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Abstract

We extend Latent Dirichlet Allocation (LDA) by explicitly allowing for the en-
coding of side information in the distribution over words. This results in a variety
of new capabilities, such as improved estimates for infrequently occurring words,
as well as the ability to leverage thesauri and dictionaries in order to boost topic
cohesion within and across languages. We present experiments on multi-language
topic synchronisation where dictionary information is used to bias correspond-
ing words towards similar topics. Results indicate that our model substantially
improves topic cohesion when compared to the standard LDA model.

1 Introduction
Latent Dirichlet Allocation [4] assigns topics to documents and generates topic distributions over
words given a collection of texts. In doing so, it ignores any side information about the similarity
between words. Nonetheless, it achieves a surprisingly high quality of coherence within topics.

The inability to deal with word features makes LDA fall short on several aspects. The most obvious
one is perhaps that the topics estimated for infrequently occurring words are usually unreliable.
Ideally, for example, we would like the topics associated with synonyms to have a prior tendency of
being similar, so that in case one of the words is rare but the other is common, the topic estimates
for the rare one can be improved. There are other examples. For instance, it is quite plausible that
’Germany’ and ’German’, or ’politics’, ’politician’, and ’political’ should, by default, belong to
the same topic. Similarly, we would like to be able to leverage dictionaries in order to boost topic
cohesion across languages, a problem that has been researched but is far from being fully solved,
especially for non-aligned corpora [6]. For example, we know that ‘democracy’ and ‘democracia’
are different words, but it is clear that not leveraging the fact they actually mean the same thing (and
therefore should have aligned topics) reduces the statistical strength of a model.

A possible solution, which we propose in this paper, is to treat word information as features rather
than as explicit constraints and to adjust a smoothing prior over topic distributions for words such
that correlation is emphasised. In the parlance of LDA we do not pick a globally constant β smoother
over the word multinomials but rather we adjust it according to word similarity. In this way we are
capable of learning the prior probability of how words are distributed over various topics based on
how similar they are, e.g. in the context of dictionaries, synonym collections, thesauri, edit distances,
or distributional word similarity features.

Unfortunately, in performing such model extension we lose full tractability of the setting by means
of a collapsed Gibbs sampler. Instead, we use a hybrid approach where we perform smooth opti-
misation over the word smoothing coefficients, while retaining a collapsed Gibbs sampler to assign
topics for a fixed choice of smoothing coefficients. The advantage of this setting is that it is entirely
modular and can be added to existing Gibbs samplers without modification.

We present experimental results on multi-language topic synchronisation which clearly evidence the
ability of the model to incorporate dictionary information successfully. Using several different mea-
sures of topic alignment, we consistently observe that the proposed model improves substantially on
standard LDA, which is unable to leverage this type of information.
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Figure 1: LDA: The topic distribution for
each word (ψv) has as smoother the Dirich-
let distribution with a parameter β (indepen-
dent of the word).
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Figure 2: Our Extension: Assume we observe side
information φv (i.e. features) for each word v. The
word-specific smoothing parameters βkv are gov-
erned by φv and a common parameter choice y.

1.1 Related work

Loosely related works that use logistic models to induce structure in generative models are [17],
which proposed a shared logistic normal distribution as a Bayesian prior over probabilistic grammar
weights, and [10], which incorporated features into unsupervised models using locally normalized
models. More related to our work is [5], which encodes correlations between synonyms, and [1]
which encodes more general correlations. In fact, our proposed model can be seen as a generalisation
of [1], where we can encode the strength of the links between each pair of words.

Previous work on multilingual topic models requires parallelism at either the sentence level ([20])
or document level ([9], [15]). More recent work [13] relaxes that, but still requires that a significant
fraction (at least 25%) of the documents are paired up.

Multilingual topic alignment without parallelism was recently proposed by [6]. Their model requires
a list of matched word pairs m (where each pair has one word in each language) and corresponding
matching priors π that encode the prior knowledge on how likely the match is to occur. The topics
are defined as distributions over word pairs, while the unmatched words come from a unigram
distribution specific to each language. Although their model could be in principle extended to more
than two languages their experimental section was focused on the bilingual case.

One of the key differences between [6] and our method is that we do not hardcode word informa-
tion, but we use it only as a prior – this way our method becomes less sensitive to errors in the word
features. Furthermore, our model automatically extends to multiple languages without any modifi-
cation, aligning topics even for language pairs for which we have no information, as we show in the
experimental section for the Portuguese/French pair. Finally, our model is conceptually simpler and
can be incorporated as a module in existing LDA implementations.

2 The Model

We begin by briefly reviewing the LDA model of [4] as captured in Figure 1. It assumes that

θm ∼ Dir(α) (1a)
zmn ∼ Mult(θm) (1b)

ψk ∼ Dir(β) (1c)
wmn ∼ Multi(ψzmn) (1d)

Nonparametric extensions in terms of the number of topics can be obtained using Dirichlet
process models [2] regarding the generation of topics. Our extension deals with the word
smoother β. Instead of treating it as a constant for all words we attempt to infer its val-
ues for different words and topics respectively. That is, we assume that (1c) is replaced by

ψk ∼ Dir(βk|φ, y) (2a) β ∼ Logistic(y;φ). (2b)

We refer to this setting as downstream conditioning, in analogy to the upstream conditioning of [14]
(which dealt with topical side information over documents). The corresponding graphical model
is given in Figure 2. The above dependency allows us to incorporate features of words as side
information. For instance, if two words (e.g. ’politics’ and ’politician’) are very similar then it is
plausible to assume that their topic distributions should also be quite similar. This can be achieved
by choosing similar βk,politics and βk,politician. For instance, both of those coefficients might have
great affinity to βk,scandal and we might estimate y such that this is achieved.
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2.1 Detailed Description

We now discuss the directed graphical model from Figure 2 in detail. Whenever needed we use the
collapsed representation of the model [8], that is we integrate out the parameters θm and ψkv such
that we only need to update α and β (or indirectly y). We define the standard quantities

nKV
kv =

∑

m,n

{zmn = k and wmn = v}

nKM
km =

∑

n

{zmn = k}

nK
k =

∑

m

nKM
km

nV
v =

∑

k

nKV
kv ,

nM
m =

∑

k

nKM
km

as well as:

Topic distribution p(zmn|θm): We assume that this is a multinomial distribution specific to
document m, that is p(zmn|θm) = θm,zmn .

Conjugate distribution p(θm|α): This is a Dirichlet distribution with parameters α, where αk

denotes the smoother for topic k.

Collapsed distribution p(zm|α): Integrating out θm and using conjugacy yields

p(zm|α) =
∏K

k=1 Γ(nKM
km + αk)

Γ (nM
m + ‖α‖1)

Γ (‖α‖1)∏K
k=1 Γ(αk)

,

where Γ is the gamma function: Γ(x) =
∫∞
0 tx−1e−t dt.

Word distribution p(wmn|zmn, ψ): We assume that given a topic zmn the word wmn is drawn
from a multinomial distribution ψwmn,zmn . That is p(wmn|zmn, ψ) = ψwmn,zmn . This is entirely
standard as per the basic LDA model.

Conjugate distribution p(ψk|βk): As by default, we assume that ψk is distributed according to a
Dirichlet distribution with parameters βk. The key difference is that here we do not assume that all
coordinates of βk are identical. Nor do we assume that all βk are the same.

Collapsed distribution p(w|z, β): Integrating out ψk for all topics k yields the following

p(w|z, β) =
K∏

k=1

∏V
v=1 Γ(nKV

kv + βkv)
Γ

(
nK

k + ‖βk‖1
) Γ (‖βk‖1)∏V

v=1 Γ(βkv)

2.2 Priors

In order to better control the capacity of our model, we impose a prior on naturally related words,
e.g. the (’Toyota’, ’Kia’) and the (’Bush’, ’Cheney’) tuples, rather than generally related words.
For this purpose we design a similarity graph G(V,E) with words represented as vertices V and
similarity edge weights φuv between vertices u, v ∈ V whenever u is related to v. In particular, the
magnitude of φuv can denote the similarity between words u and v.

In the following we denote by ykv the topic dependent smoothing coefficients for a given word v
and topic k. We impose the smoother

log βkv = ykv + yv and log p(β) =
−1
2λ2




∑

v,v′,k

φv,v′(ykv − ykv′)2 +
∑

v

y2
v





where log p(β) is given up to an additive constant and yv allows for multiplicative topic-unspecific
corrections. A similar model was used by [3] to capture temporal dependence between topic mod-
els computed at different time instances, e.g. when dealing with topic drift over several years in a
scientific journal. There the vertices are words at a given time and the edges are between smoothers
instantiated at subsequent years.

3 Inference

In analogy to the collapsed sampler of [8] we also represent the model in a collapsed fashion. That
is, we integrate out the random variables θm (the document topic distributions) and ψkv (the topic

3



word distributions), which leads to a joint likelihood in terms of the actual words wmn, the side
information φ about words, the latent variable y, the smoothing hyperprior βkv , and finally, the
topic assignments zmn.

3.1 Document Likelihood

The likelihood contains two terms: a word-dependent term which can be computed on the fly while
resampling data1, and a model-dependent term involving the topic counts and the word-topic counts
which can be computed by one pass through the aggregate tables respectively. Let us first write out
the uncollapsed likelihood in terms of z, θ, ψ, α, β. We have

p(w, z, θ, ψ|α, β) =
M∏

m=1

Nm∏

n=1

p(wmn|zmn, ψ)p(zmn|θm)
M∏

m=1

p(θm|α)
K∏

k=1

p(ψk|β)

Define ᾱ := ‖α‖1 and β̄k := ‖βk‖1. Integrating out θ and ψ yields

p(w, z|α, β) =
M∏

m=1

Γ(ᾱ)
Γ(ᾱ + nM

m)

∏

k:nKM
km #=0

Γ(αk + nKM
km )

Γ(αk)

K∏

k=1

Γ(β̄k)
Γ(β̄k + nK

k )

∏

v:nKV
kv #=0

Γ(βkv + nKV
kv )

Γ(βkv)

The above product is obtained simply by canceling out terms in denominator and numerator where
the counts vanish. This is computationally significant, since it allows us to evaluate the normalization
for sparse count tables with cost linear in the number of nonzero coefficients rather than cost in the
dense count table.

3.2 Collapsed Sampler

In order to perform inference we need two components: a sampler which is able to draw from
p(zi = k|w, z¬i, α, β)2, and an estimation procedure for (β, y). The sampler is essentially the same
as in standard LDA. For the count variables nKM, nKV, nK and nM we denote by the subscript ‘−’
their values after the word wmn and associated topic zmn have been removed from the statistics.
Standard calculations yield the following topic probability for resampling:

p(zmn = k|rest) ∝
[
βkv + nKV

kvmn−
] [

nKM
km− + αk

]

nK
k− + β̄k

(6)

In the appendix we detail how to addapt the sampler of [19] to obtain faster sampling.

3.3 Topic Smoother for β

Optimizing over y is considerably hard since the log-likelihood does not decompose efficiently. This
is due to the dependence of β̄k on all words in the dictionary. The data-dependent contribution to
the negative log-likelihood is

Lβ =
K∑

k=1

[
log Γ(β̄k + nK

k )− log Γ(β̄k)
]
+

K∑

k=1

∑

v:nKV
kv #=0

[
log Γ(βkv)− log Γ(βkv + nKV

kv )
]

with gradients given by the appropriate derivatives of the Γ function. We use the prior from section
2.2, which smooths between closely related words only. After choosing edges φuv according to
these matching words, we obtain an optimisation problem directly in terms of the variables ykv and
yv . Denote by N(v) the neighbours for word v in G(V,E), and Υ(x) := ∂x log Γ(x) the Digamma
function. We have

∂ykv [Lβ − log p(β)] =
1
λ2

∑

v′∈N(v)

φv,v′ [ykv − ykv′ ] + βkv

(
Υ(β̄k + nK

k )−Υ(β̄k) +

+
{
nKV

kv > 0
} [

Υ(βkv)−Υ(βkv + nKV
kv )

] )
.

The gradient with respect to yk is analogous.
1Note that this is not entirely correct — the model changes slightly during one resampling pass, hence the

log-likelihood that we compute is effectively the averaged log-likelihood due to an ongoing sampler. For a
correct computation we would need to perform one pass through the data without resampling. Since this is
wasteful, we choose the approximation instead.

2Here zi denotes the topic of word i, and z¬i the topics of all words in the corpus except for i.
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4 Experiments

To demonstrate the usefulness of our model we applied it to a multi-lingual document collection,
where we can show a substantial improvement over the standard LDA model on the coordination
between topics of different languages.

4.1 Dataset

Since our goal is to compare topic distributions on different languages we used a parallel corpus
[11] with the proceedings of the European Parliament in 11 languages. We focused on two language
pairs: English/French and English/Portuguese.

Note that a parallel corpus is not necessary for the application of the proposed model – it is being
used here only because it allows us to properly evaluate the effectiveness of our model.3

We treated the transcript of each speaker in each session as a document, since different speakers
usually talk about different topics. We randomly sampled 1000 documents from each language,
removed infrequent4 and frequent5 words and kept only the documents with at least 20 words. Fi-
nally, we removed all documents that lost their corresponding translations in this process. After this
preprocessing we were left with 2415 documents, 805 in each language, and a vocabulary size of
23883 words.

4.2 Baselines

We compared our model to standard LDA, learning α and β, both asymmetric6.

4.3 Prior

We imposed the graph based prior mentioned in Section 2.2. To build our similarity graph we used
the English-French and English-Portuguese dictionaries from http://wiki.webz.cz/dict/,
augmented with translations from Google Translate for the most frequent words in our dataset. As
described earlier, each word corresponds to a vertex, with an edge7 whenever two words match in
the dictionary.

In our model β = exp(ykv + yv), so we want to keep both ykv and yv reasonably low to avoid
numerical problems, as a large value of either would lead to overflows. We ensure that by setting λ,
the standard deviation of their prior, fixed to one in all experiments. We did the same for the standard
LDA model, where to learn an asymmetric beta we simply removed ykv to get β = exp(yv).

4.4 Methodology

In our experiments we used all the English documents and a subset of the French and Portuguese
ones – this is what we have in a real application, when we try to learn a topic model from web pages:
the number of pages is English is far greater than in any other language.

We compared three approaches. First, we run the standard LDA model with all documents mixed
together – this is one of our baselines, which we call STD1.

Next we run our proposed model, but with a slight modification to the setup: in the first half of the
iterations of the Gibbs sampler we include only English documents; in the second half we add the
French and Portuguese ones to the mix.8

3To emphasise this point, later in this section we show experiments with non-parallel corpora, in which case
we have to rely on visual inspection to assess the outcomes.

4Words that occurred less than 3 times in the corpus.
5Words that occurred more than M/10 times in the corpus, where M is the total number of documents.
6That is, we don’t assume all coordinates of α and β are identical.
7All edges have a fixed weight of one in this case.
8We need to start with only one language so that an initial topic-word distribution is built; once that is done

the priors are learned and can be used to guide the topic-word distributions in other languages.
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Finally, as a control experiment we run the standard LDA model in this same setting: first English
documents, then all languages mixed. We call this STD2.

In all experiments we run the Gibbs sampler for a total of 3000 iterations, with the number of topics
fixed to 20, and keep the last sample. After a burn-in of 500 iterations, the optimisation over the word
smoothing coefficients is done every 100 iterations, using an off-the-shelf L-BFGS [12] optimizer.9.
We repeat every experiment 5 times with different randomisations.

4.5 Evaluation

Evaluation of topic models is an open problem – recent work [7] suggests that popular measures
based on held-out likelihood, such as perplexity, do not capture whether topics are coherent or
not. Furthermore, we need a set of measures that can assess whether or not we improved over
the standard LDA model w.r.t. our goal – to synchronize topics across different languages – and
there’s no reason to believe that likelihood measures would assess that: a model where topics are
synchronized across languages is not necessarily more likely than a model that is not synchronized.
Therefore, to evaluate our model we compare the topic distributions of each English document with
its corresponding French pair (and analogously for the other combinations: English/Portuguese and
French/Portuguese), with these metrics:

Mean )2 distance:
1

|L1|
∑

d1∈L1,d2=F (d1)

(∑K
k=1

(
θd1

k − θd2
k

)2
) 1

2

where L1 denotes the set of documents in the first language, F a mapping from a document
in the first language to its corresponding translation in the second language and θd the topic
distribution of document d.

Mean Hellinger distance: 1
|L1|

∑
d1∈L1,d2=F (d1)

∑K
k=1

(√
θd1

k −
√

θd2
k

)2

Agreements on first topic: 1
|L1|

∑
d1∈L1,d2=F (d1)

I(argmaxk θd1
k , argmaxk θd2

k ))
where I is the indicator function – that is, the proportion of document pairs where the most
likely topic is the same for both languages.

Mean number of agreements in top 5 topics: 1
|L1|

∑
d1∈L1,d2=F (d1)

agreements(d1, d2)
where agreements(d1, d2) is the cardinality of the intersection of the 5 most likely topics
of d1 and d2.

4.6 Results

In Figure 3 we compare our method (DC) to the standard LDA model (STD1 and STD2, see section
4.4), for the English-French pair10. In all metrics our proposed model shows a substantial improve-
ment over the standard LDA model.

In Figures 4 and 5 we do the same for the English-Portuguese and Portuguese-French pairs, re-
spectively, with similar results. Note that we did not use a Portuguese-French dictionary in any
experiment.

In Figure 6 we plot the word smoothing prior for the English word democracy and its French and
Portuguese translations, démocratie and democracia, for both the standard LDA model (STD1) and
our model (DC), with 20% of the French and Portuguese documents used in training. In STD1
we don’t have topic-specific priors (hence the horizontal line) and the word democracy has a much
higher prior, because it happens more often in the dataset (since we have all English documents and
only 20% of the French and Portuguese ones). In DC, however, the priors are topic-specific and
quite similar, as this is enforced by the similarity graph.

9http://www.chokkan.org/software/liblbfgs
10See the Appendix for run times.
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To emphasize that we do not need a parallel corpus we ran a second experiment where we selected
the same number of documents of each language, but assuring that for each document its corre-
sponding translations are not in the dataset, and trained our model (DC) with 100 topics. This could
be done with any multilingual corpus, since no parallelization is required. In this case, however, we
cannot compute the distance metrics as before, since we have no information on the actual topic dis-
tributions of the documents. The best we can hope to do is to visually inspect the most likely words
for the learned topics. This is shown in Table 1, for some selected topics, where the synchronization
amongst the different languages is clear.
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Figure 3: Comparison of topic distributions in English and French documents. See text for details.
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Figure 4: Comparison of topic distributions in English and Portuguese documents. See text.
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Figure 5: Comparison of topic distributions in Portuguese and French documents. See text.
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Figure 6: Word smoothing prior for two words in the standard LDA and in our model. The x-axis is
the index to the topic. See text for details.

5 Extensions: Other Features
Although we have implemented a specific type of feature encoding for the words, our model admits
a large range of applications through a suitable choice of features. In the following we discuss a
number of them in greater detail.
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Table 1: Top 10 words for some of the learned topics (from top to bottom, respectively, topics 8, 17,
20, 32, 49). Words are colored according to their language – English, Portuguese or French – except
when ambiguous (e.g., information is a word in both French and English). See text for details.

amendments, alterações, amendment, amendements, alteração, use, substances, règlement, l’amendement, accept
élections, electoral, elections, députés, eleições, partis, proportional, eleitoral, transnational, scrutin
informação, information, regiões, société, l’information, acesso, aeroplanes, prix, régions, comunicação
stability, coordination, estabilidade, central, coordenação, plans, objectivo, stabilité, ue, list
monnaie, consumers, consumidores, consommateurs, l’euro, crois, s’agit, moeda, pouvoir, currency

5.1 Single Language

Distributional Similarity: The basic idea is that words are similar if they occur in a similar context
[16]. Hence, one could build a graph as outlined in Section 2.2 with edges only between words
which exceed a level of proximity.

Lexical Similarity: For interpolation between words one could use a distribution over substrings
of a word as the feature map. This is essentially what is proposed by [18]. Such lexical similarity
makes the sampler less sensitive to issues such as stemming: after all, two words which reduce to
the same stem will also have a high lexical similarity score, hence the estimated βkv will yield very
similar topic assignments.

Synonyms and Thesauri: Given a list of synonyms it is reasonable to assume that they belong
to related topics. This can be achieved by adding edges between a word and all of its synonyms.
Since in our framework we only use this information to shape a prior, errors in the synonym list and
multiple meanings of a word will not prove fatal.

5.2 Multiple Languages

Lexical Similarity: Similar considerations apply for inter-lingual topic models. It is reasonable to
assume that lexical similarity generally points to similarity in meaning. Using such features should
allow one to synchronise topics even in the absence of dictionaries. However, it is important that
similarities are not hardcoded but only imposed as a prior on the topic distribution (e.g., ’gift’ has
different meanings in English and German).

6 Discussion

In this paper we described a simple yet general formalism for incorporating word features into LDA,
which among other things allows us to synchronise topics across different languages. We performed
a number of experiments in the multiple-language setting, in which the goal was to show that our
model is able to incorporate dictionary information in order to improve topic alignment across dif-
ferent languages. Our experimental results reveal substantial improvement over the LDA model in
the quality of topic alignment, as measured by several metrics, and in particular we obtain much
improved topic alignment even across languages for which a dictionary is not used (as described in
the Portuguese/French plots, see Figure 5). We also showed that the algorithm is quite effective even
in the absence of documents that are explicitly denoted as being aligned (see Table 1). This sets it
apart from [13], which requires that a significant fraction (at least 25%) of documents are paired up.
Also, the model is not limited to lexical features. Instead, we could for instance also exploit syn-
tactical information such as parse trees. For instance, noun / verb disambiguation or named entity
recognition are all useful in determining the meaning of words and therefore it is quite likely that
they will also aid in obtaining an improved topical mixture model.
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