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Abstract

In many machine learning domains (such as scene understanding), several related
sub-tasks (such as scene categorization, depth estimation, object detection) oper-
ate on the same raw data and provide correlated outputs. Each of these tasks is
often notoriously hard, and state-of-the-art classifiers already exist for many sub-
tasks. It is desirable to have an algorithm that can capture such correlation without
requiring to make any changes to the inner workings of any classifier.

We propose Feedback Enabled Cascaded Classification Models (FE-CCM), that
maximizes the joint likelihood of the sub-tasks, while requiring only a ‘black-box’
interface to the original classifier for each sub-task. We use a two-layer cascade of
classifiers, which are repeated instantiations of the original ones, with the output
of the first layer fed into the second layer as input. Our training method involves
a feedback step that allows later classifiers to provide earlier classifiers informa-
tion about what error modes to focus on. We show that our method significantly
improves performance in all the sub-tasks in two different domains: (i) scene
understanding, where we consider depth estimation, scene categorization, event
categorization, object detection, geometric labeling and saliency detection, and
(i) robotic grasping, where we consider grasp point detection and object classifi-
cation.

1 Introduction

In many machine learning domains, several sub-tasks operate on the same raw data to provide cor-
related outputs. Each of these sub-tasks are often notoriously hard and state-of-the-art classifiers
already exist for many of them. In the domain of scene understanding for example, several indepen-
dent efforts have resulted in good classifiers for tasks such as scene categorization, depth estimation,
object detection, etc. In practice, we see that these sub-tasks are coupled—for example, if we know
that the scene is indoors, it would help us estimate depth more accurately from that single image.
In another example in the robotic grasping domain, if we know what object it is, then it is easier
for a robot to figure out how to pick it up. In this paper, we propose a unified model which jointly
optimizes for all the sub-tasks, allowing them to share information and guide the classifiers towards
a joint optimal. We show that this can be seamlessly applied across different machine learning
domains.

Recently, several approaches have tried to combine these different classifiers for related tasks in
vision [19, 25, 35]; however, most of them tend to be ad-hoc (i.e., a hard-coded rule is used) and
often intimate knowledge of the inner workings of the individual classifiers is required. Even beyond
vision, in most other domains, state-of-the-art classifiers already exist for many sub-tasks. However,
these carefully engineered models are often tricky to modify, or even to simply re-implement from
the available descriptions. Heitz et. al. [17] recently developed a framework for scene understand-
ing called Cascaded Classification Models (CCM) treating each classifier as a ‘black-box’. Each
classifier is repeatedly instantiated with the next layer using the outputs of the previous classifiers
as inputs. While this work proposed a method of combining the classifiers in a way that increased



the performance in all of the four tasks they considered, it had a drawback that it optimized for each
task independently and there was no way of feeding back information from later classifiers to earlier
classifiers during training. This feedback can help the CCM achieve a more optimal solution.

In our work, we propose Feedback Enabled Cascaded Classification Models (FE-CCM), which pro-
vides feedback from the later classifiers to the earlier ones, during the training phase. This feedback,
provides earlier stages information about what error modes should be focused on, or what can be
ignored without hurting the performance of the later classifiers. For example, misclassifying a street
scene as highway would not hurt as much as misclassifying a street scene as open country. Therefore
we prefer the first layer classifier to focus on fixing the latter error instead of optimizing the training
accuracy. In another example, allowing the depth estimation to focus on some specific regions can
help perform better scene categorization. For instance, the open country scene is characterized by its
upper part as a wide sky area. Therefore, to estimate the depth well in that region by sacrificing some
regions in the bottom may help an image to be categorized to the correct category. In detail, we do
so by jointly maximizing the likelihood of all the tasks; the outputs of the first layers are treated as
latent variables and training is done by using an iterative algorithm. Another benefit of our method
is that each of the classifiers can be trained using their own independent training datasets, i.e., our
model does not require a datapoint to have labels for all the tasks, and hence it scales well with
heterogeneous datasets.

In our approach, we treat the classifier as a ‘black-box’, with no restrictions on its operation other
than requiring the ability to train on data and have input/output interface. Often each of these indi-
vidual classifiers could be quite complex, e.g., producing labelings over pixels in an entire image.
Therefore, our method is applicable to many tasks that have different but correlated outputs.

In extensive experiments, we show that our method achieves significant improvements in the per-
formance of all the sub-tasks in two different domains: (i) scene understanding, where we consider
six tasks: depth estimation, object detection, scene categorization, event categorization, geometric
labeling and saliency detection, and (ii) robotic grasping, where we consider two tasks: grasp point
detection and object classification.

The rest of the paper is organized as follows. We discuss the related works in Section 2. We describe
our FE-CCM method in Section 3 followed by the implementation of the classifiers in Section 4.
We present the experiments and results in Section 5. We finally conclude in Section 6.

2 Related Work

The idea of using information from related tasks to improve the performance of the task in question
has been studied in various fields of machine learning and vision. The idea of cascading layers of
classifiers to aid the final task was first introduced with neural networks as multi-level perceptrons
where, the output of the first layer of perceptrons is passed on as input to the next hidden layer
[16, 12, 6]. However, it is often hard to train neural networks and gain an insight into its operation,
thus making it hard to work for complicated tasks.

There has been a huge body of work in the area of sensor fusion where classifiers work with dif-
ferent modalities, each one giving additional information and thus improving the performance, e.g.,
in biometrics, data from voice recognition and face recognition is combined [21]. However, in
our scenario, we consider multiple tasks where each classifier is tackling a different problem (i.e.,
predicting different labels), with the same input being provided to all the classifiers.

The idea of improving classification performance by combining outputs of many classifiers is used in
methods such as Boosting [13], where many weak learners are combined to obtain a more accurate
classifier; this has been applied tasks such as face detection [4, 40]. However, unlike the CCM
framework which focuses on contextual benefits, their motivation was computational efficiency.
Tu [39] used pixel-level label maps to learn a contextual model for pixel-level labeling, through a
cascaded classifier approach, but such works considered only the interactions between labels of the
same type.

While the above combine classifiers to predict the same labels, there are a group of works that com-
bine classifiers, and use them as components in large systems. Kumar and Hebert [23] developed a
large MRF-based probabilistic model to link multi-class segmentation and object detection. Similar
efforts have been made in the field of natural language processing. Sutton and McCallum [36] com-
bined a parsing model with a semantic role labeling model into a unified probabilistic framework
that solved both simultaneously. However, it is hard to fit existing state-of-the-art classifiers into
these technically-sound probabilistic representations because they require knowledge of the inner
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Figure 1: Combining related classifiers using the proposed FE-CCM model (Vi € {1,2,...,n} ¥;(X) =
Features corresponding to Classi fier; extracted from image X, Z; = Output of the Classi fier; in the first
stage parameterized by 0;, Y; = Output of the Classifier; in the second stage parameterized by w;): (a)
Cascaded classification model (CCM) where the output from the previous stage of the classifier is used in the
subsequent stage along with image features. The model optimizes the output of each Classifier; on the
second stage independently; (b) Proposed Feed-back enabled cascaded classification model (FE-CCM), where
there is feed-back from the latter stages to help achieve a model which optimizes all the tasks considered,
jointly. (Note that different colors of lines are used only to make the figure more readable)

workings of the individual classifiers. Structured learning (e.g., [38]) could also be a viable option
for our setting, however, they need a fully-labeled dataset which is not available in vision tasks.

There have been many works which show that with a well-designed model, one can improve the
performance of a particular task by using cues from other tasks (e.g., [29, 37, 2]). Saxena et. al.
manually designed the terms in an MRF to combine depth estimation with object detection [34] and
stereo cues [33]. Sudderth et al. [35] used object recognition to help 3D structure estimation. Hoiem
et. al. [19] proposed an innovative but ad-hoc system that combined boundary detection and surface
labeling by sharing some low-level information between the classifiers. Li et. al. [25, 24] combined
image classification, annotation and segmentation with a hierarchical graphical model. However,
these methods required considerable attention to each classifier, and considerable insight into the
inner workings of each task and also the connections between tasks. This limits the generality of the
approaches in introducing new tasks easily or being applied to other domains.

There is also a large body of work in the areas of deep learning, and we refer the reader to Bengio
and LeCun [3] for a nice overview of deep learning architectures and Caruana [5] for multitask learn-
ing with shared representation. While most works in deep learning (e.g., [15, 18, 41]) are different
from our work in that, those works focus on one particular task (same labels) by building different
classifier architectures, as compared to our setting of different tasks with different labels. Hinton et
al. [18] used unsupervised learning to obtain an initial configuration of the parameters. This provides
a good initialization and hence their multi-layered architecture does not suffer from local minimas
during optimization. At a high-level, we can also look at our work as a multi-layered architecture
(where each node typically produces complex outputs, e.g., labels over the pixels in the image); and
initialization in our case comes from existing state-of-the-art individual classifiers. Given this ini-
tialization, our training procedure finds parameters that (consistently) improve performance across
all the sub-tasks.

3 Feedback Enabled Cascaded Classification Models

We will describe the proposed model for combining and training the classifiers in this section.

We consider related subtasks denoted by Classifier;, where i € {1,2,...,n} for a total of n tasks
(Figure 1). Let ¥, (X) correspond to the features extracted from image X for the Classifier;. Our
cascade is composed of two layers, where the outputs from classifiers on the first layer go as input
into the classifiers in the second layer. We do this by appending all the outputs from the first layer
to the features for that task. 6; represents the parameters for the first level of Classifier; with output
Z;, and w; represents the parameters of the second level of Classifier; with output Y.

We model the conditional joint log likelihood of all the classifiers, i.e., log P(Y1,Ya, ..., Y, |X),
where X is an image belonging to training set I'.

log [T P(V1, Y2, YalX;501,0s,. .., 00, w1,w2, . .. wh) 1)

Xer
During training, Y7, Yo, ..., Y, are all observed (because the ground-truth labels are available).
However, Z1, Zs, . . ., Z,, (output of layer 1 and input to layer 2) are hidden, and this makes training

of each classifier as a black-box hard. Heitz et al. [17] assume that each layer is independent and
that each layer produces the best output independently (without consideration for other layers), and
therefore use the ground-truth labels for Z1, Zs, . . ., Z,, for training the classifiers.



On the other hand, we want our classifiers to learn jointly, i.e., the first layer classifiers need not
perform their best (w.r.t. groundtruth), but rather focus on error modes, which would result in the

second layer’s output (Y7, Ys,...,Y,) to become the best. Therefore, we expand Equation 1 as
follows, using the independencies represented by the directed graphical model in Figure 1(b).
=> log > P(MYi,...,Yn, Z1,.o 0, Znl X500, Oy, wn) )
Xer Z1yeesZn
=> log Z HP Yi|Wi(X), Z1,. .., Znswi) P(Zi|W:(X);05) 3)
XEl  Zi,., Zn

However, the summation 1n51de the log makes it difficult to learn the parameters. Motivated by
the Expectation Maximization [8] algorithm, we use an iterative algorithm where we first fix the
latent variables Z;’s and learn the parameters in the first step (Feed-forward step), and estimate the
latent variables Z;’s in the second step (Feed-back step). We then iterate between these two steps.
While this algorithm is not guranteed to converge to the global maxima, in practice, we find it gives
good results. The results of our algorithm are always better than [17] which in our formulation is
equivalent to fixing the latent variables to ground-truth permanently (thus highlighting the impact of
the feedback).

Initialization: We initialize this process by setting the latent variables Z;’s to the groundtruth.
Training with this initialization, our cascade is equivalent to CCM in [17], where the classifiers (and
the parameters) in the first layer are similar to the original state-of-the-art classfier and the classifiers
in the second layer use the outputs of the first layer in addition to the original features.

Feed-forward Step: In this step, we estimate the parameters. We assume that the latent variables
Z;’s are known (and Y;’s are known anyway because they are the ground-truth). This results in

maximize > logH P(Yi|Ui(X), Z1,. .., Zn;wi)P(Zi|W,(X);6;) @)
o= SR
Now in this feed-forward step, the terms for maximizing the different parameters turn out to be
independent. So, for the i‘" classifier we have:

maxumzez log P(Y;|Vi(X), Z1, ..., Zn;w;) 5)
Xer
maxelfmze XZGF log P(Z;|V;(X); 6;) 6)

Note that the optimization problem nicely breaks down into the sub-problems of training the indi-
vidual classifier for the respective sub-tasks. Depending on the specific form of the classifier used
for the sub-task (see Section 4 for our implementation), we can use the appropriate training method
for each of them. For example, we can use the same training algorithm as the original black-box
classifier. Therefore, we consider the original classifiers as black-box and we do not need any low
level information about the particular tasks or knowledge of the inner workings of the classifier.

Feed-back Step: In this second step, we will estimate the values of the latent variables Z;’s assum-
ing that the parameters are fixed (and Y;’s are given because the ground-truth is available). This
feed-back step is the crux that provides information to the first-layer classifiers what error modes
should be focused on and what can be ignored without hurting the final performance.

We will perform MAP inference on Z;’s (and not marginalization). This can be considered as
a special variant of the general EM framework (hard EM, [26]). Using Equation 3, we get the
following optimization problem for the feed-back step:

mzaxunzlzelogP(Y17 cos Yo, Z1, o, 20| X501, .. On,wi, L wh)

7
@maXImlzeZIOgP (Z:|Wi(X); 0;) + log P(Yi|Wi(X), Z1, ..., Znswi) @
152

This maximization problem requires that we have access to the characterization of the individual
black-box classifiers in a probabilistic form. While at the first blush this may seem asking a lot,
our method can even handle classifiers for which log likelihood is not available. We can do this
by taking the output of the previous classifiers and modeling their log-odds as a Gaussian (partly
motivated by variational approximation methods [14]). Parameters of the Gaussians are empirically

estimated when the actual model is not available.

In some cases, the classifier log-likelihoods in the problem in Equation 7 actually turn out to be
convex. For example, if the individual classifiers are linear or logistic classifiers, the minimization
problem is convex and can be solved by using a gradient descent (or any similar method).
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Inference. Our FE-CCM is a directed model and inference in these models is straight-forward.
Maximizing the conditional log likelihood P(Y7,Y3,...,Y,|X) corresponds to performing infer-
ence over the first layer (using the same inference techniques for the respective black-box classifiers),
followed by inference on the second layer.

Sparsity and Scaling with a large number of tasks. In Equations 4 we use weight decay (with L-1
penalty on the weights, ||w]||1) to enforce sparsity in the w’s. With a large number of sub-tasks, the
number of the weights in the second layer increases, and our sparsity term results in a few non-zero
connections between sub-tasks that are active.

Training with Heterogeneous datasets. Often real datasets are disjoint for different tasks, i.e,
each datapoint does not have the labels for all the tasks. Our formulation handles this sce-
nario well. We showed our formulation for the general case, where we use I'; as the dataset
that has labels for i*” task. Now, we maximize the joint likelihood over all the datapoints, i.e.,

log [Ti=y [1xer, P(Y,. .., Ya|X). Equation 3 reduces to maximizing the terms below, which is
solved using equations in Section 3 with corresponding modification
DX Y log > PMYW(X), Zr,.., Znswi) [ [ P(Z5]95(X);65) ®)
i=1 Xer; Z1yeesZn j=1

Here ); is the tuning parameter that balances the amount of data in different datasets (n = 6 in our
experiments).

4 Scene Understanding: Implementation

Here we briefly describe the implementation details for our instantiation of FE-CCMs for scene
understanding.! Each of the classifiers described below for the sub-tasks are our “base-model”
shown in Table 1. In some sub-tasks, our base-model will be simpler than the state-of-the-art models
(that are often hand-tuned for the specific sub-tasks respectively). However, even when using base-
models in our FE-CCM, our comparison will still be against the state-of-the-art models for the
respective sub-tasks (and on the same standard respective datasets) in Section 5.

In our preliminary work [22], where we optimized for each target task independently, we consid-
ered four vision tasks: scene categorization, depth estimation, event categorization and saliency
detection. Please refer to Section 4 in [22] for implementation details. In this work, we add object
detection and geometric labeling, and jointly optimize all six tasks.

Scene Categorization. For scene categorization, we classify an image into one of the 8 categories
defined by Torralba et. al. [28]: tall building, inside city, street, highway, coast, open-country, moun-
tain and forest. We define the output of a scene classifier to be a §-dimensional vector with each
element representing the score for each category. We evaluate the performance by measuring the
accuracy of assigning the correct scene label to an image on the MIT outdoor scene dataset [28].

Depth Estimation. For the single image depth estimation task, we want to estimate the depth
d € R4 of every pixel in an image (Figure 2a). We evaluate the performance of the estimation by
computing the root mean square error of the estimated depth with respect to ground truth laser scan
depth using the Make3D Range Image dataset [30, 31].

!'Space constraints do not allow us to describe each sub-task in detail here, but please refer to the respective
state-of-the-art algorithm. Note that the power of our method is in not needing to know the details of the
internals of each sub-task.



Event Categorization. For event categorization, we classify an image into one of the 8 sports events
as defined by Li et. al. [24]: bocce, badminton, polo, rowing, snowboarding, croquet, sailing and
rock-climbing. We define the output of a event classifier to be a 8-dimensional vector with each
element representing the log-odds score for each category. For evaluation, we compute the accuracy
assigning the correct event label to an image.

Saliency Detection. Here, we want to classify each pixel in the image to be either salient or non-
salient (Figure 2c). We define the output of the classifier as a scalar indicating the saliency confi-
dence score of each pixel. We threshold this saliency score to determine whether the point is salient
(+1) or not (—1). For evaluation, we compute the accuracy of assigning a pixel as a salient point.

Object Detection. We consider the following object categories: car, person, horse and cow. A
sample image with the object detections is shown in Figure 2b. We use the train-set and test-set
of PASCAL 2006 [9] for our experiments. Our object detection module builds on the part-based
detector of Felzenszwalb et. al. [10]. We first generate 5 to 100 candidate windows for each image
by applying the part-based detector with a low threshold (over-detection). We then extract HOG fea-
tures [7] on every candidate window and learn a RBF-kernel SVM model as the first layer classifier.
The classifier assigns each window a +1 or —1 label indicating whether the window belongs to the
object or not. For the second-layer classifier, we learn a logistic model over the feature vector con-
stituted by the outputs of all first-level tasks and the original HOG feature. We use average precision
to quantitatively measure the performance.

Geometric labeling. The geometric labeling task refers to assigning each pixel to one of three
geometric classes: support, vertical and sky (Figure 2d), as defined by Hoiem et. al. [20]. We use
the dataset and the algorithm by [20] as the first-layer geometric labeling module. In order to reduce
the computational time, we avoid the multiple segmentation and instead use a single segmentation
with about 100 segments/image. For the second-layer, we learn a logistic model over the a feature
vector which is constituted by the outputs of all first-level tasks and the features used in the first
layer. For evaluation, we compute the accuracy of assigning the correct geometric label to a pixel.

5 Experiments and Results

The proposed FE-CCM model is a unified model which jointly optimizes for all sub-tasks. We
believe this is a powerful algorithm in that, while independent efforts towards each sub-task have led
to state-of-the-art algorithms that require intricate modeling for that specific sub-task, the proposed
approach is a unified model which can beat the state-of-the-art performance in each sub-task and,
can be seamlessly applied across different machine learning domains.

We evaluate our proposed method on two different domains: scene understanding and robotic grasp-
ing. We use the same proposed algorithm in both domains. For each of the sub-task in each of the
domains, we evaluate our performance on the standard dataset for that sub-task (and compare against
the specifically designed state-of-the-art algorithm for that dataset). Note that, with such disjoint yet
practical datasets, no image would have ground truth available for more than one task. Our model
handles this well.

In experiment we evaluate the following algorithms as in Table 1,

* Base model: Our implementation (Section 4) of the algorithm for the sub-task, which serves
as a base model for our FE-CCM. (The base model uses less information than state-of-the-
art algorithms for some sub-tasks.)

* All-features-direct: A classifier that takes all the features of all sub-tasks, appends them
together, and builds a separate classifier for each task.

* State-of-the-art model: The state-of-the-art algorithm for each sub-task respectively on that
specific dataset.

* CCM: The cascaded classifier model by Heitz et. al. [17], which we re-implement for six
sub-tasks.

e FE-CCM (unified): This is our proposed model. Note that this is one single model which
maximizes the joint likelihood of all sub-tasks.

* FE-CCM (target specific): Here, we train a specific FE-CCM for each sub-task, by using
cross-validation to estimate \;’s in Equation 8. Different values for A;’s result in different
parameters learned for each FE-CCM.

Note that both CCM and All-features-direct use information from all sub-tasks, and state-of-the-art
models also use carefully designed models that implicitly capture information from other sub-tasks.
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Table 1: Summary of results for the SIX vision tasks. Our method improves performance in every single task.

(Note: Bold face corresponds to our model performing better than state-of-the-art.)

Event Depth Scene Saliency Geometric Object detection

Model Categorization  Estimation  Categorization  Detection Labeling Car Person Horse Cow | Mean

(% Accuracy) (RMSEinm) (% Accuracy) (% Accuracy) (% Accuracy) (% Average precision)
Images in testset 1579 400 2688 1000 300 2686
Chance 22.5 24.6 22.5 50 333 - - - -1 -
Our base-model 71.8 (+0.8) 16.7 (£0.4)  83.8 (£0.2) 85.2(£0.2) 86.2(£0.2) 624 363 39.0 399 | 444
All-features-direct 72.7 (+0.8) 16.4 (£0.4)  83.8(£0.4) 85.7(£0.2)  87.0 (£0.6) 623 36.8 38.8 400 | 445
State-of-the-art 73.4 16.7 (MRF) 83.8 82.5 (£0.2) 88.1 61.5 363 392 40.7| 444
model (reported) Li [24] Saxena [31]  Torralba [27]  Achanta [1] Hoiem [20] Felzenswalb et. al. [11] (base)
CCM [17] 73.3 (£1.6) 164 (£0.4)  83.8(%0.6) 85.6 (£0.2)  87.0 (£0.6) 622 37.0 38.8 40.1| 445
(our implementation)
FE-CCM (unified) 743 (+0.6) 15.5(40.2) 85.9(40.3) 86.2(£0.2) 88.6 (£0.2) 63.2 37.6 40.1 405 \ 454
FE-CCM
(target specific) 74.7 (£0.6)  15.2(4+0.2)  86.1 (+0.2) 87.6(£0.2) 88.9(£0.2) | 63.2 38.0 40.1 40.7 ‘ 45.5

5.1 Scene Understanding

Datasets: The datasets used are mentioned in Section 4, and the number of test images in each
dataset is in Table 1. For each dataset we use the same number of training images as the state-
of-the-art algorithm (for comparison). We perform 6-fold cross validation on the whole model
with 5 of 6 sub-tasks to evaluate the performance on each task. We do not do cross-validation
on object detection as it is standard on the PASCAL 2006 [9] dataset (1277 train and 2686 test
images respectively).

Results and discussion:

To quantitatively evaluate our method for each of the sub-tasks, we consider the metrics appropriate
to each of the six tasks in Section 4. Table 1 shows that FE-CCM not only beats state of art in all
the tasks but also does it jointly as one single unified model.

In detail, we see that all-features-direct improves over the base model because it uses features from
all the tasks. The state-of-the-art classifiers improve on the base model by explicitly hand-designing
the task specific probabilistic model [24, 31] or by using adhoc methods to implicitly use information
from other tasks [20]. Our FE-CCM model, which is a single model that was not given any manually
designed task-specific insight, achieves a more significant improvement over the base model.

We also observe that our target-specific FE-CCM, which is optimized for each task independently
achieves the best performance, and this is a more fair comparison to the state-of-the-art because each
state-of-the-art model is trained specifically to the respective task. Furthermore, Table 1 shows the
results for CCM (which is a cascade without feedback information) and all-features-direct (which
uses features from all the tasks). This indicates that the improvement is strictly due to the proposed
feedback and not just because of having more information.

We show some visual improvements due to the proposed FE-CCM, in Figure 2. In comparison
to CCM, FE-CCM leads to better depth estimation of the sky and the ground, and it leads to better
coverage and accurate labeling of the salient region in the image, and it also leads to better geometric
labeling and object detection. More visual results are provided in the supplementary material.

FE-CCM allows each classifier in the second layer to learn which information from the other first-
layer sub-tasks is useful in the form of weights (in contrast to manually using the information shared
across sub-tasks in some prior works). We provide a visualization of the weights for the 6 vision
tasks in Figure 3-left. We see that the model agrees with our intuitions that high weights are as-
signed to the outputs of the same task from the first layer classifier (see high weights assigned to
the diagonals in the categorization tasks), though saliency detection is an exception which depends
more on its original features (not shown here) and the geometric labeling output. We also observe
that the weights are sparse. This is an advantage of our approach since the algorithm automatically
figures out which outputs from the first level classifiers are useful for the second level classifier to
achieve the best performance.

Figure 3-right provides a closer look to the positive weights given to the various outputs for a second-
level geometric classifier. We observe that high positive weights are assigned to “mountain”, “for-
est”, “tall building”, etc. for supporting the geometric class “vertical”, and similarly “coast”, “sail-
ing” and “depth” for supporting the “sky” class. These illustrate some of the relationships the model

learns automatically without any manual intricate modeling.

5.2 Robetic Grasping

In order to show the applicability of our FE-CCM to problems across different machine learning
experiments, we also considered the problem of a robot autonomously grasping objects. Given an
image and a depthmap, the goal of the learning algorithm is to select a point at which to grasp the
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Figure 3: (Left) The absolute values of the weight vectors for second-level classifiers, i.e. w. Each column
shows the contribution of the various tasks towards a certain task. (Right) Detailed illustration of the positive
values in the weight vector for a second-level geometric classifier. (Note: Blue is low and Red is high)

object (this location is called grasp point, [32]). It turns out that different categories of objects could
have different strategies for grasping, and therefore in this work, we use our FE-CCM to combine
object classification and grasping point detection.

Implementation: We work with the labeled synthetic dataset by Saxena et. al. [32] which spans
6 object categories and also includes an aligned pixel level depth map for each image. For grasp
point detection, we use a regression over features computed from the image [32]. The output of
the regression is a score for each point giving the confidence of the point being a good grasping
point. For object detection, we use a logistic classifier to perform the classification. The output of
the classifier is a 6-dimensional vector representing the log odds score for each category.

Results: We evaluate our algorithm on dataset published in [32], and perform cross-validation to
evaluate the performance on each task. Table 2 shows the results for our algorithm’s ability to predict
the grasping point, given an image and the depths observed by the robot using its sensors. We see
that our FE-CCM obtains significantly better performance over all-features-direct and CCM (our
implementation). Figure 4 show our robot grasping an object using our algorithm.

Table 2: Summary of results for the the robotic grasping experi- — —=—
ment. Our method improves performance in every single task.
Graping point Object
Model Detection Classification
(% accuracy) (% accuracy)
Images in testset 6000 1200
Chance 50 16.7
All features direct 87.7 45.8 r k
Our base-model 87.7 45.8 : . P :
CCM (Fieitz ot al) 505 05 Flgure 4. Ouf robot grasping an object
FE-CCM 923 307 using our algorithm.

6 Conclusions

We propose a method for combining existing classifiers for different but related tasks. We only
consider the individual classifiers as a “black-box” (thus not needing to know the inner workings of
the classifier) and propose learning techniques for combining them (thus not needing to know how
to combine the tasks). Our method introduces feedback in the training process from the later stage
to the earlier one, so that a later classifier can provide the earlier classifiers information about what
error modes to focus on, or what can be ignored without hurting the joint performance.

We consider two domains: scene understanding and robotic grasping. Our unified model (a single
FE-CCM trained for all the sub-tasks in that domain) improves performance significantly across all
the sub-tasks considered over the respective state-of-the-art classifiers. We show that this was the
result of our feedback process. The classifier actually learns meaningful relationships between the
tasks automatically. We believe that this is a small step towards holistic scene understanding.
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