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Abstract

It has been speculated that the human motion system combiigs measure-
ments with prior expectations in an optimal, or rationalnmer. The basic goal
of our work is to discover experimentally which prior disuition is used. More
specifically, we seek to infer the functional form of the matprior from the per-
formance of human subjects on motion estimation tasks. eicted ourselves
to priors which combine three terms for motion slownesst-irder smoothness,
and second-order smoothness. We focused on two functiormakffor prior dis-
tributions: L2-norm and L1-norm regularization corresgimy to the Gaussian
and Laplace distributions respectively. In our first expenmtal session we esti-
mate the weights of the three terms for each functional farmaximize the fit to
human performance. We then measured human performancefmmtasks and
found that we obtained better fit for the L1-norm (Laplacetffior the L2-norm
(Gaussian). We note that the L1-norm is also a better fit tatidugstics of motion
in natural environments. In addition, we found large wesgbt the second-order
smoothness term, indicating the importance of high-ordevxa@hness compared
to slowness and lower-order smoothness. To validate oultsdsirther, we used
the best fit models using the L1-norm to predict human perémee in a second
session with different experimental setups. Our resultsveld excellent agree-
ment between human performance and model prediction —mgrigim 3% to
8% for five human subjects over ten experimental conditioasd-give further
support that the human visual system uses an L1-norm (Lepfaor.

1 Introduction

Imagine that you are traveling in a moving car and observelkewghrough a fence full of punch
holes. Your visual system can readily perceive the walkiegspn against the apparently moving
background using only the motion signals visible througdsthholes. But this task is far from trivial
due to the inherentlocal ambiguity of motion stimuli, ofteferred to as thaperture problem. More
precisely, if you view a line segment through an aperture §@u can easily estimate the motion
component normal to the line but it is impossible to estintlagetangential component. So there are
an infinite number of possible interpretations of the location signal.

One way to overcome this local ambiguity is to integrate location measurements across space
to infer the "true” motion field. Physiological studies haslgown that direction-selective neurons



in primary visual cortex perform local measurements of omtiThen the visual system integrates
these local motion measurements to form global motion meiae [4, 5]. Psychophysicists have
identified a variety of phenomena, such as motion capturevattbn cooperativity, which appear
to be consequences of motion spatial integration [1, 2, 3pmFthe computational perspective,
a number of Bayesian models have been proposed to explaia #ifects by hypothesizing prior
assumptions about the motion fields that occur in naturar@mments. In particular, it has been

shown that a prior which is biased to slow-and-smooth moti@m account for a range of experi-
mental results [6, 7, 8, 9, 10].

But although evidence from physiology and psychophysippetts the existence of an integration
stage, it remains unclear exactly what motion priors arel tiseesolve the measurement ambigui-
ties. In the walking example described above (see figurdé)yisual system needs to integrate the
local measurements in the two regions within the red boxesdar to perceive a coherently moving
background. This integration must be performed over largfadces, because the regions are widely
separated, but this integration cannot be extended todethe walker region highlighted in the blue
box, because this would interfere with accurate estimatioihe walker's movements. Hence the

motion priors used by the human visual system must have difuna¢ form which enables flexible
and robust integration.

We aim to determine the functional form of the motion priorsietn underly human perception,
and to validate how well these priors can influence humangpdian in various motion tasks. Our
approach is to combine parametric modeling of the motioarprvith psychophysical experiments
to estimate the model parameters that provide the best fiutoah performance across a range
of stimulus conditions. To provide further validation, weeh use the estimated model to predict
human performance in several different experimental setlip this paper, we first introduce the
two functional forms which we consider and review relatéertiture in Section 2. Then in Section
3 we present our computational theory and implementatitailde In Section 4 we test the theory
by comparing its predictions with human performance in @eaof psychophysical experiments.

Figure 1: Observing a walker with a moving camera. Left patva example frames. The visual

system needs to integrate motion measurements from theeggvors in the red boxes in order to

perceive the motion of the background. But this integratibauld not be extended to the walker
region highlighted in the blue box. Right panel, the int¢igratask is made harder by observing the
scene through a set of punch holes. The experimental stimelir psychophysical experiments are
designed to mimic these observation conditions.

2 Functional form of motion priors

Many models have proposed that the human visual system uiseskpowledge of probable mo-
tions, but the functional form for this prior remains unclelor example, several well-established
computational models employ Gaussian priors to encodeiisddwards slow and spatially smooth
motion fields. But the choice of Gaussian distributions tzaigdly been based on computational
convenience [6, 8], because they enable us to derive anabtitions.

However, some evidence suggests that different distabdtrms may be used by the human visual
system. Researchers have used motion sequences in read soemeasure the spatial and temporal
statistics of motion fields [11, 12]. These natural statssshow that the magnitude of the motion
(speed) falls off in a manner similar to a Laplacian disttido ( L1-norm regularization), which has
heavier tails than Gaussian distributions (see the lettiplfigure 2). These heavy tails indicates
that while slow motions are very common, fast motions adeatcur fairly frequently in natural



environments. A similar distribution pattern was also fdéor spatial derivatives of the motion flow,
showing that non-smooth motion fields can also happen inralatimvironments. This statistical
finding is not surprising since motion discontinuities casain the natural environment due to the
relative motion of objects, foreground/background segatém, and occlusion.

Stocker and Simoncelli [10] conducted a pioneering studpfier the functional form of the slow-
ness motion prior. More specifically, they used human stlbbgsponses in a speed discrimination
task to infer the shape of the slowness prior distributiomeiinferred slowness prior showed sig-
nificantly heavier tails than a Gaussian distribution. TehRgwed that a motion model using this
inferred prior provided an adequate fit to human data for a&wéhge of stimuli.

Finally, the robustness of the L1-norm has also been dematadtin many statistical applications
(e.g., regression and feature selection). In the simpbest of linear regression, suppose we want
to find the intercept with the constraint of zero slope. Thgression with L1-norm regularization
estimates the intercept based on the sample median, whbeeh2-norm regression estimates the
intercept based on the sample mean. A single outlier haslitgeyeffect on the median but can
alter the mean significantly. Accordingly, the L1-norm rigization is less sensitive to outliers
than is the L2-norm. We illustrate this for motion estimatioy the example in the right panel
of figure 2. If there is a motion boundary in the true motiondjehen a model using L2-norm
regularization (Gaussian priors) tends to impose strongosining over the two distinct motion
fields which blurs the motion across discontinuity. But thedal with an L1-norm (Laplace prior)
preserves the motion discontinuity and gives smooth mdtoanon both sides of it.

045 = Gaussian, L2
0s =| aplace, L1

True motion flow

Estimation from
Gaussian prior

Estimation from
Laplace prior

Figure 2: Left plot, the Gaussian distribution (L2-normukggization) and the Laplace distribution
(L1-norm regularization). Right plot, an illustration of&r-smoothing caused by using Gaussian
priors.

3 Mathematical M odél

The input data is specified by local motion measuremgntsf form, = (u1,, uz,), at a discrete
set of positions?, ¢ = 1,..., N in the image plane. The goal is to find a smooth motion field
v defined at all positiong in the image domain, estimated from the local motion measands.
The motion fieldv can be thought of as an interpolation of the data which obeglevaness and
smoothness prior and which agrees approximately with tb& lmotion measurements. Recall that

the visual system can only observe the local motion in thectionsii, = % (sometimes called
q

component motion) because of the aperture problem. Henpexdmate agreement with local
measurements reduces to the constraints:

(7)) - fig — iy - 7lq ~ 0.

As illustrated in figure 3, we consider three motion priomsrwhich quantify the preference for
slowness, first-order smoothness and second-order smessthespectively. L& denote the image
domain —i.e. the set of points= (r1,r2) € Q. We define the prior to be a Gibbs distribution with
energy function of form:
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where\, u,n, a, 8, are positive parameters and
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Figure 3: An illustration of three prior terms: (i) slownegs) first-order smoothness, and (iii)
second-order smoothness

The (negative log) likelihood function for grating stimutiposes the measurement constraints and
is of form:

N N
E(a|v) = Z |0(7g) - Tig — tq - 7ig|” = Z |0(7q) - 7ig — |tig|[".
q=1 qg=1
The combined energy function to be minimized is:
inf {F(ﬁ) - ]%E(UW) + E(ﬁ)}.

This energy is a convex function provided the exponentsfyati 3, v, p > 1. Therefore the energy
minimum can be found by imposing the first order optimalityditions, 2% — ¢ (the Euler-
Lagrange equations). Below we computer these Euler-Lagraartial differential equations in
¥ = (v1,v2). We fix the likelihood term by setting = 2 (the exponent of the likelihood term). If
a, B,y # 2, the Euler-Lagrange equations are non-linear partiatéfitial equations (PDEs) and
explicit solutions cannot be found ¢f, 3, v = 2 the Euler-Lagrange equations will be linear and so
can be solved by Fourier transforms or Green’s functionpregously done in [6]). To solve these
non-linear PDEs we discretize them by finite differenceswesaliterative gradient descent (i.e. we

apply the dynamic§2-t) — agg(g;)) until we reach a fixed state). More precisely, we initialize
¥(7,0) at random, and solve the update equation for0:

0 .
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wherek = 1,2, 6p7, = 1if ¥ = 7, anddz7, = 0 if 7 # 7,. Since the powers. — 2, 3 —

2, v — 2 become negative when the positive exponents, ... take valuel, we include a small

e = 1075 inside the square roots to avoid division by zero (when dating terms like|.]). The
algorithm stops when the difference between two consezetinergy estimates is close to zero (i.e.
the stopping criterion is based on thresholding the enengnge).

Our implementation discretized the Euler-Lagrange equati as specified below. L) =
Vo |p=2 GO = |AgD[=2 AD = |7|*=2 wherel denotes time discretization with.t
the time-step, angi, j) denotes space discretization with= Ar; = Ar, being the space-step.
Then the above PDE's can be discretized as
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4 Experiments

We compared two possible functional forms for the motiopr{1) the Laplace distribution with
L1-norm regularization, witkh = § = v = 1, (2) the Gaussian distribution with L2-norm regular-
ization, withas = 8 = v = 2. Since the main goal of this work is to discover motion prjave
employed the same likelihood term with= 2 for both models. We used the performance of human
subjects in the first experimental session to estimate thghtgeof the three prior terms\, i1, 7,

for each functional form. We then validated the predictiohthe model by comparing them with
human performance in a second experimental session whishdifferent stimulus parameters.

41 Stimulus

We used a multiple-aperture stimulus [13] which consisté2by 12 drifting sine-wave gratings
within a square window subtending.8&ach element (0?9 was composed of an oriented sinusoidal
grating of 5.6 cycles/deg spatial frequency, which was withstationary Gaussian window. The
contrast of the elements was 0.2. The motion stimulus iredl & time frames which were presented
within 267 ms. The global motion stimulus was generated Bevs. First, the orientation of each
local grating element was randomly determined. Secondplaagjimotion (also called 2D motion,
with the speed of 1 deg/sec) direction was chosen. Thirdrtaingproportion of elements (signal
elements) were assigned with the predetermined 2D motidrile wach of the remaining elements
(noise elements) was assigned a random 2D motion. Finailly, it8 orientation and 2D motion
velocity, the drifting speed for each element was compubettiat the local (or component) drifting
velocity was consistent with the assigned 2D motion vejocihs shown in figure 4 the global
motion strength was controlled by varying the proportiosighal elements in the stimulus (i.e., the



coherence ratio). Stimuli with high ratio exhibited mordeoent motion, and stimuli with low ratio
exhibited more random motion.

In all the experiments reported in this paper, each pagitigompleted two experiment sessions
with different stimulus parameters. The goal of session &4 paameter estimation: to estimate the
weights of the three prior terms — slowness, first-order shmess and second-order smoothness, —
for each model. Session 2 was for model validation: usingwbights estimated from session 1 to
predict subject performance for different experimentaditions.

Figure 4. Stimulus illustration. Multiple-aperture stifhwith coherence ratio of 0, 0.4, 0.8 and 1
from left to right. the blue and green arrows indicate the 2@tion directions assigned for signal
and noise elements, respectively.

4.2 Experiment 1
4.2.1 Procedure

There were two separate sessions in Experiment 1. On eatlotrihe first session, observers
were presented with two motion patterns, one after anofites.first one was the reference motion
pattern, which always moved upward (0O degree), and the segone was the test motion pattern,
whose global motion direction was either tilted towardsléfeor the right relative to the reference
pattern. Both patterns lasted for 267 ms with 500 ms iniemsgts interval. The observer’s task
was to determine whether the global motion direction of #s pattern was more towards the left
or right relative to the reference pattern. In order to make ®bservers understood the task and
were able to perceive the global motion, before the begmafrthe first session, observers passed a
test session in which they achieved 90% accuracy in 40 catigedrials with 80% coherence and
20 (or 45) degrees of angular difference. To allow obsenefamiliarize themselves with the task,
before each experimental session observers went througdictige session with 10 blocks of 25
trials.

The first session consisted of 20 blocks of 50 trials. the miee ratio was constant within each
block. The observer’s discrimination performance was mestkfor ten coherence ratios (0, 0.1,
0.2,.., 0.9) in the first session. The angular difference betweendference and test motion was
fixed for each observer in the entire session (2 degrees &mrobrs AL, MW and AE; 45 degrees

for OQ and CC). The second session was identical to the fiestexcept that the coherence ratio
was fixed at 0.7, and the angular difference between the glob&on directions of the reference

and the test patterns was varied across blocks (ten andfitaedces: 1, 5, 10,, 45 degrees).

4.2.2 Results

We implemented motion models with the Laplace prior distifin (termed "L1 model”) and the
Gaussian prior (termed "L2 model”). As the first step, exhimassearch was conducted to find a
set of weights for the prior terms that provided the best ftheohuman psychometric performance
in experimental session 1. Table 1 reports the estimateahpsters for each individual subject us-
ing the L1 and L2 models. There was clear individual diffeeefor the estimated weight values.
However, across all five subjects, large weight values waued for the second-order smoothness
terms, indicating the contribution from higher-order sithoess preference is important in perceiv-
ing global motion from multiple-aperture stimulus.

Figure 5 shows the results from each individual particiamt best-fitting model performance. The
results clearly show the L1 model provided the better fit tmho data when compared to the L2
model. In general,humans appear to be sensitive to thesinciwf noise elements, and perform



Table 1: Estimated weigh#s p, n of slowness, first-order smoothness and second-order hmesx
prior terms, for L1 and L2-norm model

Subjects LI\ Llp Lip L2A L2u L2y
AE 0.001 1 15000 0.01 100 16000
AL 0.01 100 16000 001 1 16000
cc 0.001 0.1 16000 0.001 0.1 16000
MW 0.001 10 17000 001 1 20000
0Q 0.01 100 18000 0.01 100 18000

worse than the L2 model, which tends to strongly encouragso#imess over the entire display
window.

In experimental session 2, the two models predicted pedao@as a function of angular difference
between the reference motion and the test motion. As showigure 7, the L1 model yielded less
error in fitting human performance than did the L2 model. Tagilt illustrates the power of the L1
model in predicting human performance in motion tasks tbffiéfrom the tasks used for estimating
model parameters.
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Figure 5: Comparison between human performance and moeéeictions in session 1. Left two
plots, accuracy as a function obherence ratio for two representative subjects. Blue solid lines
indicate human performance. Red and green dashed linesatadil and L2 model predictions
with the best fitted parameters. Right plot, model error fbfiee subjects. The model error was
computed as the mean absolute difference between humamrmparfce and model predictions. L1
model consistently fits human performance better than L2atfod all subjects
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Figure 6: Comparison between human performance and moeéeictions in session 1. Left two
plots, accuracy as a function afigular difference between the reference and the test motion for two
representative subjects. Blue solid lines indicate hureafopmance. Red and Green dashed lines
indicate L1 and L2 model predictions. Right plot, model efoy all five subjects. Less errors from
L1 model indicate that L1 model consistently fits human penfance better than L2 model for all
subjects

4.3 Experiment 2

The results of Experiment 1 clearly support the concludian the motion model with Laplace prior
(L1-norm regularization) fits human performance bettenttaes the model with Gaussian prior



(L2 model). In Experiment 2, we compared human motion judgmeéth predictions of the L1
model on each trial, rather than using the average perfarenasin Experiment 1. Such a detailed
comparison can provide quantitative measures of how welLthmodel is able to predict human
motion judgment for specific stimuli.

In Experiment 2, the first session was identical to that indgkpent 1, in which angular difference

in the two global motion directions were fixed (45 degreesalbobservers) while the coherence
ratio was varied. In the second session, observers werergegswith one motion stimulus on each
trial. The global motion direction of the pattern was randipselected from 24 possible directions
(with a 15-degree difference between two adjacent dirasjioObservers reported their perceived
global motion directions by rotating a line after the motgiimulus disappeared from the screen.
The experimentincluded 12 blocks (each with 48 trials) and@herence ratios (0, 0.1, 0.3,0.9).

A two-pass design was used to let each observer run the ¢gdéstission twice in order to measure
the reliability of the observer’s judgments.

We used human performance in session 1 to estimate modehetas: weights\, i, 1 for slow-
ness, first-order smoothness and second-order smoothresgepms for each individual partici-
pant. Since identical stimuli were used in the two runs ofiges2, we can quantify the reliability
of the observer’s judgment by computing the response @ifoalacross trials in these two runs. As
shown in the left plot of figure 7, human observers’ respomga® significantly correlated in the
two runs, even in the condition @Bndom motion (coherence ratio is close to 0). The correlated
responses in these subthreshold conditions suggest thetrhabservers are able to provide con-
sistent interpretation of motion flow, even when the motiemandom. The right plot of figure 7
shows the trial-by-trial correlation between human mofimdgments with model-predicted global
motion direction. The model-human correlations were camipia to human self-correlations. Even
in the random motion condition (where the coherence ratl,ithe correlation between the model
and human judgments is greater than 0.5, indicating theiginesl power of the model. We also
noticed that the correlation between human and L2 model wasd 8 percent worse than the hu-
man self-correlation and the correlation between the L1ehadd humans. This finding further
demonstrated that the L1 model provided a better fit to hunagatthan did the L2 model.
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Figure 7: Comparison between human performance and moelgilgions using trial-by-trial corre-
lation. Left plot, human self correlation between two ruhf&gentical experimental sessions. Right
plot, correlation between human motion judgement and mpuoilicted global motion direction.
The significant correlation between human and the modetates the L1 model is able to predict
human motion judgment for specific stimuli, even in the randbsplay, i.e., coherence ratio close
to 0.

5 Conclusions

We found that a motion prior in the form of the Laplace disitibn with L1-norm regularization
provided significantly better agreement with human perfmoe than did Gaussian priors with L2-
norm. We also showed that humans weighted second-ordeomaioothness much higher than
first-order smoothness and slowness. Furthermore, modeiqgtions using this Laplace prior were
consistent with human perception of coherent motion, esereindom displays. Overall our results
suggest that human motion perception for these types otibtaan be well modeled using Laplace
priors.
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