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Abstract

Given an ensemble of distinct, low-level segmentations of an image, our goal is to
identify visually “meaningful” segments in the ensemble. Knowledge about any
specific objects and surfaces present in the image is not available. The selection of
image regions occupied by objects is formalized as the maximum-weight indepen-
dent set (MWIS) problem. MWIS is the heaviest subset of mutually non-adjacent
nodes of an attributed graph. We construct such a graph from all segments in
the ensemble. Then, MWIS selects maximally distinctive segments that together
partition the image. A new MWIS algorithm is presented. The algorithm seeks a
solution directly in the discrete domain, instead of relaxing MWIS to a continu-
ous problem, as common in previous work. It iteratively findsa candidate discrete
solution of the Taylor series expansion of the original MWISobjective function
around the previous solution. The algorithm is shown to converge to an optimum.
Our empirical evaluation on the benchmark Berkeley segmentation dataset shows
that the new algorithm eliminates the need for hand-pickingoptimal input pa-
rameters of the state-of-the-art segmenters, and outperforms their best, manually
optimized results.

1 Introduction

This paper presents: (1) a new formulation of image segmentation as the maximum-weight indepen-
dent set (MWIS) problem; and (2) a new algorithm for solving MWIS.

Image segmentation is a fundamental problem, and an area of active research in computer vision
and machine learning. It seeks to group image pixels into visually “meaningful” segments, i.e.,
those segments that are occupied by objects and other surfaces occurring in the scene. The literature
abounds with diverse formulations. For example, normalized-cut [1], and dominant set [2] formu-
late segmentation as a combinatorial optimization problemon a graph representing image pixels.
“Meaningful” segments may give rise to modes of the pixels’ probability distribution [3], or min-
imize the Mumford-Shah energy [4]. Segmentation can also bedone by: (i) integrating edge and
region detection [5], (ii) learning to detect and close object boundaries [6, 7], and (iii) identifying
segments which can be more easily described by their own parts than by other image parts [8, 9, 10].

From prior work, we draw the following two hypotheses. First, surfaces of real-world objects are
typically made of a unique material, and thus their corresponding segments in the image are char-
acterized by unique photometric properties, distinct fromthose of other regions. To capture this
distinctiveness, it seems beneficial to use more expressive, mid-level image features (e.g., superpix-
els, regions) which will provide richer visual informationfor segmentation, rather than start from
pixels. Second, it seems that none of a host of segmentation formulations are able to correctly de-
lineate every object boundary present. However, an ensemble of distinct segmentations is likely to
contain a subset of segments that provides accurate spatialsupport of object occurrences. Based on
these two hypotheses, below, we present a new formulation ofimage segmentation.
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Given an ensemble of segments, extracted from the image by a number of different low-level seg-
menters, our goal is to select those segments from the ensemble that are distinct, and together par-
tition the image area. Suppose all segments from the ensemble are represented as nodes of a graph,
where node weights capture the distinctiveness of corresponding segments, and graph edges con-
nect nodes whose corresponding segments overlap in the image. Then, the selection of maximally
distinctive and non-overlapping segments that will partition the image naturally lends itself to the
maximum-weight independent set (MWIS) formulation.

The MWIS problem is to find the heaviest subset of mutually non-adjacent nodes of an attributed
graph. It is a well-researched combinatorial optimizationproblem that arises in many applications.
It is known to be NP-hard, and hard to approximate [11]. Numerous heuristic approaches exist.
For example, iterated tabu search [12] and branch-and-price [13] use a trial-and-error, greedy search
in the space of possible solutions, with an optimistic complexity estimate ofO(n3), wheren is
the number of nodes in the graph. The message passing [14] relaxes MWIS into a linear program
(LP), and solves it using loopy belief propagation with no guarantees of convergence for general
graphs; the “tightness” of this relaxation holds only for bipartite graphs [15]. The semi-definite
programming formulation of MWIS [16] provides an upper bound of the sum of weights of all
independent nodes in MWIS. However, this is done by reformulating MWIS as a large LP of a new
graph withn2 nodes, which is unsuitable for large-scale problems as ours. Finally, the replicator
dynamics [17, 18] converts the original graph into its complement, and solves MWIS as a continuous
relaxation of the maximum weight clique (MWC) problem. But in some domains, including ours,
important hard constraints captured by edges of the original graph may be lost in this conversion.

In this paper, we present a new MWIS algorithm, which represents a fixed-point iteration, guaran-
teed to converge to an optimum. It goes back and forth betweenthe discrete and continuous domains.
It visits a sequence of points{y(t)}t=1,2,..., defined in the continuous domain,y

(t)∈[0, 1]n. Around
each of these points, the algorithm tries to maximize the objective function of MWIS in the discrete
domain. Each iteration consists of two steps. First, we use the Taylor expansion to approximate
the objective function aroundy(t). Maximization in the discrete domain of the approximation gives
a candidate discrete solution,x̃∈{0, 1}n. Second, ifx̃ increases the original objective, then this
candidate is taken as the current solutionx̃, and the algorithm visits that point in the next iteration,
y

(t+1)=x̃; else, the algorithm visits the interpolation point,y
(t+1)=y

(t)+η(x̃−y
(t)), which can

be shown to be a local maximizer of the original objective fora suitably chosenη. The algorithm
always improves the objective, finally converging to a maximum. For non-convex objective func-
tions, our method tends to pass either through or near discrete solutions, and the best discrete one
x
∗ encountered along the path is returned. Our algorithm has relatively low complexity,O(|E|),

where, in our case,|E| ≪ n2 is the number of edges in the graph, and converges in only a fewsteps.

Contributions: To the best of our knowledge, this paper presents the first formulation of image
segmentation as MWIS. We derive a new MWIS algorithm that haslow complexity, and prove that
it converges to a maximum. Selecting segments from an ensemble so they cover the entire image
and minimize a total energy has been used for supervised object segmentation [19]. They estimate
“good” segments by using classifiers of a pre-selected number of object classes. In contrast, our
input, and our approach are genuinely low-level, i.e., agnostic about any particular objects in the
image. Our MWIS algorithm has lower complexity, and is arguably easier to implement than the
dual decomposition they use for energy minimization. Our segmentation outperforms the state of the
art on the benchmark Berkeley segmentation dataset, and ourMWIS algorithm runs faster and yields
on average more accurate solutions on benchmark datasets than other existing MWIS algorithms.

Overview: Our approach consists of the following steps (see Fig.1).Step 1: The image is segmented
using a number of different, off-the-shelf, low-level segmenters, including meanshift [3], Ncuts [1],
and gPb-OWT-UCM [7]. Since the right scale at which objects occur in the image is unknown, each
of these segmentations is conducted at an exhaustive range of scales.Step 2: The resulting segments
are represented as nodes of a graph whose edges connect only those segments that (partially) overlap
in the image. A small overlap between two segments, relativeto their area, may be ignored, for
robustness. A weight is associated with each node capturingthe distinctiveness of the corresponding
segment from the others.Step 3: We find the MWIS of this graph.Step 4: The segments selected in
the MWIS may not be able to cover the entire image, or may slightly overlap (holes and overlaps are
marked red in Fig.1). The final segmentation is obtained by using standard morphological operators
on region boundaries to eliminate these holes and overlaps.Note that there is no need for Step 4 if
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(a) (b) (c) (d)

Figure 1: Our main steps: (a) Input segments extracted at multiple scales by different segmenta-
tion algorithms; (b) Constructing a graph of all segments, and finding its MWIS (marked green);
(c) Segments selected by our MWIS algorithm (red areas indicate overlaps and holes); (d) Final
segmentation after region-boundary refinement (actual result using Meanshift and NCuts as input).

the input low-level segmentation is strictly hierarchical, as gPb-OWT-UCM [7]. The same holds if
we added the intersections of all input segments to the inputensemble, as in [19], because our MWIS
algorithm will continue selecting non-overlapping segments until the entire image is covered.

Paper Organization: Sec. 2 formulates MWIS, and presents our MWIS algorithm and its theoret-
ical analysis. Sec. 3 formulates image segmentation as MWIS, and describes how to construct the
segmentation graph. Sec. 4 and Sec. 5 present our experimental evaluation and conclusions.

2 MWIS Formulation and Our Algorithm

Consider a graphG = (V, E, ω), whereV andE are the sets of nodes and undirected edges, with
cardinalities|V |=n and|E|, andω : V →R

+ associates positive weightswi to every nodei ∈ V ,
i=1, . . ., n. A subset ofV can be represented by an indicator vectorx=(xi)∈{0, 1}n, wherexi=1
means thati is in the subset, andxi=0 means thati is not in the subset. A subsetx is called an
independent set if no two nodes in the subset are connected byan edge,∀(i, j)∈E : xixj=0. We
are interested in finding a maximum-weight independent set (MWIS), denoted asx∗. MWIS can be
naturally posed as the following integer program (IP):

IP: x
∗ = argmax

x
w

T
x,

s.t. ∀i ∈ V : xi ∈ {0, 1}, and ∀(i, j)∈E: xixj = 0
(1)

The non-adjacency constraint in (1) can be equivalently formalized as
∑

(i,j)∈E xixj=0. The latter

expression can be written as a quadratic constraint,x
TAx=0, whereA=(Aij) is the adjacency

matrix, withAij=1 if (i, j)∈E, andAij=0 if (i, j)/∈E. Consequently, IP can be reformulated as
the following integer quadratic program (IQP):

x
∗ = argmax

x
w

T
x,

s.t. ∀i ∈ V : xi ∈ {0, 1}, x
TAx = 0

⇒
∃α∈R

IQP:x∗ = argmax
x
[wT

x − 1
2αx

TAx]
s.t. ∀i ∈ V : xi ∈ {0, 1}

(2)
where there exists a positive regularization parameterα>0 such that the problem on the implication
in (2) holds. Next, we present our new algorithm for solving MWIS.

2.1 The Algorithm

As reviewed in Sec. 1, to solve IQP in (2), the integer constraint is usually either ignored, or relaxed
to a continuous QP, e.g., by∀i∈V : xi≥0 and ‖x‖=1. For example, whenℓ1 norm is used as
relaxation, the solutionx∗ of (2) can be found using the replicator dynamics in the continuous
domain [17]. Also, when only∀i∈V : xi≥0 is used as relaxation, then the IP of (1) can be solved via
message passing [14]. Usually, the solution found in the continuous domain is binarized to obtain
a discrete solution. This may lead to errors, especially if the relaxed QP is nonconvex [20]. In this
paper, we present a new MWIS algorithm that iteratively seeks a solution directly in the discrete
domain. A discrete solution is computed by maximizing the first-order Taylor series approximation
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of the quadratic objective in (2) around a solution found in the previous iteration. This is similar
to the method of [20], which, however, makes the restrictiveassumptions that the matrix of the
quadratic term (analog of ourA) is “close” to positive-semi-definite (PSD), or that it is rank-1 with
non-negative elements. These assumptions are not suitablefor image segmentation. Graduated
assignment [21] also iteratively maximizes a Taylor seriesexpansion of a continuous QP around the
previous solution; but this is done in the continuous domain. SinceA in (2) is not PSD, our algorithm
guarantees convergence only to a local maximum, as most state-of-the-art MWIS algorithms [12, 13,
14, 17, 18]. Below, we describe the main steps of our MWIS algorithm.

Let f(x) = w
T
x − 1

2αx
TAx denote the objective function of IQP in (2). Also, in our notation,

x, x̃, x∗ ∈ {0, 1}n denote a point, candidate solution, and solution, respectively, in the discrete
domain; andy ∈ [0, 1]n denotes a point in the continuous domain. Our algorithm is a fixed-point
iteration that solves a sequence of integer programs which are convex approximations off , around
a solution found in the previous iteration. The key intuition is that the approximations are simpler
functions thanf , and thus facilitate computing the candidate discrete solutions in each iteration. The
algorithm increasesf in every iteration until convergence.

Our algorithm visits a sequence of continuous points{y(1), . . . , y(t), . . . }, y
(t) ∈ [0, 1]n, in itera-

tionst = 1, 2, . . . , and finds discrete candidate solutionsx̃ ∈ {0, 1}n in their respective neighbor-
hoods, until convergence. Each iterationt consists of two steps. First, for any pointy ∈ [0, 1]n in
the neighborhood ofy(t), we find the first-order Taylor series approximation off(y) as

f(y) ≈ h(y, y(t)) = f(y(t)) + (y − y
(t))

T
(w − αAy

(t)) = y
T(w − αAy

(t)) + const, (3)

where ‘const’ does not depend ony. Note that the approximationh(y, y(t)) is convex iny, and
simpler thanf(y), which allows us to easily compute a discrete maximizer ofh(·) as

x̃ = argmax
x∈{0,1}n

h(x, y(t)) ⇔ x̃i =

{

1 , if ith element of(w − αAy
(t))i ≥ 0

0 , otherwise.
(4)

To avoid the trivial discrete solution, wheñx = 0 we instead set̃x = [0, . . . , 0, 1, 0, . . . , 0]
T, with

x̃i = 1 wherei is the index of the minimum element of(w − αAy
(t)).

In the second step of iterationt, the algorithm verifies if̃x can be accepted as a new, valid discrete
solution. This will be possible only iff is non-decreasing, i.e., iff(x̃)≥f(y(t)). In this case, the
algorithm visits pointy(t+1)=x̃, in the next iteration. In casef(x̃)<f(y(t)), this means that there
must be a local maximum off in the neighborhood of pointsy(t) andx̃. We estimate this local
maximizer off in the continuous domain by linear interpolation,y

(t+1)=y
(t)+η(x̃−y

(t)). The
optimal value of the interpolation parameterη∈[0, 1] is computed such that∂f(y(t+1))/∂η ≥ 0,
which ensures thatf is non-decreasing in the next iteration. As shown in Sec. 2.2, the optimalη has
a closed-form solution:

η = min

(

max

(

(w − αAy
(t))

T
(x̃ − y

(t))

α(x̃ − y(t))
T
A(x̃ − y(t))

, 0

)

, 1

)

. (5)

Having computedy(t+1), the algorithm starts the next iteration by finding a Taylor series approxi-
mation in the neighborhood of pointy

(t+1). After convergence, the latest discrete solutionx̃ is taken
to represent the final solution of MWIS,x

∗=x̃. Our MWIS algorithm is summarized in Alg. 1

2.2 Theoretical Analysis

This section presents the proof that our MWIS algorithm converges to a maximum. We also show
that its complexity isO(|E|). We begin by stating a lemma that pertains to linear interpolation
y

(t+1)=y
(t)+η(x̃−y

(t)) such that the IQP objective functionf is non-decreasing aty(t+1).

Lemma 1 Suppose that the IQP objective function f is increasing at point y1 ∈ [0, 1]n, and de-
creasing at point y2 ∈ [0, 1]n, y1 6= y2. Then, there exists a point, y = y1 + η(y2 − y1), and
y ∈ [0, 1]n, such that f is increasing at y, where η is an interpolation parameter, η ∈ [0, 1].

Proof: It is straightforward to show that ifη ∈ [0, 1] ⇒ y ∈ [0, 1]n. For η = 0, we obtain
y = y1, wheref is said to be increasing. Forη 6= 0, y can be found by estimatingη such
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that ∂f
(

y1+η(y2−y1)
)

/∂η≥0. It follows: (w−αAy1)
T
(y2−y1)−ηα(y2−y1)

T
A(y2−y1)≥0.

Define auxiliary termsc = (w − αAy1)
T
(y2 − y1) andd = α(y2 − y1)

T
A(y2 − y1). SinceA

is not PSD, we obtainη ≤ c
d
, for d > 0, andη ≥ c

d
, for d < 0. Sinceη ∈ [0, 1], we compute

η = min(max( c
d
, 0), 1), which is equivalent to (5), fory1 = y

(t) andy2 = x̃. �

In the following, we define the notion of maximum, and prove that Alg. 1 converges to a maximum.

Definition We refer to pointy∗ as a maximum of a real, differentiable functiong(y), defined
over domainD, g : D → R, if there exists a neighborhood ofy∗, N (y∗) ⊆ D, such that
∀y ∈ N (y∗) : g(y∗) ≥ g(y).

Proposition 1 Alg. 1 increases f in every iteration, and converges to a maximum.

Proof: In iterationt of Alg. 1, if f(x̃) ≥ f(y(t)) then the next point visited by Alg. 1 isy(t+1) = x̃.
Thus,f increases in this case. Else,y

(t+1) = y
(t) + η(x̃ − y

(t)), yielding

f(y(t+1))=f(y(t))+η(w−αAy
(t))

T
(x̃−y

(t)) + η2 1

2
α(x̃−y

(t))
T
A(x̃−y

(t)). (6)

Sincex̃ maximizesh, given by (3), we haveh(x̃, y(t))−h(y(t), y(t))=(w−αAy
(t))

T
(x̃−y

(t))≥0.
Also, from Lemma 1,η is non-negative. Consequently, the second term in (6) is non-negative. Re-

garding the third term in (6), from (5) we haveηα(x̃−y
(t))

T
A(x̃−y

(t))=(w−αAy
(t))

T
(x̃−y

(t))
which we have already proved to be non-negative. Thus,f also increases in this second case. Since
f ≤ w

T
1, andf increases in every iteration, thenf converges to a maximum.�

Complexity: Alg. 1 has complexityO(|E|) per iteration. Complexity depends only on a few matrix-
vector multiplications withA, where each takesO(|E|). This is becauseA is sparse and binary,
where each elementAij=1 iff (i, j) ∈ E. Thus, any computation in Alg. 1 pertaining to particular
nodei∈V depends on the number of positive elements inith row Ai·, i.e., on the branching factor
of i. Computingx̃ in (4) has complexityO(n), wheren < |E|, and thus does not affect the final
complexity. For the special case of balanced graphs, Alg. 1 has complexityO(|E|) = O(n log n).
In our experiments, Alg. 1 converges in 5-10 iterations on graphs with about 300 nodes.

3 Formulating Segmentation as MWIS

We formulate image segmentation as the MWIS of a graph of image regions obtained from different
segmentations. Below, we explain how to construct this graph. Given a set of all segments,V ,
extracted from the image by a number of distinct segmenters,we construct a graph,G = (V, E, ω),
whereV andE are the sets of nodes and undirected edges, andω : V →R

+ assigns positive weights
wi to every nodei ∈ V , i=1, . . ., n. Two nodesi andj are adjacent,(i, j) ∈ E, if their respective
segmentsSi andSj overlap in the image,Si ∩Sj 6= ∅. This can be conceptualized by the adjacency
matrixA = (Aij), whereAij = 1 iff Si ∩ Sj 6= ∅, andAij = 0 iff Si ∩ Sj = ∅. For robustness
in our experiments, we tolerate a relatively small amount ofoverlap by setting a tolerance threshold
θ, such thatAij = 1 if |Si∩Sj|

min(|Si|,|Sj|)
> θ, andAij = 0 otherwise. (In our experiments we use

θ = 0.2). Note that the IQP in (2) also permits a “soft” definition ofA which is beyond our scope.

The weightswi should be larger for more “meaningful” segmentsSi, so that these segments are
more likely included in the MWIS ofG. Following the compositionality-based approaches of [8, 9],
we define that a “meaningful” segment can be easily describedin terms of its own parts, but difficult
to describe via other parts of the image. Note that this definition is suitable for identifying both:
(i) distinct textures in the image, since texture can be defined as a spatial repetition of elementary
2D patterns; and (ii) homogeneous regions with smooth variations of brightness. To definewi,
we use the formalism of [8], where the easiness and difficultyof describingSi is evaluated by its
description length in terms of visual codewords. Specifically, given a dictionary of visual codewords,
and the histogram of occurrence of the codewords inSi, we definewi = |Si|KL(Si, S̄i), whereKL
denotes the Kullback Leibler divergence,I is the input image, and̄Si = I\Si. All the weightsw
are normalized bymaxi wi. Below, we explain how to extract the dictionary of codewords.

Similar to [22], we describe every pixel with an 11-dimensional descriptor vector consisting of the
Lab colors and filter responses of the rotationally invariant, nonlinear MR8 filter bank, along with
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the Laplacian of Gaussian filters. The pixel descriptors arethen clustered using K-means (with
K = 100). All pixels grouped within one cluster are labeled with a unique codeword id of that
cluster. Then, the histogram of their occurrence in every regionSi is estimated.

GivenG, as described in this section, we use our MWIS algorithm to select “meaningful” segments,
and thus partition the image. Note that the selected segments will optimally cover the entire image,
otherwise any uncovered image areas will be immediately filled out by available segments inV that
do not overlap with already selected ones, because this willincrease the IQP objective functionf .
In the case when the input segments do not form a strict hierarchy and intersections of the input
segments have not been added toV , we eliminate holes (or “soft” overlaps) between the selected
segments by applying the standard morphological operations (e.g., thinning and dilating of regions).

4 Results

This section presents qualitative and quantitative evaluation of our segmentation on 200 images
from the benchmark Berkeley segmentation dataset (BSD) [23]. BSD images are challenging for
segmentation, because they contain complex layouts of distinct textures (e.g., boundaries of several
regions meet at one point), thin and elongated shapes, and relatively large illumination changes. We
also evaluate the generality and execution time of our MWIS algorithm on a synthetic graph from
benchmark OR-Library [24], and the problem sets from [12].

Our MWIS algorithm is evaluated for the following three types of input segmentations. The first
type is a hierarchy of segments produced by the gPb-OWT-UCM method of [7]. gPb-OWT-UCM
uses the perceptual significance of a region boundary,Pb ∈ [0, 100], as an input parameter. To
obtain the hierarchy, we varyPb = 20:5:70. The second type is a hierarchy of segments produced
by the multiscale algorithm of [5]. This method uses pixel-intensity contrast,σ ∈ [0, 255], as an
input parameter. To obtain the hierarchy, we varyσ = 30:20:120. Finally, the third type is a
union of NCut [1] and Meanshift [3] segments. Ncut uses one input parameter – namely, the total
number of regions,N , in the image. Meanshift uses three input parameters: feature bandwidthbf ,
spatial bandwidthbs, and minimum region areaSmin. We vary these parameters asN = 10:10:100,
bf = 5.5:0.5:8.5, bs = 4:2:10, andSmin = 100:200:900. The variants [7]+Ours and [5]+Ours
serve to test whether our approach is capable of extracting “meaningful” regions from a multiscale
segmentation. The variant ([3]+[1])+Ours evaluates our hypothesis that reasoning over an ensemble
of distinct segmentations improves each individual one.

Segmentation of BSD images is used for a comparison with replicator dynamics approach of [17],
which transforms the MWIS problem into the maximum weight clique problem, and then relaxes it
into a continuous problem, denoted as MWC. In addition, we also use data from other domains –
specifically, OR-Library [24] and the problem sets from [12]– for a comparison with other state-of-
the-art MWIS algorithms.

Qualitative evaluation: Fig. 3 and Fig. 4 show the performance of our variant [7]+Ourson ex-
ample images from BSD. Fig. 4 also shows the best segmentations of [7] and [25], obtained by an
exhaustive search for the optimal values of their input parameters. As can be seen in Fig. 4, the
method of [7] misses to segment the grass under the tiger, andoversegments the starfish and the
camel, which we correct. Our approach eliminates the need for hand-picking the optimal input pa-
rameters in [7], and yields results that are good even in cases when objects have complex textures
(e.g. tiger and starfish), or when the boundaries are blurredor jagged (e.g. camel).

Quantitative evaluation: Table 1 presents segmentations of BSD images using our threevariants:
[7]+Ours, [5]+Ours, and ([3]+[1])+Ours. We consider the standard metrics: Probabilistic Rand
Index (PRI), and Variation of Information (V I) [26]. PRI between estimated and ground-truth
segmentations,S andG, is defined as the sum of the number of pairs of pixels that havethe same
label in S andG, and those that have different labels in both segmentations, divided by the total
number of pairs of pixels.V I measures the distance betweenS andG in terms of their average
conditional entropy.PRI should be large, andV I small. For all variants of our approach, we
run the MWIS algorithm 10 times, starting from different initial points, and report the average
PRI andV I values. For [7], we report their best results obtained by an exhaustive search for the
optimal value of their input parameterPb. As can be seen, [7]+Ours does not hand-pick the optimal
input parameters, and outperforms the best results of original [7]. Surprisingly, when working with
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Algorithm 1 : Our MWIS Algorithm
Input : GraphG includingw andA, convergence

thresholdδ, regularization parameterα = 2
Output : The MWIS ofG denoted asx∗

Define IQP objective:f(x) , w
T
x − 1

2αx
TAx ;1

Initialize t=0, andx
∗=0, y

(0)∈{0, 1}n, y
(0) 6=0;2

repeat3

Findh(y, y(t)) as in (3);4

Use (4) forx̃=argmax
x∈{0,1}n h(x, y(t)) ;5

if f(x̃) ≥ f(y(t)) then6

y
(t+1) = x̃ ;7

else8

Use (5) for9

η= argmax
η∈[0,1]

f
(

y
(t)+η(x̃−y

(t))
)

y
(t+1) = y

(t) + η(x̃ − y
(t)) ;10

end11

if f(x̃) ≥ f(x∗) then12

x
∗ = x̃ ;13

end14

until
∥

∥y
(t+1) − y

(t)
∥

∥ < δ ;15

Method PRI V I

Human 0.87 1.16
[7] 0.81 1.68

([3]+[1])+MWC 0.78 1.75
[5]+Ours 0.79 1.69

([3]+[1])+Ours 0.80 1.71
[7]+Ours 0.83 1.59

Table 1: A comparison on BSD. Prob-
abilistic Rand Index (PRI) should be
large, and Variation of Information
(V I) small. Input segments are gener-
ated by the methods of [7, 5, 3, 1], and
then selected by the maximum weight
clique formulation (MWC) of [17], or
by our algorithm. For [7], we report
their best results obtained by an ex-
haustive search for the optimal value
of their input parameterPb.

segments generated by Meanshift, Ncuts, and [5], the performances of [5]+Ours and ([3]+[1])+Ours
come very close to those of [7]. This is unexpected, because Meanshift, Ncuts, and the method of
[5] are known to produce poor performance in terms ofPRI andV I values, relative to [7]. Also,
note that ([3]+[1])+Ours outperforms the relaxation-based method ([3]+[1])+MWC.

Fig. 2 shows the sensitivity of the convergence rate of our approach to a specific choice ofα. The
penalty termαy

TAy of the IQP objective function is averaged over all 200 graphs, each with about
300 nodes, obtained from 200 BSD images. As can be seen, forα ≥ 2, the penalty termαy

TAy

converges to 0 with some initial oscillations. Experimentally, the convergence rate is maximum
whenα = 2. We use this value in all our experiments.

Figure 2: Convergence rate vs. a specific choice
of α, averaged over 200 BSD images:α < 2 is
marked red, andα ≥ 2 is marked blue.

Method b2500 [24] p3000-7000 [12]

[12] avg 2 175
sec 74 1650

Ours avg 0 62
sec 21 427

Table 2: Average of solution difference, and
computation time in seconds for problem sets
from [24] and [12].

MWIS performance: We also test our Alg. 1 on two sets of problems beyond image segmentation.
As input we use a graph constructed from data from the OR-Library [24], and from the problem sets
presented in [12]. For the first set of problems (b2500), we only consider the largest graphs. We use
ten instances, called b2500-1 to b2500-10, of size 2500 and with density 10%. For the second set
of problem (p3000 to p7000), we take into account graphs of size 4000, 5000, 6000 and 7000. Five
graph instances per size are used. Tab. 2 shows the average difference between the estimated and
ground-truth solution, and computation time in seconds. The presented comparison with Iterative
Tabu Search (ITS) [12] demonstrates that, on average, we achieve better performance, under much
smaller running times.
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Figure 3: Segmentation of BSD images. (top) Original images. (bottom) Results using our variant
[7]+Ours. Failures, such as the painters’ shoulder, the bird’s lower body part, and the top left fish,
occur simply because these regions are not present in the input segmentations.

Figure 4: Comparison with the state-of-the-art segmentation algorithms on BSD images. (top row)
Original images. (middle row) The three left results are from [7], and the rightmost result is from
[25]. (bottom row) Results of [7]+Ours. By extracting “meaningful” segments from a segmentation
hierarchy produced by [7] we correct the best, manually optimized results of [7].

5 Conclusion

To our knowledge, this is the first attempt to formulate imagesegmentation as MWIS. Our empirical
findings suggest that this is a powerful framework that permits good segmentation performance
regardless of a particular MWIS algorithm used. We have presented a new fixed point algorithm that
efficiently solves MWIS, with complexityO(|E|), on a graph with|E| edges, and proved that the
algorithm converges to a maximum. Our MWIS algorithm seeks asolution directly in the discrete
domain, instead of resorting to the relaxation, as is commonin the literature. We have empirically
observed that our algorithm runs faster and outperforms theother competing MWIS algorithms on
benchmark datasets. Also, we have shown a comparison with the state-of-the-art segmenter [7]
on the benchmark Berkeley segmentation dataset. Our selection of “meaningful” regions from a
segmentation hierarchy produced by [7] outperforms the manually optimized best results of [7], in
terms of Probabilistic Rand Index and Variation of Information.
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