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Abstract

When the distribution of unlabeled data in feature space liesalong a manifold,
the information it provides may be used by a learner to assistclassification in
a semi-supervised setting. While manifold learning is well-known in machine
learning, the use of manifolds in human learning is largely unstudied. We perform
a set of experiments which test a human’s ability to use a manifold in a semi-
supervised learning task, under varying conditions. We show that humans may
be encouraged into using the manifold, overcoming the strong preference for a
simple, axis-parallel linear boundary.

1 Introduction

Consider a classification task where a learner is given training itemsx1, . . . , xl ∈ R
d, represented by

d-dimensional feature vectors. The learner is also given thecorresponding class labelsy1, . . . , yl ∈
Y. In this paper, we focus on binary labelsY ∈ {−1, 1}. In addition, the learner is given some
unlabeled itemsxl+1, . . . , xl+u ∈ R

d without the corresponding labels. Importantly, the labeled
and unlabeled itemsx1 . . . xl+u are distributed in a peculiar way in the feature space: they lie on
smooth, lower dimensionmanifolds, such as those schematically shown in Figure 1(a). The question
is: given this knowledge of labeled and unlabeled data, how will the learner classifyxl+1, . . . , xl+u?
Will the learner ignore the distribution information of theunlabeled data, and simply use the labeled
data to form a decision boundary as in Figure 1(b)? Or will thelearner propagate labels along the
nonlinear manifolds as in Figure 1(c)?

(a) the data (b) supervised learning (c) manifold learning

Figure 1: On a dataset with manifold structure, supervised learning and manifold learning make
dramatically different predictions. Large symbols represent labeled items, dots unlabeled items.

When the learner is a machine learning algorithm, this question has been addressed by semi-
supervised learning [2, 11]. The designer of the algorithm can choose to make the manifold as-
sumption, also known as graph-based semi-supervised learning, which states that the labels vary
slowly along the manifolds or the discrete graph formed by connecting nearby items. Consequently,
the learning algorithm will predict Figure 1(c). The mathematics of manifold learning is well-
understood [1, 6, 9, 10]. Alternatively, the designer can choose to ignore the unlabeled data and
perform supervised learning, which results in Figure 1(b).
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When the learner is a human being, however, the answer is not soclear. Consider that the human
learner does not directly see how the items are distributed in the feature space (such as Figure 1(a)),
but only a set of items (such as those in Figure 2(a)). The underlying manifold structure of the data
may not be immediately obvious. Thus there are many possibilities for how the human learner will
behave: 1) They may completely ignore the manifold structure and perform supervised learning; 2)
They may discover the manifold under some learning conditions and not others; or 3) They may
always learn using the manifold.

For readers not familiar with manifold learning, the setting might seem artificial. But in fact, many
natural stimuli we encounter in everyday life are distributed on manifolds. An important example
is face recognition, where different poses (viewing angles) of the same face produce different 2D
images. These images can be quite different, as in the frontal and profile views of a person. However,
if we continuously change the viewing angle, these 2D imageswill form a one-dimensional manifold
in a very high dimensional image space. This example illustrates the importance of a manifold to
facilitate learning: if we can form and maintain such a face manifold, then with a single label (e.g.,
the name) on one of the face images, we can recognize all otherposes of that person by propagating
the label along the manifold. The same is true for visual object recognition in general. Other more
abstract stimuli form manifolds, or the discrete analogue,graphs. For example, text documents in a
corpus occupy a potentially nonlinear manifold in the otherwise very high dimensional space used
to represent them, such as the “bag of words” representation.

There exists little empirical evidence addressing the question of whether human beings can learn
using manifolds when classifying objects, and the few studies we are aware of come to opposing
conclusions. For instance, Wallis and Bülthoff created artificial image sequences where a frontal face
is morphed into the profile face of a different person. When participants were shown such sequences
during training, their ability to match frontal and profile faces during testing was impaired [8]. This
might be evidence that people depend on manifold structure stemming from temporal and spatial
proximity to perform face recognition. On the other hand, Vandistet al. conducted a categorization
experiment where the true decision boundary is at 45 degreesin a 2D stimulus space (i.e., an in-
formation integration task). They showed that when the two classes are elongated Gaussian, which
are parallel to, and on opposite sides of, the decision boundary, unlabeled data does not help learn-
ing [7]. If we view these two elongated Gaussian as linear manifolds, this result suggests that people
do not generally learn using manifolds.

This study seeks to understand under what conditions, if any, people are capable of manifold learning
in a semi-supervised setting. The study has important implications for cognitive psychology: first,
if people are capable of learning manifolds, this suggests that manifold-learning models that have
been developed in machine learning can provide hypotheses about how people categorize objects in
natural domains like face recognition, where manifolds appear to capture the true structure of the
domain. Second, if there are reliable methods for encouraging manifold learning in people, these
methods can be employed to aid learning in other domains thatare structured along manifolds. For
machine learning, our study will help in the design of algorithms which can decide when to invoke
the manifold learning assumption.

2 Human Manifold Learning Experiments

We designed and conducted a set of experiments to study manifold learning in humans, with the
following design considerations. First, the task was a “batch learning” paradigm in which partici-
pants viewed all labeled and unlabeled items at once (in contrast to “online” or sequential learning
paradigm where items appear one at a time). Batch learning allows us to compare human behavior
against well-established machine learning models that typically operate in batch mode. Second, we
avoided using faces or familiar 3D objects as stimuli, despite their natural manifold structures as
discussed above, because we wished to avoid any bias resulting from strong prior real-world knowl-
edge. Instead, we used unfamiliar stimuli, from which we could add or remove a manifold structure
easily. This design should allow our experiments to shed light on people’s intrinsic ability to learn
using a manifold.

Participants and Materials. In the first set of experiments, 139 university undergraduates partici-
pated for partial course credit. A computer interface was created to represent a table with three bins,
as shown in Figure 2(a). Unlabeled cards were initially placed in a central white bin, with bins to
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either side colored red and blue to indicate the two classesy ∈ {−1, 1}. Each stimulus is a card.
Participants sorted cards by clicking and dragging with a mouse. When a card was clicked, other
similar cards could be “highlighted” in gray (depending on condition). Labeled cards were pinned
down in their respective red or blue bins and could not be moved, indicated by a “pin” in the corner
of the card. The layout of the cards was such that all cards remained visible at all times. Unlabeled
cards could be re-categorized at any time by dragging from any bin to any other bin. Upon sorting
all cards, participants would click a button to indicating completion.

Two sets of stimuli were created. The first, used solely to acquaint the participants with the interface,
consisted of a set of 20 cards with animal line drawings on a white background. The images were
chosen to approximate a linear continuum between fish and mammal, with shark, dolphin, and
whale at the center. The second set of stimuli used for the actual experiment was composed of 82
“crosshair” cards, each with a pair of perpendicular, axis-parallel lines, all of equal length, crossing
on a white background. Four examples are shown in Figure 2(b). Each card therefore can be
encoded asx ∈ [0, 1]2, whose two features representing the positions of the vertical and horizontal
lines, respectively.

(a) Card sorting interface (b)x1 = (0, 0.1), x2 = (1, 0.9), x3 = (0.39, 0.41), x4 = (0.61, 0.59)

Figure 2: Experimental interface (with highlighting shown), and example crosshair stimuli.

Procedure.Each participant was given two tasks to complete.

Task 1 was a practice task to familiarize the participant with the interface. The participant was
asked to sort the set of 20 animal cards into two categories, with the two ends of the continuum
(a clown fish and a dachshund) labeled. Participants were told that when they clicked on a card,
highlighting of similar cards might occur. In reality, highlighting was always shown for the two
nearest-neighboring cards (on the defined continuum) of a clicked card. Importantly, we designed
the dataset so that, near the middle of the continuum, cards from opposite biological classes would
be highlighted together. For example, when a dolphin was clicked, both a shark and a whale would
be highlighted. The intention was to indicate to the participant that highlighting is not always a clear
give-away for class labels. At the end of task 1 their fish vs. mammal classification accuracy was
presented. No time limit was enforced.

Task 2 asked the participant to sort a set of 82 crosshair cards into two categories. The set of cards,
the number of labeled cards, and the highlighting of cards depended on condition. The participant
was again told that some cards might be highlighted, whetherthe condition actually provided for
highlighting or not. The participant was also told that cards that shared highlighting may not all
have the same classification. Again, no time limit was enforced. After they completed this task, a
follow up questionnaire was administered.

Conditions. Each of the 139 participants was randomly assigned to one of 6conditions, shown in
Figure 3, which varied according to three manipulations:

The number of labeled itemsl can be 2 or 4 (2l vs. 4l). For conditions with two labeled items,
the labeled items are always(x1, y1 = −1), (x2, y2 = 1); with four labeled items, they are always
(x1, y1 = −1), (x2, y2 = 1), (x3, y3 = 1), (x4, y4 = −1). The features ofx1 . . . x4 are those given
in Figure 2(b). We chose these four labeled points by maximizing the prediction differences made
by seven machine learning models, as discussed in the next section.
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Unlabeled items are distributed on a uniform grid or manifolds (gridU vs. moonsU). The items
x5 . . . x82 were either on a uniform grid in the 2D feature space, or alongtwo “half-moons”, which is
a well-studied dataset in the semi-supervised learning community. No linear boundary can separate
the two moons in feature space.x3 andx4, if unlabeled, are the same as in Figure 2(b).

Highlighting similar items or not (the suffix h). For themoonsUconditions, the neighboring cards
of any clicked card may be highlighted. The neighborhood is defined as within a radius ofǫ = 0.07
in the Euclidean feature space. This value was chosen as it includes at least two neighbors for each
point in themoonsUdataset. To form the unweighted graph shown in Figure 3, an edge is placed
between all neighboring points.

The rationale for comparing these different conditions will become apparent as we consider how
different machine-learning models perform on these datasets.
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Figure 3: The six experimental conditions. Large symbols indicate labeled items, dots unlabeled
items. Highlighting is represented as graph edges.

3 Model Predictions

We hypothesize that human participants consider a set of models ranging from simple to sophis-
ticated, and that they will perform model selection based onthe training data given to them. We
start by considering seven typical machine learning modelsto motivate our choice, and present the
models we actually use later on. The seven models are:(graph) Graph-based semi-supervised
learning [1, 10], which propagates labels along the graph. It reverts to supervised learning when
there is no graph (i.e., no highlighting).(1NN,ℓ2) 1-nearest-neighbor classifier withℓ2 (Euclidean)
distance. (1NN,ℓ1) 1-nearest-neighbor classifier withℓ1 (Manhattan) distance. These two mod-
els are similar to exemplar models in psychology [3].(multi-v) multiple vertical linear bound-
aries. (multi-h) multiple horizontal linear boundaries.(single-v)a single vertical linear boundary.
(single-h)a single horizontal linear boundary. We plot the label predictions by these 7 models on
four of the six conditions in Figure 4. Their predictions on2lmoonsUare identical to2lmoonsUh, and on
4lmoonsUare identical to4lmoonsUh, except that “(graph)” is not available.

For conceptual simplicity and elegance, instead of using these disparate models we adopt a single
model capable of making all these predictions. In particular, we use a Gaussian Process (GP) with
different kernels (i.e., covariance functions)k to simulate the seven models. For details on GPs
see standard textbooks such as [4]. In particular, we find seven different kernelsk to match GP
classification to each of the seven model predictions on all 6conditions. This is somewhat unusual
in that our GPs are not learned from data, but by matching other model predictions. Nonetheless, it
is a valid procedure to create seven different GPs which willlater be compared against human data.

For models (1NN,ℓ2), (multi-v), (multi-h), (single-v), and (single-h), we use diagonal RBF kernels
diag(σ2

1 , σ
2
2) and tuneσ1, σ2 on a coarse parameter grid to minimize classification disagreement

w.r.t. the corresponding model prediction on all 6 conditions. For model (1NN,ℓ1) we use a Laplace
kernel and tune its bandwidth. For model (graph), we producea graph kernel̃k following the
Reproducing Kernel Hilbert Space trick in [6]. That is, we extend a base RBF kernelk with a graph
component:

k̃(x, z) = k(x, z)− k
⊤
x (I + cLK)−1cLkz (1)

wherex, z are two arbitrary items (not necessarily on the graph),kx = (k(x, x1), . . . , k(x, xl+u))
⊤

is the kernel vector betweenx and alll+u pointsx1 . . . xl+u in the graph,K is the(l+u)× (l+u)
Gram matrix withKij = k(xi, xj), L is the unnormalized graph Laplacian matrix derived from
unweighted edges on theǫNN graph defined earlier for highlighting, andc is the parameter that we
tune. We take the base RBF kernelk to be the tuned kernel for model (1NN,ℓ2). It can be shown that
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k̃ is a valid kernel formed by warping the base kernelk along the graph, see [6] for technical details.
We used the GP classification implementation with Expectation Propagation approximation [5].

In the end, our seven GPs were able toexactly match the predictions made by the seven models in
Figure 4. We will use these GPs in the rest of the paper.
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Figure 4: Predictions made by the seven models on 4 of the 6 conditions.

4 Behavioral Experiment Results

We now compare human categorization behaviors to model predictions. We first consider the ag-
gregate behavior for all participants within each condition. One way to characterize this aggregate
behavior is the “majority vote” of the participants on each item. That is, if more than half of the
participants classified an item asy = 1, the majority vote classification for that item isy = 1, and
so on. The first row in Figure 5 shows the majority vote for eachcondition. In these and all further
plots, blue circles indicatey = −1, red plusesy = 1, and green stars ambiguous, meaning the
classification into positive or negative is half-half. We also compute how well the seven GPs predict
human majority votes. The accuracies of these GP models are shown in Table 11.

2lgridU 2lmoonsU 2lmoonsUh 4lgridU 4lmoonsU 4lmoonsUh

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

Figure 5: Human categorization results. (First row) the majority vote of participants within each
condition. (Bottom three rows) a sample of responses from 18different participants.

Of course, a majority vote only reveals average behavior. Wehave observed that there are wide
participant variabilities. Participants appeared to find the tasks difficult, as their self-reported con-
fidence scores were fairly low in all conditions. It was also noted that strategies for completing the

1The condition4lmoonsUhR will be explained later in Section 5.

5



(graph) (1NN,ℓ2) (1NN,ℓ1) (multi-v) (multi-h) (single-v) (single-h)
2
lgridU 0.81 0.94 0.84 0.86 0.58 0.85 0.61

2
lmoonsU 0.47 0.84 0.62 0.74 0.42 0.79 0.45

2
lmoonsUh 0.50 0.78 0.56 0.76 0.36 0.76 0.39

4
lgridU 0.54 0.61 0.64 0.64 0.50 0.60 0.51

4
lmoonsU 0.64 0.62 0.60 0.69 0.47 0.38 0.45

4
lmoonsUh 0.97 0.76 0.54 0.64 0.31 0.65 0.26

4
lmoonsUhR 0.68 0.63 0.44 0.56 0.40 0.59 0.42

Table 1: GP model accuracy in predicting human majority votefor each condition.

task varied widely, with some participant simply categorizing cards in the order they appeared on the
screen, while others took a much longer, studied approach. Most interestingly, different participants
seem to use different models, as the individual participantplots in the bottom three rows of Figure 5
suggest. We would like to be able to make a claim about what model, from our set of models, each
participant used for classification. In order to do this, we computeper participant accuracies of
the seven models on that participant’s classification. We then find the modelM with the highest
accuracy for the participant, out of the seven models. If this highest accuracy is above 0.75, we
declare that the participant is potentially using modelM ; otherwise no model is deemed a good fit
and we say the participant is using some “other” model. We show the proportion of participants in
each condition attributed to each of our seven models, plus “other”, in Table 2.

(graph) (1NN,ℓ2) (1NN,ℓ1) (multi-v) (multi-h) (single-v) (single-h) other
2
lgridU 0.12 0.00 0.12 0.25 0.25 0.12 0.00 0.12

2
lmoonsU 0.00 0.12 0.00 0.25 0.25 0.25 0.00 0.12

2
lmoonsUh 0.12 0.00 0.00 0.38 0.25 0.00 0.00 0.25

4
lgridU 0.00 0.05 0.09 0.00 0.00 0.18 0.09 0.59

4
lmoonsU 0.25 0.25 0.12 0.12 0.00 0.04 0.08 0.38

4
lmoonsUh 0.39 0.09 0.09 0.04 0.04 0.00 0.13 0.22

4
lmoonsUhR 0.13 0.03 0.07 0 0 0.07 0.03 0.67

Table 2: Percentage of participants potentially using eachmodel

Based on Figure 5, Table 1, and Table 2, we make some observations:

1. When there are only two labeled points, the unlabeled distribution does not encourage humans to
perform manifold learning (comparing2lgridU vs. 2lmoonsU). That is, they do not follow the possible
implicit graph structure (2lmoonsU). Instead, in both conditions they prefer a simple single vertical or
horizontal decision boundary, as Table 2 shows2.

2. With two labeled points, even if they are explicitly given the graph structure in the form of
highlighting, participants still do not perform manifold learning (comparing2lmoonsU vs. 2lmoonsUh).
It seems they are “blocked” by the simpler vertical or horizontal hypothesis, which perfectly explains
the labeled data.

3. When there are four labeled points but no highlighting, the distribution of unlabeled data still does
not encourage people to perform manifold learning (comparing 4lgridU vs. 4lmoonsU). This further
suggests that people can not easily extract manifold structure from unlabeled data in order to learn,
when there is no hint to do so. However, most participants have given up the simple single vertical
or horizontal decision boundary, because it contradicts with the four labeled points.

4. Finally, when we provide the graph structure, there is a marked switch to manifold learning
(comparing4lmoonsU vs. 4lmoonsUh). This suggests that a combination of the elimination of preferred,
simpler hypotheses, together with a stronger graph hint, finally gives the originally less preferred
manifold learning model a chance of being used. It is under this condition that we observed human
manifold learning behavior.

2The two rows in Table 1 for these two conditions are therefore misleading, as it averages classification made
with vertical and horizontal decision boundaries. Also note that in the2

lconditions (multi-v) and (multi-h) are
effectively single linear boundary models (see Figure 4) and differ from (single-v) and (single-h) only slightly
due to the training method used.
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5 Humans do not Blindly Follow the Highlighting

Do humans really learn using manifolds? Could they have adopted a “follow-the-highlighting”
procedure to label the manifolds 100% correctly: in the beginning, click on a labeled cardx to
highlight its neighboring unlabeled cards; pick one such neighborx′ and classify it with the label of
x; now click on (the now labeled)x′ to find one of its unlabeled neighborsx′′, and repeat? Because
our graph has disconnected components with consistently labeled seeds, this procedure will succeed.
The procedure is known as propagating-1NN in semi-supervised learning (Algorithm 2.7, [11]). In
this section we present three arguments that humans are not blindly following the highlighting.

First, participants in2lmoonsUh did not learn the manifold while those in4lmoonsUh did, even though
the two conditions have the sameǫNN highlighting.

Second, a necessary condition for follow-the-highlighting is to always classify an unlabeledx′

according to a labeled highlighted neighborx. Conversely, if a participant classifiesx′ as class
y′, while all neighbors ofx′ are either still unlabeled or have labels other thany′, she could not
have been using follow-the-highlighting onx′. We say she has taken a leap-of-faith onx′. The
4lmoonsUh participants had an average of 17 leaps-of-faith among about 78 classifications3, while
strict follow-the-highlighting procedure would yield zero leaps-of-faith.

Third, the basic challenge of follow-the-highlighting is that the underlying manifold structure of the
stimuli may have been irrelevant. Would participants have shown the same behavior, following the
highlighting, regardless of the actual stimuli? We therefore designed the following experiment. Take
the4lmoonsUh graph which has 4 labeled nodes, 78 unlabeled nodes, and an adjacency matrix (i.e.,
edges) defined byǫNN, as shown in Figure 3. Take a random permutationπ = (π1, . . . , π78). Map
the feature vector of theith unlabeled point toxπi

, while keeping the adjacency matrix the same.
This creates the random-looking graph in Figure 6(a) which we call4lmoonsUhR condition (the suffix
R stands for random), which is equivalent to the4lmoonsUh graph in structure. In particular, there are
two connected components with consistent labeled seeds. However, now the highlighted neighbors
may look very different than the clicked card.

If we assume humans blindly follow the highlighting (perhaps noisily), then we predict that they
are more likely to classify those unlabeled points nearer (in shortest path length on the graph, not
Euclidean distance) a labeled point with the latter’s label; and that this correlation should be the same
under4lmoonsUhR and4lmoonsUh. This prediction turns out to be false. 30 additional undergraduates
participated in the new4lmoonsUhR condition. Figure 6(b) shows the above behavioral evaluation,
which does not exhibit the predicted correlation, and is clearly different from the same evaluation for
4lmoonsUh in Figure 6(c). Again, this is evidence that humans are not just following the highlighting.
In fact, human behavior in4lmoonsUhR is similar to4lmoonsU. That is, having random highlighting is
similar to having no highlighting in how it affects human categorization. This can be seen from the
last rows of Tables 1 and 2, and Figure 6(d)4.

6 Discussion

We have presented a set of experiments exploring human manifold learning behaviors. Our results
suggest that people can perform manifold learning, but onlywhen there is no alternative, simpler
explanation of the data, and people need strong hints about the graph structure.

We propose that Bayesian model selection is one possible wayto explain these human behaviors.
Recall we defined seven Gaussian Processes, each with a different kernel. For a given GP with
kernelk, the evidencep(y1:l | x1:l, k) is the marginal likelihood on labeled data, integrating outthe
hidden discriminant function sampled from the GP. With multiple candidate GP models, one may
perform model selection by selecting the one with the largest marginal likelihood. From the absence
of manifold learning in conditions without highlighting orwith random highlighting, we speculate
that the GP with the graph-based kernelk̃ (1) is special: it is accessible in a participant’s repertoire

3The individual number of leaps-of-faith are 0, 1, 2, 4, 10, 13, 13, 14, 14, 15, 15, 16, 18, 19, 20, 21, 22, 24,
25, 27, 33, 36, and 36 respectively, for the 23 participants.

4In addition, if we create a GP from the Laplacian of the random highlighting graph, the GP accuracy in
predicting4lmoonsUhR human majority vote is 0.46, and the percentage of participants in4

lmoonsUhR who can
be attributed to this model is 0.
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Figure 6: The4lmoonsUhR experiment with 30 participants. (a) The4lmoonsUhR condition. (b) The
behavioral evaluation for4lmoonsUhR, where thex-axis is the shortest path length of an unlabeled
point to a labeled point, and they-axis is the fraction of participants who classified that unlabeled
point consistent with the nearest labeled point. (c) The same behavioral evaluation for4lmoonsUh. (d)
The majority vote in4lmoonsUhR.

only when strong hints (highlighting) exists and agrees with the underlying unlabeled data manifold
structure. Under this assumption, we can then explain the contrast between the lack of manifold
learning in2lmoonsUh, and the presence of manifold learning in4lmoonsUh. On one hand, for the
2lmoonsUh condition, the evidence for the seven GP models on the two labeled points are: (graph)
0.249, (1NN,ℓ2) 0.250, (1NN,ℓ1) 0.250, (multi-v) 0.250, (multi-h) 0.250, (single-v) 0.249, (single-
h) 0.249. The graph-based GP has slightly lower evidence than several other GPs, which may be
due to our specific choice of kernel parameters in (1). In any case, there is no reason to prefer the
GP with a graph kernel, and we do not expect humans to learn on manifold in 2lmoonsUh. On the
other hand, for4lmoonsUh, the evidence for the seven GP models on those four labeled points are:
(graph) 0.0626, (1NN,ℓ2) 0.0591, (1NN,ℓ1) 0.0625, (multi-v) 0.0625, (multi-h) 0.0625, (single-v)
0.0341, (single-h) 0.0342. The graph-based GP has a small lead over other GPs. In particular, it is
better than the evidence 1/16 for kernels that treat the fourlabeled points essentially independently.
The graph-based GP obtains this lead by warping the space along the two manifolds so that the two
positive (resp. negative) labeled points tend to co-vary. Thus, there is a reason to prefer the GP with
a graph kernel, and we do expect humans to learn on manifold in4lmoonsUh.

We also explore the convex combination of the seven GPs as a richer model for human behavior:
k(λ) =

∑7
i=1 λiki, whereλi ≥ 0,

∑
i λi = 1. This allows a weighted combination of kernels to be

used, and is more powerful than selecting a single kernel. Again, we optimize the mixing weightsλ
by maximizing the evidencep(y1:l | x1:l, k(λ)). This is a constrained optimization problem, and can
be easily solved up to local optimum (because evidence is in general non-convex) with a projected
gradient method, given the gradient of the log evidence. Forthe2lmoonsUh condition, in 100 trials
with random startingλ values, the maximum evidence always converges to 1/4, whilethe optimum
λ is not unique and occupies a subspace(0, λ2, λ3, λ4, λ5, 0, 0) with λ2+λ3+λ4+λ5 = 1 and mean
(0, 0.27, 0.25, 0.22, 0.26, 0, 0). Note the weight for the graph-based kernelλ1 is zero. In contrast, for
the4lmoonsUh condition, in 100 trialsλ overwhelmingly converges to(1, 0, 0, 0, 0, 0, 0) with evidence
0.0626. i.e., it again suggests that people would perform manifold learning in4lmoonsUh.

Of course, this Bayesian model selection analysis is over-simplified. For instance, we did not con-
sider people’s priorp(λ) on GP models, i.e., which model they would prefer before seeing the data.
It is possible that humans favor models which produce axis-parallel decision boundaries. Defining
and incorporating non-uniformp(λ) priors is a topic for future research.
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local and global consistency. InAdvances in Neural Information Processing System 16, 2004.

[10] Xiaojin Zhu, Zoubin Ghahramani, and John Lafferty. Semi-supervised learning using Gaussian fields and
harmonic functions. InThe 20th International Conference on Machine Learning (ICML), 2003.

[11] Xiaojin Zhu and Andrew B. Goldberg.Introduction to Semi-Supervised Learning. Synthesis Lectures on
Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers, San Rafael, CA, 2009.

9


