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Abstract

We consider the online binary classification problem, wiegeare givenn clas-
sifiers. At each stage, the classifiers map the input to thiegfibity that the input
belongs to the positive class. An online classification radgarithm is an algo-
rithm that combines the outputs of the classifiers in ordeattain a certain goal,
without having prior knowledge on the form and statisticshaf input, and with-
out prior knowledge on the performance of the given clagsifii this paper, we
usesensitivityandspecificityas the performance metrics of the meta-algorithm. In
particular, our goal is to design an algorithm that satigfiesfollowing two prop-
erties (asymptotically): (i) its averadalse positive ratéfp-rate) is under some
given threshold; and (i) its averagieie positive ratdtp-rate) is not worse than the
tp-rate ofthe best convex combinatiarfi the m given classifiers that satisfies fp-
rate constraintin hindsight We show that this problem is in fact a special case of
theregret minimization problem with constrain@nd therefore the above goal is
not attainable Hence, we poseralaxedgoal and propose a correspondprgcti-

cal online learning meta-algorithm that attains it. In the cafs®vo classifiers, we
show that this algorithm takes a very simple form. To our lkestvledge, this is
the first algorithm that addresses the problem of the avemgge maximization
under averagé-rate constraintsn the online setting.

1 Introduction

Consider the binary classification problem, where eachtiiglassified intor1 or —1. A classifier

is an algorithm which, for every input, classifies that inplutgeneral, classifiers may produce the
probability of the input to belong to clads There are several metrics for the performance of the
classifier in the offline setting, where a training set is givie advance. These include error (or
mistake) count, true positive rate, and false positive; rage [6] for a discussion. In particular,
thetrue positive ratgtp-rate) is given by the fraction of the numberpafsitiveinstancesorrectly
classified out of the total number of the positive instanedsle false positive raté¢fp-rate) is given
by the fraction of the number afegativeinstancesncorrectly classified out of the total number
of the negative instances. A receiver operating charatiesi(ROC) graph then depicts different
classifiers using their tp-rate on thé axis, while fp-rate on theX axis (see [6]). We note that
there are alternative names for these metrics in the litexaln particular, the tp-rate is also called
sensitivity while one minus the fp-rate is usually callsgecificity In what follows, we prefer to
use the terms tp-rate and fp-rate, as we think that they #re>xgdaining.



In this paper we focus on thanline classification problem, where no training set is given in ad-
vance. We are givem classifiers, which at each stage= 1,2, ... map the input instance to the
probability of the instance to belong to the positive class.online classification meta-algorithm
(or aselectionalgorithm) is an algorithm that combines the outputs of tivemyclassifiers in order
to attain a certain goal, without prior knowledge on the f@mna statistics of the input, and without
prior knowledge on the performance of the given classifi@itse assumption is that the observed
sequence of classification probabilities and labels compes §ome unknown source and, thus, can
bearbitrary. Therefore, it is convenient to formulate the online clfisafion problem as eepeated
gamebetween an agent and some abstract opponent that standie fooltective behavior of the
classifiers and the realized labels. We note that, in thim@ideition, we can identify the agent with a
corresponding online classification meta-algorithm.

There is a rich literature that deals with the online clasaffon problem, in th&ompetitive ra-
tio framework, such as [5, 1]. In these works, the performan@aniees are usually expressed
in terms of themistake bounaf the algorithm. In this paper, we take a different approaChr
performance metrics will be the average tp-rate and fp-ohthe meta-algorithm, while the per-
formance guarantees will be expressed inrdgret minimizatiorframework. In a seminal paper,
Hannan [8] introducedhe optimal reward-in-hindsight; with respect to the empirical distribu-
tion of opponent’s actions, as a performance goal of an erdigorithm. In our case;; is in fact
the maximal tp-rate the agent could get at timby knowing the classification probabilities and
actual labels beforehand, usitige best convex combination of the classifiefie regretis then
defined as the difference betweehand the actual average tp-rate obtained by the agent. Hannan
showed in [8] that there exist online algorithms whose regoaverges to zero (or below) as time
progresses, regardless of the opponent’s actions/gh rate. Such algorithms are often called
no-regret, Hannan-consistent, or universally consistfgdrithms. Additional no-regret algorithms
were proposed in the literature over the years, such as BElt& approachability-based algorithm
[2] and weighted majority schemes [10, 7] (see [4] for an @iy of these and other related algo-
rithms). These algorithms can be directly applied to théolanm of online classification when the
goal is only to obtain no-regret with respect to the optirpaldte in hindsight.

However, in addition to tp-rate maximization, some perfante guarantees in terms of the fp-
rate are usually required. In particular, it is reasonablestjuire (following the Neyman-Pearson
approach) that, in the long term, the average fp-rate ofgleatwill be below some given threshold
0 < v < 1. In this case the tp-rate can be considered as the averagedrebtained by the
agent, while fp-rate — as the average cost. This is in faceaiapcase of theegret minimization
problem with constraintsvhose study was initiated by Mannor etal. in [11]. They defitiee
constrainedreward-in-hindsight with respect to the empirical distitibn of opponent’s actions,
as a performance goal of an online algorithm. This quansitthe maximal average reward the
agent could get in hindsight, had he known the opponentisrscbeforehand, by using any fixed
(mixed) action, while satisfying the average cost constsaiThe desired online algorithm then has
to satisfy two requirements: (i) it should have a vanishiegret (with respect to the constrained
reward-in-hindsight); and (i) it should asymptoticallsitisfy the average cost constraints. It is
shown in [11] that such algorithms do not exist in general.e Positive result is that a relaxed
goal, which is defined in terms of thmnvex hullof the constrained reward-in-hindsight over an
appropriate space, is attainable. The two no-regret dlgos proposed in [11] explicitly involve
either the convex hull or aalibrated forecasbf the opponent’s actions. Both of these algorithms
may not be computationally feasible, since there are no@ffi¢polynomial time) procedures for
the computation of both the convex hull and a calibrateddase

In this paper, we take an alternative approach to that of [[kigtead of examining the constrained
tp-rate in hindsight (or its convex hull), our starting pis the “standard” regret with respect to
the optimal (inconstrainedltp-rate, and we consider a certain relaxation thereof.ahtiqular, we
define a simple relaxed form of the optimal tp-rate in-higtsi by subtracting a positive constant
from the latter. We then find the minimal constant needed dieioto have a vanishing regret (with
respect to this relaxed goal) while asymptotically satigfythe average fp-rate constraint. The mo-
tivation for this approach is as follows. We know that if thenstraints are always satisfied, then the
optimal tp-rate in-hindsight is attainable (using relatysimple no-regret algorithms). On the other
hand, when the constraints need to be actively satisfiedhaeld “pay” some penalty in terms of
the attainability of the tp-rate in-hindsight. In our cas® express this penalty in terms of the re-
laxation constant mentioned above. One of the main corioibs of this paper is aomputationally



feasibleonline algorithm, the Constrained Regret Matching (CRMjpakhm, that attains the posed
performance goal. We note that although we focus in thispapéhe online classification problem,
our algorithm can be easily extended to the general cas@udtrminimization under average cost
constraints.

The paper is structured as follows. In Section 2 we formadijree the online classification problem
and the goal of the meta-algorithm. In Section 3 we presengtneral problem of constrained
regret minimization, and show that the online classificapooblem is its special case. In Section
4 we define our relaxed goal in terms of the unconstraineana@btip-rate in-hindsight, propose the
CRM algorithm, and show that it can be implemented efficienBection 5 discusses the special
case of two classifiers and corresponding experimentaltse$tle conclude in Section 6 with some
final remarks.

2 Online Classification

We consider the online binary classification problem froralastract space tol, —1}. We are given
m classifiers that map an input instance to the probability e instance belongs to the positive
class. We denote byt = {1, ...m} the set of indices of the classifiers. Anline classification meta-
algorithmis an algorithm that combines the outputs of the given diassiin order to attain a certain
goal, without prior knowledge on the form and statisticshaf input, and without prior knowledge
on the performance of the given classifiers. In what folloms jdentify the meta-algorithm with an
agent and use both these notions interchangeably. The timesdisdrete, with index = 1,2, ....
At stagen, the following events occur: (i) the input instance is praed to the classifiers (buiot
to the agent); (i) each classifiere A outputsf,,(a) € [0, 1], which is the probability of the input
to belong to clas$, and simultaneously the agent chooses a classifieand (iii) the correct label
of the instancep,, € {1, -1}, is revealed.

There are several standard performance metrics of classifiehese includerror count true-
positive ratgwhich is also termececall or sensitivity, andfalse-positive rat€one minus the fp-rate
is usually termedspecificity. As discussed in [6], tp-rate and fp-rate metrics have sattractive
properties, such as that they are insensitive to changdass distribution, and thus we focus on
these metrics in this paper. In the online setting, no tngjirset is given in advance, and therefore
these rates have to be updated online, using the obtainedatiaach stage. Observe that this

data is expressed in terms of the vector £ ({f,.(a)},c4,bn) € [0,1]™ x {—1,1}. We let

Tn = 1(an, 2n) = fulan) 1{b, =1} andc, = c(an, 2,) = fu(an) I {b, = 0} denote the reward
and the cost of the agent at time Note thatr,, is the probability that the instance with positive
label at timen will be classified correctly by the agent, whilg is the probability that the instance
with negative label will be classified incorrectly. Theh,(n) = >0 7./ > _; I{b, = 1} and
Bip(n) =30 _ i/ Sn_, I{b, = —1} are the average tp-rate and fp-rate of the agent attime
respectively.

Our aim is to design a meta-algorithm that will ha&g(n) not worse than the tp-rate ttie best
convex combinationf them given classifiers (in hindsight), while satisfyigg, (n) < -, for some

0 < v < 1 (asymptotically, almost surely, for any possible sequence, ...). In fact, this problem
is a special case of thegret minimization problem with constraint$n the next section we thus
present the general constrained regret minimization frearle and discuss its applicability to the
case of online classification.

3 Constrained Regret Minimization

3.1 Model Definition

We consider the problem of an agent facing an arbitrary wgreinvironment. We identify the en-
vironment with some abstract opponent, and therefore mbtaépeated game formulation between
the agent and the opponent. Toenstrainedgame is defined by a tuple4, Z,r, ¢,T") where A
denotes thdinite set of possible actions of the agett;denotes the&eompactset of possible out-
comes (oractiong of the environmentr : A x Z — R is the reward function; : A x Z — R’

is the vector-valued cost function; aiidC R is a convex and closed set within which the average



cost vector should lie in order to satisfy the constraints.ifiportant special case is that of linear
constraints, that if = {c € R* : ¢; <~;, i =1,...,¢} for some vectory € R’.

The time axis is discrete, with index= 1, 2, .... At time stepn, the following events occur: (i) The
agent chooses an actian, and the opponent chooses an actignsimultaneously; (ii) the agent
observes,,; and (iii) the agent receives a rewargd = r(a,, z,) € R and a cost,, = c¢(an, 2,) €

RY. We letr, £ L35 rpande, = 1370 | ¢, denote the average reward and cost of the agent

attimen, respectively. Le#,, £ Z"~1 x A"~! denote the set of all possible histories of actions till
time n. At time n, the agent chooses an acti@paccording to thelecision ruler,, : H,, — A(A),
whereA(A) is the set of probability distributions over the skt The collectionr = {r,,} ~, is the
strategyof the agent. That is, at each time step, a strategy prescsiheemixedactionp € A(A),
based on the observed history. A strategy for the opponelefised similarly. We denote the mixed
action of the opponent by € A(Z), which is the probabilitydensityover Z.

In what follows, we will use the shorthand notatiotip,q) = >, p(a) [eza(2)r(a, 2)

for the expected reward under mixed actiomse A(A) and ¢ € A(Z). The notation
r(a,q),c(p,q), c(p, 2), c(a, q) will be interpreted similarly. We make the following assuiop that
the agent can satisfy the constraiim&xpectatioragainst any mixed action of the opponent.

Assumption 3.1(Satisfiability of Constraints)For everyq € A(Z), there existy € A(A), such
thatc(p, q) € T

Assumption 3.1 is essential, since otherwise the opporemviplate the average-cost constraints
simply by playing the corresponding stationary strategy

Letg,(2) £ Y1_, 6 {z — 2} /n denote theempirical densityof the opponent’s actions at time
so thatg,, € A(Z). The optimal reward-in-hindsight is then given by

n

1 _
— max k_lr(a,zk) = max /zez r(a, Z)ﬁ ;5 {z — 2z} = r;leaj(r(a, dn),

T:L(Zl? ey Z’n)

implying thatr? = r*(g,). In what follows, we will use the term “reward envelope” inder

to refer to functions : A(Z) — R. The simplest reward envelope is the (unconstraire}-
responseenvelope (BEp = r*. Then-stageregretof the algorithm (with respect to the BE) is then
r*(gn) — 7. Theno-regretalgorithm must ensure that the regret vanishes as oo regardless
of the opponent’s actions. However, in our case, in additiovanishing regret, we need to satisfy
the cost constraints. Obviously, the BE need not be attinalthe presence of constraints, and
therefore other reward envelopes should be considered.ceileve use the following definition
(introduced in [11]) in order to assess the online perforceanf the agent.

Definition 3.1 (Attainability and No-Regret) A reward envelope : A(Z) — R is I'-attainabléf
there exists a strategy for the agent such that, almost surely, lfin sup,, _, .. (p(@n) — ) <0,
and (i) lim,,» d(¢,,T") = 0, for every strategy of the opponent. Hedé,, T") is Euclidean set-to-
point distance. Such a strategyis calledconstrained no-regretrategy with respect tp.

A natural extension of the BE to the constrained setting veded in [11], by noting that if the
agent knew in advance that the empirical distribution ofdpponents actions i, = ¢, he could
choose the constrained best response mixed agtishich is a solution of the corresponding opti-
mization problem:

£ max {r(p,q): sothatc(p,q) €T}. 1)
PEA(A)

We refer tor;. as the constrained best-response envelope (CBE).

r(q)

The first positive result that appeared in the literature thias of Shimkin [12], which showed that
thevaluevr £ mingea(z) ri(q) of the constrained game is attainable by the agent. Theitiigor
which attains the value is based on Blackwell’s approaditaltheory [3], and is computationally
efficient provided thatr can be computed offline. Unfortunately, it was shown in [THtt}:(q)
itself isnotattainable in general. However, the (loweonvex hulbf ri(g), conv(r}.), is attainablé.
Two no-regret algorithms with respect to cqmy:) are suggested in [11]. To our best knowledge,

The (lower) convex hull of a functioff : X — R is the largestonvexfunction which is nowhere larger
thanf.



these algorithms are inefficient (i.e., not polynomialleda are the only existing constrained no-
regret algorithms in the literature.

It should be noted that the problem that is considered banenotbe formulated as an instance of
online convex optimizatiofi3, 9] — see [11] for a discussion on this issue.

3.2 Application to the Online Classification Problem

For the model described in Section2= {1, ..., m} denotes the set of possible classifiers grue-
notes the set of possible outputs of the classifiers andukdabels, thatis: = ({f(a)},c4,b) €
[0,1]™ x {~1,1} £ Z. The reward at timev is 7,, = 7(an, 2,) = fn(an) I {b, = 1} and the cost

iS ¢p, = ¢(an, zn) = fn(an) I{b, = —1}. Note that in this case, the mixed action of the opponent
g € A(Z)isq(f,b) = q(f|b)q(b), whereq(f|b) is the conditional density of the predictions of the
classifiers and(b) is the probability of the labdl. It is easy to check that

1) Z p(a)ﬁtp (Q7 CL), (2)
acA
where Sy, (q; a ff q(f]1) is the tp-rate of classifiet under distribution;. Regarding the

cost, the goal is to keep it under a given thresholek v < 1. Since the regret minimization
framework requiresadditive rewards and costs, we define the following modified cost fanct
cy(a,z) £ c(a,z) —yI{b= —1}, and similarly to the reward above, we have that

ey(p,a) = a(— (Zp a)Brp(q;a > @)

acA
where (¢,(q; a ff (f] = 1)f(a) is the fp-rate of classifien. under distributiong. We

note that keeplng the average fp-rate of the agépt(n) < ~ is equivalent to keeping
(1/n) 32—y y(an, z1) < 0.

Since our goal is to keep the fp-rate beleyy some assumption on classifiers should be im-
posed in order to satisfy Assumption 3.1. We assume hereltbatlassifiers’ single-stage false-
positive probability is such that it allows satisfying thenstraint. In particular, we redefihe
Z 2 {z=(f,b)€[0,1]™ x {~1,1}: if b= —1, f(a) < 7.}, where0 < 7, < 1, and there
existsa* such thaty,- < ~. Under this assumption, it is clear that for everg A(Z), there exists

p € A(A), such thate,(p,¢) < 0; in fact thisp is the probability mass concentrated @h If
additional prior information is available on the singlege performance of the given classifiers, this
may be usefully used to further restrict the £et For example, we can also restrict= (f,1) b

fla) > A, for some0 < A, < 1. Such additional restrictions will generally contributereduc-
ing the value of the optimal relaxation parametér(see (7) below). This effect will be explicitly
demonstrated in Section 5.

We proceed to compute the BE and CBE. Using (2), the BE is

r*(q) = maxr(a, q) = q(1) e ABip(ga)} 2 q(1)B*(q), (4)

wheres*(g) is the optimal (unconstrained) tp—rate in h|ndS|ght undsiridbutiong. Now, using (1),
(2), and (3) we have that (q) = ¢(1)3;(q), where

£(@) £ max {Zp a)Biy(gia) : so that ; a)Bp(g; a 7}, (5)

is the optimal constrained tp-rate in hindsight under digtion ¢. Finally, note that the value of the
constrained game, £ min,ca(z) 7% (g) = 0 in this case.

As a consequence of this formulation, the algorithms preg@as [11] can be in principle used in
order to attairthe convex hulbf r~. However, given the implementation difficulties assodatéth
these algorithms, we are motivated to examine more cayahd problem of regret minimization
with constraints and provide more practical no-regret @tlyms with formal guarantees.

2This assumption can always be satisfied by addifigtiious classifiera, that always outputs a fixed
f(ao) < ~, irrespectively of the data. However, such an addition might adveedéygt the value of the
optimal relaxation parameter* (see (7) below), and should be avoided if possible.



4 Constrained Regret Matching

We next define a relaxed reward envelope for the online ¢ieason problem. The proposed is in
fact applicable to the problem of constrained regret mir&tion in general. However, due to space
limitation, we present it directly for our classificatioroptem.

Our starting point here in defining an attainable reward lepeewill be the BE-*(¢) = ¢(1)5*(q).
Clearly, r* is in general not attainable in the presence of fp-condsaend we thus consider a
relaxed version thereof. Far > 0, setr’(q) = ¢(1)(8*(¢q) — ). Obviously,r is a convex
function, and we can always pick> 0 large enough, such thaj is attainable. Furthermore, recall
that the value, of the constrained game is attainable by the agent. Obseategenerally;;,(¢)
can be smaller than, = 0. We thus introduce the following modification:

ra(q) £ q(1) max {0, 5% (q) — a}. (6)
We refer torSR as the scalar-relaxed best-response envelope (SR-BE).l&tdw
o" £ max (8*(q) = B3(a)) @)

We note that2R (¢) is strictly above0 at some point, unless the game is in some sense trivial (see
the supplementary material for a proof). According to Déifimi 3.1, we are seeking for a strategy

« that is: (i) ana-relaxedno-regretstrategy for the average reward, and (ii) ensures that the co
constraints are asymptotically satisfied. Thus, at each stap, we need to balance between the
need of maximizing the average tp-rate and satisfying tlezame fp-rate constraint. Below we
propose an algorithm which solves this trade-offdor o*.

We introduce some further notation. Let

R%(a) £ [fk(a) — fk((lk) — a] I {bk = 1}, a € .A7 Ly £ CA/((J,IC,Z]C)7 (8)
denote thanstantaneousi-regretand theinstantaneous constraint violatidinespectively) at time
k. We have that the averageregret and constraints violation at timeare

RZ(G) = ‘jn(l) [515;!1(‘?71? a) - Btp(n) - a] , a€A; L, = Cjn(o)[ﬂfp(n) - 'Y]~ 9)
Using this notation, the Constrained Regret Matching (CRMdrithm is given in Algorithm 1. We
then have the following result.
Theorem 4.1. Suppose that the CRM algorithm is applied with parameter o*, wherea* is
given in (7). Then, under Assumption 3.1, it attaif{$(6) in the sense of Definition 3.1. That is, (i)
lim inf,, 00 (Bep(n) — max {0, maxae 4 Bip(Gn; a) — a}) > 0, and (i) limsup,, o, Bsp(n) <0,
for every strategy of the opponent, almost surely.

The proof of this Theorem is based on Blackwell’s approatityaiheory [3], and is given in the
supplementary material. We note that the mixed action reduby the CRM algorithm always
exists provided that > «*. It can be easily shown (see the supplementary materidljuenever

> aca [Rz_l(a)} . > 0, this action can be computed by solving the following linpargram:

min > (Py(a) —p(a)), (10)

PEBn
a€A:p%(a)>p(a)
where B, 2 {pe AA): [Looi], (Spear(@)f@) —7) <0, ¥z = (f,-1) € Z} and
pe(a) = {Rﬁ_l(a)} /> weca [ﬁ:_l(a’)} is the a-regret matching strategy. Note also that
+ +

when the average constraints violatibp_; is non-positive, the minimum in (10) is obtained by

p = py. Finally, when)_ _ , [Rz_l(a)} = 0, any actiorp € B,, can be chosen. Itis worth men-
+

tioning that our algorithm, and in particular the prograr)(tan notbe formulated in the Online

Convex Programming (OCP) framework [13, 9], since the emjaivt reward functions in our case

are trajectory-dependent, while in the OCP it is assumetthiese functions are arbitrary, Hixed

(i.e., they should not depend on the agent’s actions).

3In general, the parameter may be difficult to compute analytically. See the supplementary material for
a discussion on computational aspects. Also, in the supplementary magpaopose an adaptive algorithm
which avoids this computation (see a remark at the end of Section 4). FinaBgction 5 we show that in the
case of two classifiers this computation is trivial.



Algorithm 1 CRM Algorithm

Parameter: o > 0.

Initialization: At time n = 0 use arbitrary action,.
Attimesn = 1,2, ... find a mixed actiorp € A(A) such that

(6%

Toea [Bia @] (F@) = Lyeapl@)f@) —a) <0, Vo= (1) € Z.

11
[Ln1] | (Caear(@)f(a)—7) <0, Vz=(f,-1) € Z, o

whereR;, (a) andL,; are given in (9). Draw classifier, from p.

Remark. In practice, it may be possible to attaiff with a < o* if the opponent is not entirely
adversarial. In order to capitalize on this possibility,aaaptive algorithm can be used that adjusts
the value ofx online. The idea is to start from some small initial vatug> 0 (possiblyay = 0).

At each time stem, we would like to use a parametar= «,, for which inequality (11) can be
satisfied. This inequality is always satisfied when> o*. If howevera < «*, the inequality may

or may not be satisfied. In the latter casegan be increased so that the condition is satisfied. In
addition, once in a whiley can be reset tag, in order to obtain better results. In the supplementary
material we further discuss the adaptive scheme, and proeevergence rate for it. We note that
the adaptive scheme does not require the computation ofptiraal o*, as it discovers it online.

5 The Special Case of Two Classifiers

If m = 2, we can obtain explicit expressions for the reward envedgpel for the algorithm. In
particular, we have two classifiers, and we assume that ttpaisuof these classifiers lie in the set
Z2{ze(f,b) 0,1 x {-1,1}: if b=—1, f(1) <7, f(2) <9 if b=1, f(2) > A} such
thaty; > v, 72 < v, andX > 0. Observe that under this assumption, classifibas one-stage per-
formance guarantees that will allow to obtain better guesof the meta-algorithm. By computing
explicitly the CBE, we obtain

T B (@3 1) + 5 s By (0:2), i Bip(45 1) > B3 2)
andfy,(g; 1) >,

r3(q) = a(1) § Bip(g; 1), if Bip(q;1) > Bip(gq; 2)
andgyp(g; 1) <,
Bip(4;2), otherwise

Therefore, the relaxation parameter is
Bip(g;1) — Bip(g;2) } (1= -7
o= max 1) — =,
@: Bep(6:1)>Bip (0:2),B5p (0:1)>7 { Brp(q;1) — Brp(q:2) Brola:1) =) Y1 — Y2
Finally, it is easy to check using (10) that Algorithm 1 redsién this case to the following sim-
ple rule: (i) if > . 4 [Fz,l(a)} > 0, choosep(1l) = min {pg(l) e } wherep2 (1) =
+

7 y1—72
[ﬁz_l(l)h /> aca [Ez_l(a)} . denotes thex-regret matching strategy; (ii) otherwise, choose
arbitrary action withp(1) < J=2=.
We simulated the CRM algorithm with the following paramster = 0.3,vy; = 0.4, = 0.2, A\ =
0.7. This gives the relaxation parametercof= 0.15. Half of the input instances were positives and
the other half were negatives (on average). The time wadativinto episodes with exponentially
growing lengths. At eacbhdd episode, both classifiers had similar tp-rate and both ahtbatisfied
the constraints, while in ea@venepisode, classifigrwas perfect in positives’ classification, but did
not satisfy the constraints. The results are shown in Fijlui&e compared the performance of the
CRM algorithm to a simple unconstrained no-regret algarithat treats both the true-positive and
false positive probabilities similarly, but with differeweight. In particular, the reward at stagef
this algorithm isg,, (w) = fn(an) I {b, = 1} — wf,(a,) I {b, = —1} for some weight parameter



tp-rate 1 fp-rate o4r

Figure 1: Experimental results for the case of two classifier

w > 0. Givenw, this is simply a no-regret algorithm with respectgo(w). Whenw = 0, the
algorithm performs tp-rate maximization, whileufis large, it performs fp-rate minimization. We
call this algorithm NRw). As can be seen from Figure 1, the CRM algorithm outperforrRéuN

for any fixed parameter. Forw = 1.1, NR(w) has a better tp-rate, but the fp-rate constraint is
violated most of the time. Far = 1.4, the constraints are always satisfied, but the tp-rate iaysw
dominated by that of the CRM algorithm. Fer= 1.3,1.33 it can be seen that the constraints are
satisfied (or almost satisfied), but the tp-rate is usuallyidated by that of the CRM algorithm.

6 Conclusion

We studied regret minimization with average-cost constsaiwith the focus on computationally
feasible algorithm for the special case of online clasdificaproblem with specificity constraints.
We defined a relaxed version of the best-response rewartbpevand showed that it can be attained
by the agent while satisfying the constraints, providedttiarelaxation parameter is above a certain
threshold. A polynomial no-regret algorithm was provid&tis algorithm generally solves a linear
program at each time step, while in some special case theitalgs mixed action reduces to the
simple a-regret matching strategy. To the best of our knowledges, ighithe first algorithm that
addresses the problem of the average tp-rate maximizatiderwaverage fp-rate constraints in the
online setting. In addition, an adaptive scheme that ad#gtgelaxation parameter online was
briefly discussed. Finally, the special case of two classifieas discussed, and the experimental
results for this case show that our algorithm outperformisngle no-regret algorithm which takes
as the reward function a weighted sum of the tp-rate andtfp-ra

Some remarks about our algorithm and results follow. Fiist, guaranteed convergence rate of
the algorithm is ofO(1/+/n) since it is based on Blackwell's approachability theaterSecond,
additional constraints can be easily incorporated in tesgmted framework, since the general regret
minimization framework assumesvactorof constraints. Third, it seems that there is an inherent
trade-off between complexity and performance in the stugi®blem. In particular, in case of a
single constraint, the maximal attainable relaxed godlesconvex hull of the CBE (see [11]) but ho
polynomial algorithms are known that attain this goal. Gagults show that, by further relaxing the
goal, it is possible to devise attaining polynomial aldamis. Finally, we note that the assumption
on the single-stage fp-rates of the classifiers can be wedkaynassuming that, in eashfficiently
large period of timethe averagefp-rate of each classifier is bounded byy,. Our approach and
results can be then extended to this case, by treating eahtpstiod as a single stage.

“A straightforward application of this theorem also giyés: dependence of the rate on the number of clas-
sifiers. We note that it is possible to improve the dependenkegston) by using a potential based Blackwell's
approachability strategy (see for example [4], Chapter 7.8)
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