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Abstract

We address the problem of estimating the Fα-measure of a given model as accu-
rately as possible on a fixed labeling budget. This problem occurs whenever an
estimate cannot be obtained from held-out training data; for instance, when data
that have been used to train the model are held back for reasons of privacy or do
not reflect the test distribution. In this case, new test instances have to be drawn
and labeled at a cost. An active estimation procedure selects instances according
to an instrumental sampling distribution. An analysis of the sources of estimation
error leads to an optimal sampling distribution that minimizes estimator variance.
We explore conditions under which active estimates of Fα-measures are more ac-
curate than estimates based on instances sampled from the test distribution.

1 Introduction

This paper addresses the problem of evaluating a given model in terms of its predictive performance.
In practice, it is not always possible to evaluate a model on held-out training data; consider, for
instance, the following scenarios. When a readily trained model is shipped and deployed, training
data may be held back for reasons of privacy. Secondly, training data may have been created under
laboratory conditions and may not entirely reflect the test distribution. Finally, when a model has
been trained actively, the labeled data is biased towards small-margin instances which would incur
a pessimistic bias on any cross-validation estimate.

This problem has recently been studied for risks—i.e., for performance measures which are integrals
of a loss function over an instance space [7]. However, several performance measures cannot be
expressed as a risk. Perhaps the most prominent such measure is the Fα-measure [10]. For a given
binary classifier and sample of size n, let ntp and nfp denote the number of true and false positives,
respectively, and nfn the number of false negatives. Then the classifier’s Fα-measure on the sample
is defined as

Fα =
ntp

α(ntp + nfp) + (1− α)(ntp + nfn)
. (1)

Precision and recall are special cases for α = 1 and α = 0, respectively. The Fα-measure is
defined as an estimator in terms of empirical quantities. This is unintuitive from a statistical point of
view and raises the question which quantity of the underlying distribution the F -measure actually
estimates. We will now introduce the class of generalized risk functionals that we study in this paper.
We will then show that Fα is a consistent estimate of a quantity that falls into this class.

LetX denote the feature space andY the label space. An unknown test distribution p(x, y) is defined
over X × Y . Let p(y|x; θ) be a given θ-parameterized model of p(y|x) and let fθ : X → Y with
fθ(x) = arg maxy p(y|x; θ) be the corresponding hypothesis.

Like any risk functional, the generalized risk is parameterized with a function ` : Y × Y → R
determining either the loss or—alternatively—the gain that is incurred for a pair of predicted and
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true label. In addition, the generalized risk is parameterized with a function w that assigns a weight
w(x, y, fθ) to each instance. For instance, precision sums over instances with fθ(x) = 1 with
weight 1 and gives no consideration to other instances. Equation 2 defines the generalized risk:

G =

∫∫
`(fθ(x), y)w(x, y, fθ)p(x, y)dydx∫∫

w(x, y, fθ)p(x, y)dydx
. (2)

The integral over Y is replaced by a sum in the case of a discrete label space Y . Note that the
generalized risk (Equation 2) reduces to the regular risk for w(x, y, fθ) = 1. On a sample of size
n, a consistent estimator can be obtained by replacing the cumulative distribution function with the
empirical distribution function.
Proposition 1. Let (x1, y1), . . . , (xn, yn) be drawn iid according to p(x, y). The quantity

Ĝn =

∑n
i=1 `(fθ(xi), yi)w(xi, yi, fθ)∑n

i=1 w(xi, yi, fθ)
(3)

is a consistent estimate of the generalized risk G defined by Equation 2.

Proof. The proposition follows from Slutsky’s theorem [3] applied to the numerator and denomina-
tor of Equation 3.

Consistency means asymptotical unbiasedness; that is, the expected value of the estimate Ĝn con-
verges in distribution to the true risk G for n→∞. We now observe that Fα-measures—including
precision and recall—are consistent empirical estimates of generalized risks for appropriately cho-
sen functions w.
Corollary 1. Fα is a consistent estimate of the generalized risk with Y = {0, 1}, w(x, y, fθ) =
αfθ(x) + (1− α)y and ` = 1− `0/1, where `0/1 denotes the zero-one loss.

Proof. The claim follows from Proposition 1 since

Ĝn =

∑n
i=1(1− `0/1(fθ(xi), yi)) (αfθ(xi) + (1− α)yi)∑n

i=1 (αfθ(xi) + (1− α)yi)

=

∑n
i=1 fθ(xi)yi

α
∑n
i=1 fθ(xi) + (1− α)

∑n
i=1 yi

=
ntp

α (ntp + nfp) + (1− α) (ntp + nfn)
.

Having established and motivated the generalized risk functional, we now turn towards the problem
of acquiring a consistent estimate with minimal estimation error on a fixed labeling budget n. Test
instances x1, ...,xn need not necessarily be drawn according to the distribution p. Instead, we study
an active estimation process that selects test instances according to an instrumental distribution q.
When instances are sampled from q, an estimator of the generalized risk can be defined as

Ĝn,q =

∑n
i=1

p(xi)
q(xi)

`(fθ(xi), yi)w(xi, yi, fθ)∑n
i=1

p(xi)
q(xi)

w(xi, yi, fθ)
(4)

where (xi, yi) are drawn from q(x)p(y|x). Weighting factors p(xi)
q(xi)

compensate for the discrepancy
between test and instrumental distributions. Because of the weighting factors, Slutsky’s Theorem
again implies that Equation 4 defines a consistent estimator for G, under the precondition that for all
x ∈ X with p(x) > 0 it holds that q(x) > 0. Note that Equation 3 is a special case of Equation 4,
using the instrumental distribution q = p.

The estimate Ĝn,q given by Equation 4 depends on the selected instances (xi, yi), which are drawn
according to the distribution q(x)p(y|x). Thus, Ĝn,q is a random variable whose distribution de-
pends on q. Our overall goal is to determine the instrumental distribution q such that the expected
deviation from the generalized risk is minimal for fixed labeling costs n:

q∗ = arg min
q

E
[(
Ĝn,q −G

)2]
.
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2 Active Estimation through Variance Minimization

The bias-variance decomposition expresses the estimation error as a sum of a squared bias and a
variance term [5]:

E
[
(Ĝn,q −G)2

]
=
(
E
[
Ĝn,q

]
−G

)2
+ E

[(
Ĝn,q − E

[
Ĝn,q

])2]
(5)

= Bias2[Ĝn,q] + Var[Ĝn,q]. (6)

Because Ĝn,q is consistent, both Bias2[Ĝn,q] and Var[Ĝn,q] vanish for n → ∞. More specifically,
Lemma 1 shows that Bias2[Ĝn,q] is of order 1

n2 .

Lemma 1 (Bias of Estimator). Let Ĝn,q be as defined in Equation 4. Then there exists C ≥ 0 with∣∣∣E [Ĝn,q]−G∣∣∣ ≤ C

n
. (7)

The proof can be found in the online appendix. Lemma 2 states that the active risk estimator Ĝn,q
is asymptotically normally distributed, and characterizes its variance in the limit.

Lemma 2 (Asymptotic Distribution of Estimator). Let Ĝn,q be defined as in Equation 4. Then,

√
n
(
Ĝn,q −G

)
n→∞−→ N

(
0, σ2

q

)
(8)

with asymptotic variance

σ2
q =

∫
p(x)

q(x)

(∫
w(x, y, fθ)

2 (`(fθ(x), y)−G)
2
p(y|x)dy

)
p(x)dx (9)

where n→∞−→ denotes convergence in distribution.

A proof of Lemma 2 can be found in the appendix. Taking the variance of Equation 8, we obtain

nVar
[
Ĝn,q

]
n→∞−→ σ2

q , (10)

thus Var[Ĝn,q] is of order 1
n . As the bias term vanishes with 1

n2 , the expected estimation error
E[(Ĝn,q − G)2] will be dominated by Var[Ĝn,q]. Moreover, Equation 10 indicates that Var[Ĝn,q]
can be approximately minimized by minimizing σ2

q . In the following, we will consequently derive a
sampling distribution q∗ that minimizes the asymptotic variance σ2

q of the estimator Ĝn,q .

2.1 Optimal Sampling Distribution

The following theorem derives the sampling distribution that minimizes the asymptotic variance σ2
q :

Theorem 1 (Optimal Sampling Distribution). The instrumental distribution that minimizes the
asymptotic variance σ2

q of the generalized risk estimator Ĝn,q is given by

q∗(x) ∝ p(x)

√∫
w(x, y, fθ)2 (`(fθ(x), y)−G)

2
p(y|x)dy. (11)

A proof of Theorem 1 is given in the appendix. Since F -measures are estimators of generalized
risks according to Corollary 1, we can now derive their variance-minimizing sampling distributions.

Corollary 2 (Optimal Sampling for Fα). The sampling distribution that minimizes the asymptotic
variance of the Fα-estimator resolves to

q∗(x) ∝
{
p(x)

√
p(fθ(x)|x)(1−G)2 + α2(1− p(fθ(x)|x))G2 : f(x) = 1

p(x)(1− α)
√

(1− p(fθ(x)|x))G2 : f(x) = 0
(12)
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Algorithm 1 Active Estimation of Fα-Measures
input Model parameters θ, pool D, labeling costs n.
output Generalized risk estimate Ĝn,q∗ .

1: Compute optimal sampling distribution q∗ according to Corollary 2, 3, or 4, respectively.
2: for i = 1, . . . , n do
3: Draw xi ∼ q∗(x) from D with replacement.
4: Query label yi ∼ p(y|xi) from oracle.
5: end for
6: return

∑n
i=1

1
q(xi)

`(fθ(xi),yi)w(xi,yi,fθ)∑n
i=1

1
q(xi)

w(xi,yi,fθ)

Proof. According to Corollary 1, Fα estimates a generalized risk with Y = {0, 1}, w(x, y, fθ) =
αfθ(x) + (1− α)y and ` = 1− `0/1. Starting from Theorem 1, we derive

q∗(x) ∝ p(x)

√ ∑
y∈{0,1}

(αfθ(x) + (1− α)y)
2 (

1− `0/1(fθ(x), y)−G
)2
p(y|x) (13)

= p(x)
(
α2fθ(x) ((1− fθ(x))−G)

2
p(y = 0|x)

+ (1− α(1− fθ(x)))
2

(fθ(x)−G)
2
p(y = 1|x)

) 1
2

(14)

The claim follows by case differentiation according to the value of fθ(x).

Corollary 3 (Optimal Sampling for Recall). The sampling distribution that minimizes σ2
q for recall

resolves to

q∗(x) ∝
{
p(x)

√
p(fθ(x)|x)(1−G)2 : f(x) = 1

p(x)
√

(1− p(fθ(x)|x))G2 : f(x) = 0.
(15)

Corollary 4 (Optimal Sampling for Precision). The sampling distribution that minimizes σ2
q for

precision resolves to

q∗(x) ∝ p(x)fθ(x)
√

(1− 2G)p(fθ(x)|x) +G2. (16)

Corollaries 3 and 4 directly follow from Corollary 2 for α = 0 and α = 1. Note that for standard
risks (that is, w = 1) Theorem 1 coincides with the optimal sampling distribution derived in [7].

2.2 Empirical Sampling Distribution

Theorem 1 and Corollaries 2, 3, and 4 depend on the unknown test distribution p(x). We now turn
towards a setting in which a large poolD of unlabeled test instances is available. Instances from this
pool can be sampled and then labeled at a cost. Drawing instances from the pool replaces generating
them under the test distribution; that is, p(x) = 1

m for all x ∈ D.

Theorem 1 and its corollaries also depend on the true conditional p(y|x). To implement the method,
we have to approximate the true conditional p(y|x); we use the model p(y|x; θ). This approximation
constitutes an analogy to active learning: In active learning, the model-based output probability
p(y|x; θ) serves as the basis on which the least confident instances are selected. Note that as long as
p(x) > 0 implies q(x) > 0, the weighting factors ensure that such approximations do not introduce
an asymptotic bias in our estimator (Equation 4). Finally, Theorem 1 and its corollaries depend on
the true generalized riskG. G is replaced by an intrinsic generalized risk calculated from Equation 2,
where the integral over X is replaced by a sum over the pool, p(x) = 1

m , and p(y|x) ≈ p(y|x; θ).

Algorithm 1 summarizes the procedure for active estimation of F -measures. A special case occurs
when the labeling process is deterministic. Since instances are sampled with replacement, elements
may be drawn more than once. In this case, labels can be looked up rather than be queried from the
deterministic labeling oracle repeatedly. The loop may then be continued until the labeling budget
is exhausted. Note that F -measures are undefined when the denominator is zero which is the case
when all drawn examples have a weight w of zero. For instance, precision is undefined when no
positive examples have been drawn.
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2.3 Confidence Intervals

Lemma 2 shows that the estimator Ĝn,q is asymptotically normally distributed and character-
izes its asymptotic variance. A consistent estimate of σ2

q is obtained from the labeled sample
(x1, y1), . . . , (xn, yn) drawn from the distribution q(x)p(y|x) by computing empirical variance

S2
n,q =

1∑n
i=1

p(xi)
q(xi)

n∑
i=1

(
p(xi)

q(xi)

)2

w(xi, yi, fθ)
2
(
`(fθ(xi), yi)− Ĝn,q

)2
.

A two-sided confidence interval [Ĝn,q − z, Ĝn,q + z] with coverage 1 − ρ is now given by
z = F−1n

(
1− ρ

2

) Sn,q√
n

where F−1n is the inverse cumulative distribution function of the Student’s t
distribution. As in the standard case of drawing test instances xi from the original distribution p,
such confidence intervals are approximate for finite n, but become exact for n→∞.

3 Empirical Studies

We compare active estimation of Fα-measures according to Algorithm 1 (denoted activeF ) to esti-
mation based on a sample of instances drawn uniformly from the pool (denoted passive). We also
consider the active estimator for risks presented in [7]. Instances are drawn according to the opti-
mal sampling distribution q∗0/1 for zero-one risk (Derivation 1 in [7]); the Fα-measure is computed
according to Equation 4 using q = q∗0/1 (denoted activeerr).

3.1 Experimental Setting and Domains

For each experimental domain, data is split into a training set and a pool of test instances. We
train a kernelized regularized logistic regression model p(y|x; θ) (using the implementation of Ya-
mada [11]). All methods operate on identical labeling budgets n. The evaluation process is averaged
over 1,000 repetitions. In case one of the repetitions results in an undefined estimate, the entire ex-
periment is discarded (i.e., there is no data point for the method in the corresponding diagram).

Spam filtering domain. Spammers impose a shift on the distribution over time as they implement
new templates and generators. In our experiments, a filter trained in the past has to be evaluated
with respect to a present distribution of emails. We collect 169,612 emails from an email service
provider between June 2007 and April 2010; of these, 42,165 emails received by February 2008 are
used for training. Emails are represented by 541,713 binary bag-of-word features. Approximately
5% of all emails fall into the positive class non-spam.

Text classification domain. The Reuters-21578 text classification task [4] allows us to study the
effect of class skew, and serves as a prototypical domain for active learning. We experiment on the
ten most frequently occurring topics. We employ an active learner that always queries the example
with minimal functional margin p(fθ(x)|x; θ)−maxy 6=fθ(x) p(y|x; θ) [9]. The learning process is
initialized with one labeled training instance from each class, another 200 class labels are queried.

Digit recognition domain. We also study a digit recognition domain in which training and test data
originate from different sources. A detailed description is included in the online appendix.

3.2 Empirical Results

We study the performance of active and passive estimates as a function of (a) the precision-recall
trade-off parameter α, (b) the discrepancy between training and test distribution, and (c) class skew
in the test distribution. Point (b) is of interest because active estimates require the approximation
p(y|x) ≈ p(y|x; θ); this assumption is violated when training and test distributions differ.

Effect of the trade-off parameter α. For the spam filtering domain, Figure 1 shows the average
absolute estimation error for F0 (recall), F0.5, and F1 (precision) estimates on a test set of 33,296
emails received between February 2008 and October 2008. The active generalized risk estimate
activeF significantly outperforms the passive estimate passive for all three measures. In order
to reach the estimation accuracy of passive with a labeling budget of n = 800, activeF requires
fewer than 150 (recall), 200 (F0.5), or 100 (precision) labeled test instances. Estimates obtained from
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Figure 1: Spam filtering: Estimation error over labeling costs. Error bars indicate the standard error.
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Figure 2: Spam filtering: Optimal sampling distribution q∗ for Fα over log-odds (left). Ratio of
passive and active estimation error, error bars indicate standard deviation (center). Estimation error
over class ratio, logarithmic scale, error bars indicate standard errors (right).

activeF are at least as accurate as those of activeerr, and more accurate for high α values. Results
obtained in the digit recognition domain are consistent with these findings (see online appendix).

Figure 2 (left) shows the sampling distribution q∗(x) for recall, precision and F0.5-measure in the
spam filtering domain as a function of the classifier’s confidence, characterized by the log-odds ratio
log p(y=1|x;θ)

p(y=0|x;θ) . The figure also shows the optimal sampling distribution for zero-one risk as used
in activeerr (denoted “0/1-Risk”). We observe that the precision estimator dismisses all examples
with fθ(x) = 0; this is intuitive because precision is a function of true-positive and false-positive
examples only. By contrast, the recall estimator selects examples on both sides of the decision
boundary, as it has to estimate both the true positive and the false negative rate. The optimal sampling
distribution for zero-one risk is symmetric, it prefers instances close to the decision boundary.

Effect of discrepancy between training and test distribution. We keep the training set of emails
fixed and move the time interval from which test instances are drawn increasingly further away
into the future, thereby creating a growing gap between training and test distribution. Specifically,
we divide 127,447 emails received between February 2008 and April 2010 into ten different test
sets spanning approximately 2.5 months each. Figure 2 (center, red curve) shows the discrepancy
between training and test distribution measured in terms of the exponentiated average log-likelihood
of the test labels given the model parameters θ. The likelihood at first continually decreases. It grows
again for the two most recent batches; this coincides with a recent wave of text-based vintage spam.
Figure 2 (center, blue curve) also shows the ratio of passive-to-active estimation errors |Ĝn−G|

|Ĝn,q∗−G|
. A

value above one indicates that the active estimate is more accurate than a passive estimate. The active
estimate consistently outperforms the passive estimate; its advantage diminishes when training and
test distributions diverge and the assumption of p(y|x) ≈ p(y|x; θ) becomes less accurate.

Effect of class skew. In the spam filtering domain we artificially sub-sampled data to different ratios
of spam and non-spam emails. Figure 2 (right) shows the performance of activeF , passive, and
activeerr for F0.5 estimation as a function of class skew. We observe that activeF outperforms
passive consistently. Furthermore, activeF outperforms activeerr for imbalanced classes, while
the approaches perform comparably when classes are balanced. This finding is consistent with the
intuition that accuracy and F -measure diverge more strongly for imbalanced classes.
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Figure 3: Text classification: Estimation error over number of labeled data for infrequent (left) and
frequent (center) class. Estimation error over class ratio for all ten classes, logarithmic scale (right).
Error bars indicate the standard error.

In the text classification domain we estimate the F0.5-measure for ten one-versus-rest classifiers.
Figure 3 shows the estimation error of activeF , passive, and activeerr for an infrequent class
(“crude”, 4.41%, left) and a frequent class (“earn”, 51.0%, center). These results are representative
for other frequent and infrequent classes, all results are included in the online appendix. Figure 3
(right) shows the estimation error of activeF , passive, and activeerr on all ten one-versus-rest
problems as a function of the problem’s class skew. We again observe that activeF outperforms
passive consistently, and activeF outperforms activeerr for strongly skewed class distributions.

4 Related Work

Sawade et al. [7] derive a variance-minimizing sampling distribution for risks. Their result does not
cover F -measures. Our experimental findings show that for estimating F -measures their variance-
minimizing sampling distribution performs worse than the sampling distributions characterized by
Theorem 1, especially for skewed class distributions.

Active estimation of generalized risks can be considered to be a dual problem of active learning; in
active learning, the goal of the selection process is to minimize the variance of the predictions or
the variance of the model parameters, while in active evaluation the variance of the risk estimate
is reduced. The variance-minimizing sampling distribution derived in Section 2.1 depends on the
unknown conditional distribution p(y|x). We use the model itself to approximate this distribution
and decide on instances whose class labels are queried. This is analogous to many active learning
algorithms. Specifically, Bach derives a sampling distribution for active learning under the assump-
tion that the current model gives a good approximation to the conditional probability p(y|x) [1]. To
compensate for the bias incurred by the instrumental distribution, several active learning algorithms
use importance weighting: for regression [8], exponential family models [1], or SVMs [2].

Finally, the proposed active estimation approach can be considered an instance of the general prin-
ciple of importance sampling [6], which we employ in the context of generalized risk estimation.

5 Conclusions

Fα-measures are defined as empirical estimates; we have shown that they are consistent estimates
of a generalized risk functional which Proposition 1 identifies. Generalized risks can be estimated
actively by sampling test instances from an instrumental distribution q. An analysis of the sources
of estimation error leads to an instrumental distribution q∗ that minimizes estimator variance. The
optimal sampling distribution depends on the unknown conditional p(y|x); the active generalized
risk estimator approximates this conditional by the model to be evaluated.

Our empirical study supports the conclusion that the advantage of active over passive evaluation
is particularly strong for skewed classes. The advantage of active evaluation is also correlated
to the quality of the model as measured by the model-based likelihood of the test labels. In our
experiments, active evaluation consistently outperformed passive evaluation, even for the greatest
divergence between training and test distribution that we could observe.
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Appendix

Proof of Lemma 2

Let (x1, y1), ..., (xn, yn) be drawn according to q(x)p(y|x). Let Ĝ0
n,q =

∑n
i=1 vi`iwi and Wn =∑n

i=1 viwi with vi = p(xi)
q(xi)

, wi = w(xi, yi, fθ) and `i = `(fθ(xi), yi). We note that E
[
Ĝ0
n,q

]
=

nGE [wi] and E [Wn] = nE [wi]. The random variables w1v1, . . . , wnvn and w1`1v1, . . . , wn`nvn
are iid, therefore the central limit theorem implies that 1

n Ĝ
0
n,q and 1

nWn are asymptotically normally
distributed with

√
n

(
1

n
Ĝ0
n,q −GE [wi]

)
n→∞−→ N (0,Var[wi`ivi]) (17)

√
n

(
1

n
Wn − E [wi]

)
n→∞−→ N (0,Var[wivi]) (18)

where n→∞−→ denotes convergence in distribution. Application of the delta method to the func-
tion f(x, y) = x

y yields

√
n

(
1
n Ĝ

0
n,q

1
nWn

−G

)
n→∞−→ N (0,∇f (GE [wi] ,E [wi])

T
Σ∇f (GE [wi] ,E [wi]))

where∇f denotes the gradient of f and Σ is the asymptotic covariance matrix of the input arguments

Σ =

(
Var[wi`ivi] Cov[wi`ivi, wivi]

Cov[wi`ivi, wivi] Var[wivi]

)
.

Furthermore,

∇f (GE [wi] ,E [wi])
T

Σ∇f (GE [wi] ,E [wi])

= Var [wi`ivi]− 2GCov [wivi, wi`ivi] +G2 Var [wivi]

=E
[
w2
i `

2
i v

2
i

]
− 2GE

[
w2
i `iv

2
i

]
+G2 E

[
w2
i v

2
i

]
=

∫∫ (
p(x)

q(x)

)2

w(x, y, fθ)
2 (`(fθ(x), y)−G)

2
p(y|x)q(x)dydx.

From this, the claim follows by canceling q(x).

Proof of Theorem 1

To minimize the variance with respect to the function q under the the normalization con-
straint

∫
q(x)dx = 1 we define the Lagrangian with Lagrange multiplier β

L [q, β] =

∫
c(x)

q(x)
dx + β

(∫
q(x)dx− 1

)
=

∫
c(x)

q(x)
+ βq(x)︸ ︷︷ ︸

=K(q(x),x)

dx− β, (19)

where c(x) = p(x)2
∫
w(x, y, fθ)

2 (`(fθ(x), y)−G)
2
p(y|x)dy. The optimal function for the con-

strained problem satisfies the Euler-Lagrange equation ∂K
∂q(x) = − c(x)

q(x)2 +β = 0. A solution for this
Equation under the side condition is given by

q∗(x) =

√
c(x)∫ √
c(x)dx

. (20)

Note that we dismiss the negative solution, since q(x) is a probability density function. Resubstitu-
tion of c in Equation 20 implies the theorem.

Acknowledgments

We gratefully acknowledge that this work was supported by a Google Research Award. We wish to
thank Michael Brückner for his help with the experiments on spam data.

8



References

[1] F. Bach. Active learning for misspecified generalized linear models. In Advances in Neural
Information Processing Systems, 2007.

[2] A. Beygelzimer, S. Dasgupta, and J. Langford. Importance weighted active learning. In Pro-
ceedings of the International Conference on Machine Learning, 2009.

[3] H Cramér. Mathematical Methods of Statistics, chapter 20. Princeton University Press, 1946.
[4] A. Frank and A. Asuncion. UCI machine learning repository, 2010.
[5] S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias/variance dilemma.

Neural Computation, 4:1–58, 1992.
[6] J. Hammersley and D. Handscomb. Monte carlo methods. Taylor & Francis, 1964.
[7] C. Sawade, N. Landwehr, S. Bickel, and T. Scheffer. Active risk estimation. In Proceedings of

the 27th International Conference on Machine Learning, 2010.
[8] M. Sugiyama. Active learning in approximately linear regression based on conditional expec-

tation of generalization error. Journal of Machine Learning Research, 7:141–166, 2006.
[9] S. Tong and D. Koller. Support vector machine active learning with applications to text classi-

fication. Journal of Machine Learning Research, pages 45–66, 2002.
[10] C. van Rijsbergen. Information Retrieval. Butterworths, 2nd edition, 1979.
[11] M. Yamada, M. Sugiyama, and T. Matsui. Semi-supervised speaker identification under co-

variate shift. Signal Processing, 90(8):2353–2361, 2010.

9


