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Abstract

We consider the online binary classification problem, wherewe are givenm clas-
sifiers. At each stage, the classifiers map the input to the probability that the input
belongs to the positive class. An online classification meta-algorithm is an algo-
rithm that combines the outputs of the classifiers in order toattain a certain goal,
without having prior knowledge on the form and statistics ofthe input, and with-
out prior knowledge on the performance of the given classifiers. In this paper, we
usesensitivityandspecificityas the performance metrics of the meta-algorithm. In
particular, our goal is to design an algorithm that satisfiesthe following two prop-
erties (asymptotically): (i) its averagefalse positive rate(fp-rate) is under some
given threshold; and (ii) its averagetrue positive rate(tp-rate) is not worse than the
tp-rate ofthe best convex combinationof them given classifiers that satisfies fp-
rate constraint,in hindsight. We show that this problem is in fact a special case of
the regret minimization problem with constraints, and therefore the above goal is
not attainable. Hence, we pose arelaxedgoal and propose a correspondingpracti-
cal online learning meta-algorithm that attains it. In the caseof two classifiers, we
show that this algorithm takes a very simple form. To our bestknowledge, this is
the first algorithm that addresses the problem of the averagetp-rate maximization
under averagefp-rate constraintsin the online setting.

1 Introduction

Consider the binary classification problem, where each input is classified into+1 or−1. A classifier
is an algorithm which, for every input, classifies that input. In general, classifiers may produce the
probability of the input to belong to class1. There are several metrics for the performance of the
classifier in the offline setting, where a training set is given in advance. These include error (or
mistake) count, true positive rate, and false positive rate; see [6] for a discussion. In particular,
the true positive rate(tp-rate) is given by the fraction of the number ofpositiveinstancescorrectly
classified out of the total number of the positive instances,while false positive rate(fp-rate) is given
by the fraction of the number ofnegativeinstancesincorrectly classified out of the total number
of the negative instances. A receiver operating characteristics (ROC) graph then depicts different
classifiers using their tp-rate on theY axis, while fp-rate on theX axis (see [6]). We note that
there are alternative names for these metrics in the literature. In particular, the tp-rate is also called
sensitivity, while one minus the fp-rate is usually calledspecificity. In what follows, we prefer to
use the terms tp-rate and fp-rate, as we think that they are self-explaining.
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In this paper we focus on theonline classification problem, where no training set is given in ad-
vance. We are givenm classifiers, which at each stagen = 1, 2, ... map the input instance to the
probability of the instance to belong to the positive class.An online classification meta-algorithm
(or aselectionalgorithm) is an algorithm that combines the outputs of the given classifiers in order
to attain a certain goal, without prior knowledge on the formand statistics of the input, and without
prior knowledge on the performance of the given classifiers.The assumption is that the observed
sequence of classification probabilities and labels comes from some unknown source and, thus, can
bearbitrary. Therefore, it is convenient to formulate the online classification problem as arepeated
gamebetween an agent and some abstract opponent that stands for the collective behavior of the
classifiers and the realized labels. We note that, in this formulation, we can identify the agent with a
corresponding online classification meta-algorithm.

There is a rich literature that deals with the online classification problem, in thecompetitive ra-
tio framework, such as [5, 1]. In these works, the performance guarantees are usually expressed
in terms of themistake boundof the algorithm. In this paper, we take a different approach. Our
performance metrics will be the average tp-rate and fp-rateof the meta-algorithm, while the per-
formance guarantees will be expressed in theregret minimizationframework. In a seminal paper,
Hannan [8] introducedthe optimal reward-in-hindsightr∗n with respect to the empirical distribu-
tion of opponent’s actions, as a performance goal of an online algorithm. In our case,r∗n is in fact
the maximal tp-rate the agent could get at timen by knowing the classification probabilities and
actual labels beforehand, usingthe best convex combination of the classifiers. The regret is then
defined as the difference betweenr∗n and the actual average tp-rate obtained by the agent. Hannan
showed in [8] that there exist online algorithms whose regret converges to zero (or below) as time
progresses, regardless of the opponent’s actions, at1/

√
n rate. Such algorithms are often called

no-regret, Hannan-consistent, or universally consistentalgorithms. Additional no-regret algorithms
were proposed in the literature over the years, such as Blackwell’s approachability-based algorithm
[2] and weighted majority schemes [10, 7] (see [4] for an overview of these and other related algo-
rithms). These algorithms can be directly applied to the problem of online classification when the
goal is only to obtain no-regret with respect to the optimal tp-rate in hindsight.

However, in addition to tp-rate maximization, some performance guarantees in terms of the fp-
rate are usually required. In particular, it is reasonable to require (following the Neyman-Pearson
approach) that, in the long term, the average fp-rate of the agent will be below some given threshold
0 < γ < 1. In this case the tp-rate can be considered as the average reward obtained by the
agent, while fp-rate – as the average cost. This is in fact a special case of theregret minimization
problem with constraintswhose study was initiated by Mannor et al. in [11]. They defined the
constrainedreward-in-hindsight with respect to the empirical distribution of opponent’s actions,
as a performance goal of an online algorithm. This quantity is the maximal average reward the
agent could get in hindsight, had he known the opponent’s actions beforehand, by using any fixed
(mixed) action, while satisfying the average cost constraints. The desired online algorithm then has
to satisfy two requirements: (i) it should have a vanishing regret (with respect to the constrained
reward-in-hindsight); and (ii) it should asymptotically satisfy the average cost constraints. It is
shown in [11] that such algorithms do not exist in general. The positive result is that a relaxed
goal, which is defined in terms of theconvex hullof the constrained reward-in-hindsight over an
appropriate space, is attainable. The two no-regret algorithms proposed in [11] explicitly involve
either the convex hull or acalibrated forecastof the opponent’s actions. Both of these algorithms
may not be computationally feasible, since there are no efficient (polynomial time) procedures for
the computation of both the convex hull and a calibrated forecast.

In this paper, we take an alternative approach to that of [11]. Instead of examining the constrained
tp-rate in hindsight (or its convex hull), our starting point is the “standard” regret with respect to
the optimal (unconstrained) tp-rate, and we consider a certain relaxation thereof. In particular, we
define a simple relaxed form of the optimal tp-rate in-hindsight, by subtracting a positive constant
from the latter. We then find the minimal constant needed in order to have a vanishing regret (with
respect to this relaxed goal) while asymptotically satisfying the average fp-rate constraint. The mo-
tivation for this approach is as follows. We know that if the constraints are always satisfied, then the
optimal tp-rate in-hindsight is attainable (using relatively simple no-regret algorithms). On the other
hand, when the constraints need to be actively satisfied, we should “pay” some penalty in terms of
the attainability of the tp-rate in-hindsight. In our case,we express this penalty in terms of the re-
laxation constant mentioned above. One of the main contributions of this paper is acomputationally
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feasibleonline algorithm, the Constrained Regret Matching (CRM) algorithm, that attains the posed
performance goal. We note that although we focus in this paper on the online classification problem,
our algorithm can be easily extended to the general case of regret minimization under average cost
constraints.

The paper is structured as follows. In Section 2 we formally define the online classification problem
and the goal of the meta-algorithm. In Section 3 we present the general problem of constrained
regret minimization, and show that the online classification problem is its special case. In Section
4 we define our relaxed goal in terms of the unconstrained optimal tp-rate in-hindsight, propose the
CRM algorithm, and show that it can be implemented efficiently. Section 5 discusses the special
case of two classifiers and corresponding experimental results. We conclude in Section 6 with some
final remarks.

2 Online Classification

We consider the online binary classification problem from anabstract space to{1,−1}. We are given
m classifiers that map an input instance to the probability that the instance belongs to the positive
class. We denote byA = {1, ...m} the set of indices of the classifiers. Anonline classification meta-
algorithmis an algorithm that combines the outputs of the given classifiers in order to attain a certain
goal, without prior knowledge on the form and statistics of the input, and without prior knowledge
on the performance of the given classifiers. In what follows,we identify the meta-algorithm with an
agent, and use both these notions interchangeably. The time axis is discrete, with indexn = 1, 2, ....
At stagen, the following events occur: (i) the input instance is presented to the classifiers (butnot
to the agent); (ii) each classifiera ∈ A outputsfn(a) ∈ [0, 1], which is the probability of the input
to belong to class1, and simultaneously the agent chooses a classifieran; and (iii) the correct label
of the instance,bn ∈ {1,−1}, is revealed.

There are several standard performance metrics of classifiers. These includeerror count, true-
positive rate(which is also termedrecall or sensitivity), andfalse-positive rate(one minus the fp-rate
is usually termedspecificity). As discussed in [6], tp-rate and fp-rate metrics have someattractive
properties, such as that they are insensitive to changes in class distribution, and thus we focus on
these metrics in this paper. In the online setting, no training set is given in advance, and therefore
these rates have to be updated online, using the obtained data at each stage. Observe that this
data is expressed in terms of the vectorzn ,

(

{fn(a)}a∈A , bn
)

∈ [0, 1]m × {−1, 1}. We let
rn = r(an, zn) , fn(an) I {bn = 1} andcn = c(an, zn) , fn(an) I {bn = 0} denote the reward
and the cost of the agent at timen. Note thatrn is the probability that the instance with positive
label at timen will be classified correctly by the agent, whilecn is the probability that the instance
with negative label will be classified incorrectly. Then,β̄tp(n) ,

∑n
k=1 rk/

∑n
k=1 I {bn = 1} and

β̄fp(n) ,
∑n

k=1 ck/
∑n

k=1 I {bn = −1} are the average tp-rate and fp-rate of the agent at timen,
respectively.

Our aim is to design a meta-algorithm that will haveβ̄tp(n) not worse than the tp-rate ofthe best
convex combinationof them given classifiers (in hindsight), while satisfyinḡβfp(n) ≤ γ, for some
0 < γ < 1 (asymptotically, almost surely, for any possible sequencez1, z2, ...). In fact, this problem
is a special case of theregret minimization problem with constraints. In the next section we thus
present the general constrained regret minimization framework, and discuss its applicability to the
case of online classification.

3 Constrained Regret Minimization

3.1 Model Definition

We consider the problem of an agent facing an arbitrary varying environment. We identify the en-
vironment with some abstract opponent, and therefore obtain a repeated game formulation between
the agent and the opponent. Theconstrainedgame is defined by a tuple(A,Z, r, c,Γ) whereA
denotes thefinite set of possible actions of the agent;Z denotes thecompactset of possible out-
comes (oractions) of the environment;r : A × Z → R is the reward function;c : A × Z → R

`

is the vector-valued cost function; andΓ ⊆ R
` is a convex and closed set within which the average
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cost vector should lie in order to satisfy the constraints. An important special case is that of linear
constraints, that isΓ =

{

c ∈ R
` : ci ≤ γi, i = 1, ..., `

}

for some vectorγ ∈ R
`.

The time axis is discrete, with indexn = 1, 2, .... At time stepn, the following events occur: (i) The
agent chooses an actionan, and the opponent chooses an actionzn, simultaneously; (ii) the agent
observeszn; and (iii) the agent receives a rewardrn = r(an, zn) ∈ R and a costcn = c(an, zn) ∈
R

`. We let r̄n , 1
n

∑n
k=1 rk andc̄n , 1

n

∑n
k=1 ck denote the average reward and cost of the agent

at timen, respectively. LetHn , Zn−1×An−1 denote the set of all possible histories of actions till
timen. At timen, the agent chooses an actionan according to thedecision ruleπn : Hn → ∆(A),
where∆(A) is the set of probability distributions over the setA. The collectionπ = {πn}∞n=1 is the
strategyof the agent. That is, at each time step, a strategy prescribes somemixedactionp ∈ ∆(A),
based on the observed history. A strategy for the opponent isdefined similarly. We denote the mixed
action of the opponent byq ∈ ∆(Z), which is the probabilitydensityoverZ.

In what follows, we will use the shorthand notationr(p, q) ,
∑

a∈A p(a)
∫

z∈Z
q(z)r(a, z)

for the expected reward under mixed actionsp ∈ ∆(A) and q ∈ ∆(Z). The notation
r(a, q), c(p, q), c(p, z), c(a, q) will be interpreted similarly. We make the following assumption that
the agent can satisfy the constraintsin expectationagainst any mixed action of the opponent.

Assumption 3.1(Satisfiability of Constraints). For everyq ∈ ∆(Z), there existsp ∈ ∆(A), such
that c(p, q) ∈ Γ.

Assumption 3.1 is essential, since otherwise the opponent can violate the average-cost constraints
simply by playing the corresponding stationary strategyq.

Let q̄n(z) ,
∑n

k=1 δ {z − zk} /n denote theempirical densityof the opponent’s actions at timen,
so thatq̄n ∈ ∆(Z). The optimal reward-in-hindsight is then given by

r∗n(z1, ..., zn) ,
1

n
max
a∈A

n
∑

k=1

r(a, zk) = max
a∈A

∫

z∈Z

r(a, z)
1

n

n
∑

k=1

δ {z − zk} = max
a∈A

r(a, q̄n),

implying that r∗n = r∗(q̄n). In what follows, we will use the term “reward envelope” in order
to refer to functionsρ : ∆(Z) → R. The simplest reward envelope is the (unconstrained)best-
responseenvelope (BE)ρ = r∗. Then-stageregretof the algorithm (with respect to the BE) is then
r∗(q̄n) − r̄n. Theno-regretalgorithm must ensure that the regret vanishes asn → ∞ regardless
of the opponent’s actions. However, in our case, in additionto vanishing regret, we need to satisfy
the cost constraints. Obviously, the BE need not be attainable in the presence of constraints, and
therefore other reward envelopes should be considered. Hence, we use the following definition
(introduced in [11]) in order to assess the online performance of the agent.

Definition 3.1 (Attainability and No-Regret). A reward envelopeρ : ∆(Z) → R is Γ-attainableif
there exists a strategyπ for the agent such that, almost surely, (i)lim supn→∞ (ρ(q̄n)− r̄n) ≤ 0 ,
and (ii) limn→∞ d(c̄n,Γ) = 0, for every strategy of the opponent. Here,d(·,Γ) is Euclidean set-to-
point distance. Such a strategyπ is calledconstrained no-regretstrategy with respect toρ.

A natural extension of the BE to the constrained setting was defined in [11], by noting that if the
agent knew in advance that the empirical distribution of theopponents actions is̄qn = q, he could
choose the constrained best response mixed actionp, which is a solution of the corresponding opti-
mization problem:

r∗Γ(q) , max
p∈∆(A)

{r(p, q) : so that c(p, q) ∈ Γ} . (1)

We refer tor∗Γ as the constrained best-response envelope (CBE).

The first positive result that appeared in the literature wasthat of Shimkin [12], which showed that
thevaluevΓ , minq∈∆(Z) r

∗
Γ(q) of the constrained game is attainable by the agent. The algorithm

which attains the value is based on Blackwell’s approachability theory [3], and is computationally
efficient provided thatvΓ can be computed offline. Unfortunately, it was shown in [11] thatr∗Γ(q)
itself isnotattainable in general. However, the (lower)convex hullof r∗Γ(q), conv(r∗Γ), is attainable1.
Two no-regret algorithms with respect to conv(r∗Γ) are suggested in [11]. To our best knowledge,

1The (lower) convex hull of a functionf : X → R is the largestconvexfunction which is nowhere larger
thanf .
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these algorithms are inefficient (i.e., not polynomial); these are the only existing constrained no-
regret algorithms in the literature.

It should be noted that the problem that is considered herecan notbe formulated as an instance of
online convex optimization[13, 9] – see [11] for a discussion on this issue.

3.2 Application to the Online Classification Problem

For the model described in Section 2,A = {1, ...,m} denotes the set of possible classifiers andZ de-
notes the set of possible outputs of the classifiers and the true labels, that is:z =

(

{f(a)}a∈A , b
)

∈
[0, 1]m × {−1, 1} , Z. The reward at timen is rn = r(an, zn) = fn(an) I {bn = 1} and the cost
is cn = c(an, zn) = fn(an) I {bn = −1}. Note that in this case, the mixed action of the opponent
q ∈ ∆(Z) is q(f, b) = q(f |b)q(b), whereq(f |b) is the conditional density of the predictions of the
classifiers andq(b) is the probability of the labelb. It is easy to check that

r(p, q) = q(1)
∑

a∈A

p(a)βtp(q; a), (2)

whereβtp(q; a) ,
∫

f
f(a)q(f |1) is the tp-rate of classifiera under distributionq. Regarding the

cost, the goal is to keep it under a given threshold0 < γ < 1. Since the regret minimization
framework requiresadditive rewards and costs, we define the following modified cost function:
cγ(a, z) , c(a, z)− γ I {b = −1} , and similarly to the reward above, we have that

cγ(p, q) = q(−1)

(

∑

a∈A

p(a)βfp(q; a)− γ

)

, (3)

where βfp(q; a) ,
∫

f
q(f | − 1)f(a) is the fp-rate of classifiera under distributionq. We

note that keeping the average fp-rate of the agentβ̄fp(n) ≤ γ is equivalent to keeping
(1/n)

∑n
k=1 cγ(ak, zk) ≤ 0.

Since our goal is to keep the fp-rate belowγ, some assumption on classifiers should be im-
posed in order to satisfy Assumption 3.1. We assume here thatthe classifiers’ single-stage false-
positive probability is such that it allows satisfying the constraint. In particular, we redefine2

Z , {z = (f, b) ∈ [0, 1]m × {−1, 1} : if b = −1, f(a) ≤ γa} , where0 ≤ γa ≤ 1, and there
existsa∗ such thatγa∗ < γ. Under this assumption, it is clear that for everyq ∈ ∆(Z), there exists
p ∈ ∆(A), such thatcγ(p, q) ≤ 0; in fact thisp is the probability mass concentrated ona∗. If
additional prior information is available on the single-stage performance of the given classifiers, this
may be usefully used to further restrict the setZ. For example, we can also restrictz = (f, 1) by
f(a) ≥ λa for some0 < λa < 1. Such additional restrictions will generally contribute to reduc-
ing the value of the optimal relaxation parameterα∗ (see (7) below). This effect will be explicitly
demonstrated in Section 5.

We proceed to compute the BE and CBE. Using (2), the BE is

r∗(q) , max
a∈A

r(a, q) = q(1) max
a∈{1,...,m}

{βtp(q; a)} , q(1)β∗(q), (4)

whereβ∗(q) is the optimal (unconstrained) tp-rate in hindsight under distributionq. Now, using (1),
(2), and (3) we have thatr∗γ(q) = q(1)β∗

γ(q), where

β∗
γ(q) , max

p∈∆(A)

{

∑

a∈A

p(a)βtp(q; a) : so that
∑

a∈A

p(a)βfp(q; a) ≤ γ

}

, (5)

is the optimal constrained tp-rate in hindsight under distributionq. Finally, note that the value of the
constrained gamevγ , minq∈∆(Z) r

∗
γ(q) = 0 in this case.

As a consequence of this formulation, the algorithms proposed in [11] can be in principle used in
order to attainthe convex hullof r∗γ . However, given the implementation difficulties associated with
these algorithms, we are motivated to examine more carefully the problem of regret minimization
with constraints and provide more practical no-regret algorithms with formal guarantees.

2This assumption can always be satisfied by adding afictitious classifiera0 that always outputs a fixed
f(a0) < γ, irrespectively of the data. However, such an addition might adverselyaffect the value of the
optimal relaxation parameterα∗ (see (7) below), and should be avoided if possible.
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4 Constrained Regret Matching

We next define a relaxed reward envelope for the online classification problem. The proposed is in
fact applicable to the problem of constrained regret minimization in general. However, due to space
limitation, we present it directly for our classification problem.

Our starting point here in defining an attainable reward envelope will be the BEr∗(q) = q(1)β∗(q).
Clearly, r∗ is in general not attainable in the presence of fp-constraints, and we thus consider a
relaxed version thereof. Forα ≥ 0, setr∗α(q) , q(1)(β∗(q) − α). Obviously,r∗α is a convex
function, and we can always pickα ≥ 0 large enough, such thatr∗α is attainable. Furthermore, recall
that the valuevγ of the constrained game is attainable by the agent. Observe that, generally,r∗α(q)
can be smaller thanvγ = 0. We thus introduce the following modification:

rSR
α (q) , q(1)max {0, β∗(q)− α} . (6)

We refer torSR
α as the scalar-relaxed best-response envelope (SR-BE). Now, let3

α∗ , max
q∈∆(Z)

(

β∗(q)− β∗
γ(q)

)

. (7)

We note thatrSR
α∗(q) is strictly above0 at some point, unless the game is in some sense trivial (see

the supplementary material for a proof). According to Definition 3.1, we are seeking for a strategy
π that is: (i) anα-relaxedno-regretstrategy for the average reward, and (ii) ensures that the cost
constraints are asymptotically satisfied. Thus, at each time step, we need to balance between the
need of maximizing the average tp-rate and satisfying the average fp-rate constraint. Below we
propose an algorithm which solves this trade-off forα ≥ α∗.

We introduce some further notation. Let

Rα
k (a) , [fk(a)− fk(ak)− α] I {bk = 1} , a ∈ A, Lk , cγ(ak, zk), (8)

denote theinstantaneousα-regret and theinstantaneous constraint violation(respectively) at time
k. We have that the averageα-regret and constraints violation at timen are

R
α

n(a) = q̄n(1)
[

βtp(q̄n; a)− β̄tp(n)− α
]

, a ∈ A; Ln = q̄n(0)[β̄fp(n)− γ]. (9)

Using this notation, the Constrained Regret Matching (CRM)algorithm is given in Algorithm 1. We
then have the following result.
Theorem 4.1. Suppose that the CRM algorithm is applied with parameterα ≥ α∗, whereα∗ is
given in (7). Then, under Assumption 3.1, it attainsrSR

α (6) in the sense of Definition 3.1. That is, (i)
lim infn→∞

(

β̄tp(n)−max {0,maxa∈A βtp(q̄n; a)− α}
)

≥ 0 , and (ii) lim supn→∞ β̄fp(n) ≤ 0,
for every strategy of the opponent, almost surely.

The proof of this Theorem is based on Blackwell’s approachability theory [3], and is given in the
supplementary material. We note that the mixed action required by the CRM algorithm always
exists provided thatα ≥ α∗. It can be easily shown (see the supplementary material) that whenever
∑

a∈A

[

R
α

n−1(a)
]

+
> 0, this action can be computed by solving the following linearprogram:

min
p∈Bn

∑

a∈A:pα
n(a)>p(a)

(pαn(a)− p(a)) , (10)

where Bn ,

{

p ∈ ∆(A) :
[

Ln−1

]

+

(
∑

a′∈A p(a′)f(a′)− γ
)

≤ 0, ∀z = (f,−1) ∈ Z
}

and

pαn(a) =
[

R
α

n−1(a)
]

+
/
∑

a′∈A

[

R
α

n−1(a
′)
]

+
is theα-regret matching strategy. Note also that

when the average constraints violationLn−1 is non-positive, the minimum in (10) is obtained by

p = pαn. Finally, when
∑

a∈A

[

R
α

n−1(a)
]

+
= 0, any actionp ∈ Bn can be chosen. It is worth men-

tioning that our algorithm, and in particular the program (10), can notbe formulated in the Online
Convex Programming (OCP) framework [13, 9], since the equivalent reward functions in our case
are trajectory-dependent, while in the OCP it is assumed that these functions are arbitrary, butfixed
(i.e., they should not depend on the agent’s actions).

3In general, the parameterα∗ may be difficult to compute analytically. See the supplementary material for
a discussion on computational aspects. Also, in the supplementary material we propose an adaptive algorithm
which avoids this computation (see a remark at the end of Section 4). Finally, in Section 5 we show that in the
case of two classifiers this computation is trivial.
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Algorithm 1 CRM Algorithm
Parameter: α ≥ 0.
Initialization: At time n = 0 use arbitrary actiona0.
At times n = 1, 2, ... find a mixed actionp ∈ ∆(A) such that







∑

a∈A

[

R
α

n−1(a)
]

+

(

f(a)−∑a′∈A p(a′)f(a′)− α
)

≤ 0, ∀z = (f, 1) ∈ Z,
[

Ln−1

]

+

(
∑

a′∈A p(a′)f(a′)− γ
)

≤ 0, ∀z = (f,−1) ∈ Z,
(11)

whereR
α

n(a) andLn,i are given in (9). Draw classifieran from p.

Remark. In practice, it may be possible to attainrSR
α with α < α∗ if the opponent is not entirely

adversarial. In order to capitalize on this possibility, anadaptive algorithm can be used that adjusts
the value ofα online. The idea is to start from some small initial valueα0 ≥ 0 (possiblyα0 = 0).
At each time stepn, we would like to use a parameterα = αn for which inequality (11) can be
satisfied. This inequality is always satisfied whenα ≥ α∗. If howeverα < α∗, the inequality may
or may not be satisfied. In the latter case,α can be increased so that the condition is satisfied. In
addition, once in a while,α can be reset toα0, in order to obtain better results. In the supplementary
material we further discuss the adaptive scheme, and prove aconvergence rate for it. We note that
the adaptive scheme does not require the computation of the optimalα∗, as it discovers it online.

5 The Special Case of Two Classifiers

If m = 2, we can obtain explicit expressions for the reward envelopes and for the algorithm. In
particular, we have two classifiers, and we assume that the outputs of these classifiers lie in the set
Z ,

{

z ∈ (f, b) ∈ [0, 1]2 × {−1, 1} : if b = −1, f(1) ≤ γ1, f(2) ≤ γ2; if b = 1, f(2) ≥ λ
}

such
thatγ1 > γ, γ2 < γ, andλ ≥ 0. Observe that under this assumption, classifier2 has one-stage per-
formance guarantees that will allow to obtain better guarantees of the meta-algorithm. By computing
explicitly the CBE, we obtain

r∗γ(q) = q(1)



























γ−βfp(q;2)
βfp(q;1)−βfp(q;2)

βtp(q; 1) +
βfp(q;1)−γ

βfp(q;1)−βfp(q;2)
βtp(q; 2), if βtp(q; 1) > βtp(q; 2)

andβfp(q; 1) > γ,

βtp(q; 1), if βtp(q; 1) > βtp(q; 2)

andβfp(q; 1) ≤ γ,

βtp(q; 2), otherwise.

Therefore, the relaxation parameter is

α = max
q: βtp(q;1)>βtp(q;2),βfp(q;1)>γ

{

βtp(q; 1)− βtp(q; 2)

βfp(q; 1)− βfp(q; 2)
(βfp(q; 1)− γ)

}

=
(1− λ)(γ1 − γ)

γ1 − γ2
.

Finally, it is easy to check using (10) that Algorithm 1 reduces in this case to the following sim-

ple rule: (i) if
∑

a∈A

[

R
α

n−1(a)
]

+
> 0, choosep(1) = min

{

pαn(1),
γ−γ2

γ1−γ2

}

, wherepαn(1) =
[

R
α

n−1(1)
]

+
/
∑

a∈A

[

R
α

n−1(a)
]

+
denotes theα-regret matching strategy; (ii) otherwise, choose

arbitrary action withp(1) ≤ γ−γ2

γ1−γ2

.

We simulated the CRM algorithm with the following parameters: γ = 0.3, γ1 = 0.4, γ2 = 0.2, λ =
0.7. This gives the relaxation parameter ofα = 0.15. Half of the input instances were positives and
the other half were negatives (on average). The time was divided into episodes with exponentially
growing lengths. At eachoddepisode, both classifiers had similar tp-rate and both of them satisfied
the constraints, while in eachevenepisode, classifier1 was perfect in positives’ classification, but did
not satisfy the constraints. The results are shown in Figure1. We compared the performance of the
CRM algorithm to a simple unconstrained no-regret algorithm that treats both the true-positive and
false positive probabilities similarly, but with different weight. In particular, the reward at stagen of
this algorithm isgn(w) = fn(an) I {bn = 1} − wfn(an) I {bn = −1} for some weight parameter
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fp-rate
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w = 1.1

w = 1.3

w = 1.33

w = 1.4

w = 1.1

w = 1.3

w = 1.33

w = 1.4

β∗(q̄n) β∗

γ
(q̄n) CRM NR(w)

tp-rate

Figure 1: Experimental results for the case of two classifiers.

w ≥ 0. Givenw, this is simply a no-regret algorithm with respect togn(w). Whenw = 0, the
algorithm performs tp-rate maximization, while ifw is large, it performs fp-rate minimization. We
call this algorithm NR(w). As can be seen from Figure 1, the CRM algorithm outperforms NR(w)
for any fixedparameterw. Forw = 1.1, NR(w) has a better tp-rate, but the fp-rate constraint is
violated most of the time. Forw = 1.4, the constraints are always satisfied, but the tp-rate is always
dominated by that of the CRM algorithm. Forw = 1.3, 1.33 it can be seen that the constraints are
satisfied (or almost satisfied), but the tp-rate is usually dominated by that of the CRM algorithm.

6 Conclusion

We studied regret minimization with average-cost constraints, with the focus on computationally
feasible algorithm for the special case of online classification problem with specificity constraints.
We defined a relaxed version of the best-response reward envelope and showed that it can be attained
by the agent while satisfying the constraints, provided that the relaxation parameter is above a certain
threshold. A polynomial no-regret algorithm was provided.This algorithm generally solves a linear
program at each time step, while in some special case the algorithm’s mixed action reduces to the
simpleα-regret matching strategy. To the best of our knowledge, this is the first algorithm that
addresses the problem of the average tp-rate maximization under average fp-rate constraints in the
online setting. In addition, an adaptive scheme that adaptsthe relaxation parameter online was
briefly discussed. Finally, the special case of two classifiers was discussed, and the experimental
results for this case show that our algorithm outperforms a simple no-regret algorithm which takes
as the reward function a weighted sum of the tp-rate and fp-rate.

Some remarks about our algorithm and results follow. First,the guaranteed convergence rate of
the algorithm is ofO(1/

√
n) since it is based on Blackwell’s approachability theorem4. Second,

additional constraints can be easily incorporated in the presented framework, since the general regret
minimization framework assumes avectorof constraints. Third, it seems that there is an inherent
trade-off between complexity and performance in the studied problem. In particular, in case of a
single constraint, the maximal attainable relaxed goal is the convex hull of the CBE (see [11]) but no
polynomial algorithms are known that attain this goal. Our results show that, by further relaxing the
goal, it is possible to devise attaining polynomial algorithms. Finally, we note that the assumption
on the single-stage fp-rates of the classifiers can be weakened by assuming that, in eachsufficiently
large period of time, theaveragefp-rate of each classifiera is bounded byγa. Our approach and
results can be then extended to this case, by treating each such period as a single stage.

4A straightforward application of this theorem also gives
√
m dependence of the rate on the number of clas-

sifiers. We note that it is possible to improve the dependence tolog(m) by using a potential based Blackwell’s
approachability strategy (see for example [4], Chapter 7.8)
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