential function(ρd(·)− λd) represents the
change in energy when a pixel transitions from an occluded toan unoccluded configuration. Note
that occlusions have higher likelihood only for sufficiently large discrepancies in matched image
features and can only occur via a corresponding change in layer visibility.

4 Posterior Inference from Image Sequences

Considering the full generative model defined in Sec. 3,maximum a posteriori(MAP) estimation
for aT frame image sequence is equivalent to minimization of the following energy function:

E(u,v,g, θ) =

T−1
∑

t=1

{

Edata(ut,vt,gt,gt+1) +

K
∑

k=1

λa(Eaff(utk, θtk) + Eaff(vtk, θtk))

+

K−1
∑

k=1

λbEspace(gtk) + λcEtime(gtk,gt+1,k,utk,vtk)

}

+

K−1
∑

k=1

λbEspace(gTk). (8)

Hereλa, λb, andλc are weights controlling the relative importance of the affine, spatial, and tempo-
ral terms respectively. Simultaneously inferring flow fields, layer support maps, and depth ordering
is a challenging process; our approach is summarized below.

4.1 Relaxation of the Layer Assignment Process

Due to the non-differentiability of the threshold process that determines assignments of regions to
layers, direct minimization of Eq. (8) is challenging. For arelated approach to image segmentation,
a mean field variational method has been proposed [21]. However, that segmentation model is based
on a much simpler, spatially factorized likelihood model for color and texture histogram features.
Generalization to the richer flow likelihoods considered here raises significant complications.

Instead, we relax the hard threshold assignment process using the logistic functionσ(g) = 1/(1 +
exp(−g)). Applied to Eq. (3), this induces the following soft layer assignments:

s̃tk(i, j) =

{

σ(λegtk(i, j))
∏k−1

k′=1 σ(−λegtk′(i, j)), 1 ≤ k < K,
∏K−1

k′=1 σ(−λegtk′(i, j)), k = K.
(9)
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Figure 2:Results on the “Venus” sequence with 4 layers. The two background layers move faster than the two
foreground layers, and the solution with the correct depth ordering has lower energy and smaller error. (a) First
frame. (b-d) Fast-to-slow ordering: EPE0.252 and energy−1.786 × 10

6. Left to right: motion segmentation,
estimated flow field, and absolute error of estimated flow field. (f-g) Slow-to-fast ordering: EPE0.195 and
energy−1.808× 10

6. Darker indicates larger flow field errors in (d) and (g).

Note thatσ(−g) = 1− σ(g), and
∑K

k=1 s̃tk(i, j) = 1 for anygtk and constantλe > 0.

Substituting these soft assignmentss̃tk(i, j) for stk(i, j) in Eq. (7), we obtain a differentiable energy
function that can be optimized via gradient-based methods.A related relaxation underlies the classic
backpropagation algorithm for neural network training.

4.2 Gradient-Based Energy Minimization

We estimate the hidden fields for all the frames together, while fixing the flow fields, by optimizing
an objective involving the relevantEdata(·), Espace(·), andEtime(·) terms. We then estimate the flow
fieldsut,vt for each frame, while fixing those of neighboring frames and the hidden fields, via the
Edata(·), Eaff(·), andEtime(·) terms. For flow estimation, we use a standard coarse-to-fine,warping-
based technique as described in [22]. For hidden field estimation, we use an implementation of
conjugate gradient descent with backtracking and line search. SeeSupplemental Materialfor details.

5 Experimental Results

We apply the proposed model to two-frame sequences and compute both the forward and backward
flow fields. This enables the use of the temporal consistency term by treating one frame as both
the previous and the next frame of the other1. We obtain an initial flow field using the Classic+NL
method [22], cluster the flow vectors intoK groups (layers), and convert the initial segmentation
into the corresponding hidden fields. We then use a two-levelGaussian pyramid (downsampling
factor0.8) and perform a fairly standard incremental estimation of the flow fields for each layer. At
each level, we perform20 incremental warping steps and during each step alternatelysolve for the
hidden fields and the flow estimates. In the end, we threshold the hidden fields to compute a hard
segmentation, and obtain the final flow field by selecting the flow field from the appropriate layers.

Occluded regions are determined by inconsistencies between the hard segmentations at subsequent
frames, as matched by the final flow field. We would ideally liketo compare layer initializations
based on all permutations of the initial flow vector clusters, but this would be computationally inten-
sive for largeK. Instead we compare two orders: a fast-to-slow order appropriate for rigid scenes,
and an opposite slow-to-fast order (for variety and robustness). We illustrate automatic selection of
the preferred order for the “Venus” sequence in Figure 2.

The parameters for all experiments are set toλa = 3, λb = 30, λc = 4, λd = 9, λe = 2,
σi = 12, andδc = 0.004. A generalized Charbonnier function is used forρS(·) andρd(·) (see
Supplemental Material). Optimization takes about5 hours for the two-frame “Urban” sequence
using our MATLAB implementation.

5.1 Results on the Middlebury Benchmark

Training Set As a baseline, we implement the smoothness in layers model [26] using modern
techniques, and obtain an average training end-point error(EPE) of0.487. This is reasonable but
not competitive with state-of-the-art methods. The proposed model with1 to 4 layers produces
average EPEs of0.248, 0.212, 0.200, and0.194, respectively (see Table 1). The one-layer model is
similar to the Classic+NL method, but has a less sophisticated (more local) model of the flow within

1Our model works for longer sequences. We use two frames here for fair comparison with other methods.
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Table 1:Average end-point error (EPE) on the Middlebury optical flowbenchmarktraining set.
Avg. EPE Venus Dimetrodon Hydrangea RubberWhale Grove2 Grove3 Urban2 Urban3

Weiss [26] 0.487 0.510 0.179 0.249 0.236 0.221 0.608 0.614 1.276
Classic++ 0.285 0.271 0.128 0.153 0.081 0.139 0.614 0.336 0.555
Classic+NL 0.221 0.238 0.131 0.152 0.073 0.103 0.468 0.220 0.384
1layer 0.248 0.243 0.144 0.175 0.095 0.125 0.504 0.279 0.422
2layers 0.212 0.219 0.147 0.169 0.081 0.098 0.376 0.236 0.370
3layers 0.200 0.212 0.149 0.173 0.073 0.090 0.343 0.220 0.338
4layers 0.194 0.197 0.148 0.159 0.068 0.088 0.359 0.230 0.300
3layers w/ WMF 0.195 0.211 0.150 0.161 0.067 0.086 0.331 0.210 0.345
3layers w/ WMF C++Init 0.203 0.212 0.151 0.161 0.066 0.087 0.339 0.210 0.396

Table 2:Average end-point error (EPE) on the Middlebury optical flowbenchmarktest set.
Rank Average Army Mequon Schefflera Wooden Grove Urban Yosemite Teddy

EPE
Layers++ 4.3 0.270 0.08 0.19 0.20 0.13 0.48 0.47 0.15 0.46
Classic+NL 6.5 0.319 0.08 0.22 0.29 0.15 0.64 0.52 0.16 0.49
EPE in boundary regions
Layers++ 0.560 0.21 0.56 0.40 0.58 0.70 1.01 0.14 0.88
Classic+NL 0.689 0.23 0.74 0.65 0.73 0.93 1.12 0.13 0.98

that layer. It thus performs worse than the Classic+NL initialization; the performance improvements
allowed by additional layers demonstrate the benefits of a layered model.

Accuracy is improved by applying a15×15 weighted median filter(WMF) [22] to the flow fields of
each layer during the iterative warping step (EPE for1 to 4 layers:0.231, 0.204, 0.195, and0.193).
Weighted median filtering can be interpreted as a non-local spatial smoothness term in the energy
function that integrates flow field information over a largerspatial neighborhood.

The “correct” number of layers for a real scene is not well defined (consider the “Grove3” sequence,
for example). We use a restricted number of layers, and modelthe remaining complexity of the flow
within each layer via the roughness-in-layers spatial termand the WMF. As the number of layers
increases, the complexity of the flow within each layer decreases, and consequently the need for
WMF also decreases; note that the difference in EPE for the 4-layer model with and without WMF
is insignificant. For the remaining experiments we use the version with WMF.

To test the sensitivity of the result to the initialization,we also initialized with Classic++ (“C++Init”
in Table 1), a good, but not top, non-layered method [22]. Theaverage EPE for1 to4 layers increases
to 0.248, 0.206, 0.203, and0.198, respectively. While the one-layer method gets stuck in poor local
minima on the “Grove3” and “Urban3” sequences, models with additional layers are more robust to
the initialization. For more details and full EPE results, see theSupplemental Material.

Test Set For evaluation, we focus on a model with3 layers (denoted “Layers++” in the Middlebury
public table). On the Middlebury test set it has an average EPE of 0.270 and average angular error
(AAE) of 2.556; this is the lowest among all tested methods [2] at the time ofwriting (Oct. 2010).
Table 2 summarizes the results for individual test sequences. The layered model is particularly
accurate at motion boundaries, probably due to the use of layer-specific motion models, and the
explicit modeling of occlusion inEdata (Eq. (7)). For more extensive results, see theSupplemental
Material.

Visual Comparison Figure 3 shows results for the3-layer model on several training and test
sequences. Notice that the layered model produces a motion segmentation that captures the major
structure of the scene, and the layer boundaries correspondwell to static image edges. It detects most
occlusion regions and interpolates their motion reasonably well. Several sequences show significant
improvement due to the global reasoning provided by the layered model. On the training “Grove3”
sequence, the proposed method correctly identifies many holes between the branches and leaves as
background. It also associates the branch at the bottom right corner with branches in the center.
As the branch moves beyond the image boundary, the layered model interpolates its motion using
long-range correlation with the branches in the center. In contrast, the single-layered approach
incorrectly interpolates from local background regions. The “Schefflera” result illustrates how the
layered method can separate foreground objects from the background (e.g., the leaves in the top
right corner), and thereby reduce errors made by single-layer approaches such as Classic+NL.
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Figure 3:Results on some Middlebury training (rows1 to 3) and test (rows4 to 6) sequences.Top to bottom:
“RubberWhale”, “Grove3”, “Urban3”, “Mequon”, “Schefflera”, and “Grove”. Left to right: First image frame,
initial flow field from “Classic+NL”, final flow field, motion segmentation (green front, blue middle, red back),
and detected occlusions. Best viewed in color and enlarged to allow comparison of detailed motions.

6 Conclusion and Discussion

We have described a new probabilistic formulation for layered image motion that explicitly models
occlusion and disocclusion, depth ordering of layers, and the temporal consistency of the layer seg-
mentation. The approach allows the flow field in each layer to have piecewise smooth deformation
from a parametric motion model. Layer support is modeled using an image-dependent hidden field
prior that supports a model of temporal layer continuity over time. The image data error term takes
into account layer occlusion relationships, resulting in increased flow accuracy near motion bound-
aries. Our method achieves state-of-the-art results on theMiddlebury optical flow benchmark while
producing meaningful segmentation and occlusion detection results.

Future work will address better inference methods, especially a better scheme to infer the layer or-
der, and the automatic estimation of the number of layers. Computational efficiency has not been
addressed, but will be important for inference on long sequences. Currently our method does not
capture transparency, but this could be supported using a soft layer assignment and a different gen-
erative model. Additionally, the parameters of the model could be learned [23], but this may require
more extensive and representative training sets. Finally,the parameters of the model, especially the
number of layers, should adapt to the motions in a given sequence.

Acknowledgments DS and MJB were supported in part by the NSF Collaborative Research in Computa-
tional Neuroscience Program (IIS–0904875) and a gift from Intel Corp.
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