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Abstract

Most current image categorization methods require lardleatmns of man-
ually annotated training examples to learn accurate vise@gnition models.
The time-consuming human labeling effort effectively lisnihese approaches to
recognition problems involving a small number of differebject classes. In or-
der to address this shortcoming, in recent years severabesihave proposed to
learn object classifiers from weakly-labeled Internet isgguch as photos re-
trieved by keyword-based image search engines. While trasegy eliminates
the need for human supervision, the recognition accuratidsese methods are
considerably lower than those obtained with fully-supsediapproaches, because
of the noisy nature of the labels associated to Web data.

In this paper we investigate and compare methods that lezage classifiers by
combining very few manually annotated examples (e.g., Irfdyes per class)
and a large number of weakly-labeled Web photos retrieved)keyword-based
image search. We cast this as a domain adaptation problgem gifew strongly-
labeled examples in a target domain (the manually annogt@aples) and many
source domain examples (the weakly-labeled Web phot@s) Idassifiers yield-
ing small generalization error on the target domain. Oueexrpents demonstrate
that, for the same number of strongly-labeled examplesdourain adaptation
approach produces significant recognition rate improveésnever the best pub-
lished results (e.g65% better when using labeled training examples per class)
and that our classifiers are one order of magnitude fasteatm land to evaluate
than the best competing method, despite our use of largelyvidieled data sets.

1 Introduction

The last few years have seen a proliferation of human eftortsollect labeled image data sets
for the purpose of training and evaluating visual recogniystems. Label information in these
collections comes in different forms, ranging from simplgext category labels to detailed semantic
pixel-level segmentations. Examples include Caltech28§ pnd the Pascal VOC2010 data set [7].
In order to increase the variety and the number of labelegbljasses, a few authors have designed
online games and appealing software tools encouraging @musers to participate in these image
annotation efforts [23, 30]. Despite the tremendous reseawntribution brought by such attempts,
even the largest labeled image collections today [6] aridifrto a number of classes that is at least
one order of magnitude smaller than the number of objectoaies that humans can recognize [3].
In order to overcome this limitation and in an attempt to daibssifiers for arbitrary object classes,
several authors have proposed systems that learn fromyvizdidled Internet photos [10, 9, 29, 20].
Most of these approaches rely on keyword-based image seagihes to retrieve image examples
of specified object classes. Unfortunately, while imagedeangines provide training examples



without the need of any human intervention, it is sufficiemttype a few example keywords in
Google or Bing image search to verify that often the majooitythe retrieved images are only
loosely related with the query concept. Most prior work htiemapted to address this problem
by means of outlier rejection mechanisms discarding iveeleimages from the retrieved results.
However, despite the dynamic research activity in this aneskly-supervised approaches today
still yield significantly lower recognition accuracy thaunlli supervised object classifiers trained on
clean data (see, e.g., results reported in [9, 29]).

In this paper we argue that the poor performance of modetadearom weakly-labeled Internet
data is not only due to undetected outliers contaminatiegithining data, but it is also a conse-
guence of the statistical differences often present betweéeb images and the test data. Figure 1
shows sample images for some of the Caltech256 object aé#sgeersus the top six images re-
trieved by Bing using the class names as keywbrdalthough a couple of outliers are indeed
present in the Bing sets, the striking difference betweertw collections is that even the relevant
results in the Bing groups appear to be visually less homeges For example, in the case of the
classes shown in figure 1(a,b), while the Caltech256 grooptm only real photographs, the Bing
counterparts include several cartoon drawings. In figuoed)(each Caltech256 image contains
only the object of interest while the pictures retrieved bgdBinclude extraneous items, such as
people or faces, which act as distractors in the learnirig i@lparticularly true when evaluating the
classifiers on Caltech256, given that "faces” and "peopte”separate categories in the data set).
Furthermore, even when "irrelevant” results do occur inrgteeved images, they are rarely outliers
detectable via simple coherence tests as there is often sonséstency even among such photos.
For example, polysemy — the capacity of one word to have pilaltheanings — causes multiple
visual clusters (as opposed to individual outliers) to @pjethe Bing sets of figure 1(e,f) (the two
clusters in (e) are due to the fact that the word "hawksb#lidtes both a crag in Arkansas as well as
a type of sea turtle, while in the case of (f) the keyword Stcle” retrieves images of both bicycles
as well as motorcycles with three wheels; note, again, thlie€h256 contains for both classes only
images corresponding to one of the words meanings and thatotoycle” appears as a separate
additional category). Finally, in some situations, diffier shooting distances or angles may produce
completely unrelated views of the same object or scene:x@mele, the Bing set in 1(g) includes
both aerial and ground views of Mars, which have very litteommon visually.

Note that for most of the classes in figure 1 it is not clear arpwhich are the “relevant” Internet
images to be used for training until we compare them to theégsha the corresponding Caltech256
categories. In this paper we show that a few strongly-label@amples from the test domain (e.g. a
few Caltech256 images for the class of interest) are indeffitient to disambiguate this relevancy
problem and to model the distribution differences betwéenteakly-labeled Internet data and the
test application data, so as to significantly improve re@@mnperformance on the test set.

The situation where the test data is drawn from a distriloutiat is related, but not identical, to
the distribution of the training data has been widely stddirethe field of machine learning and it
is traditionally addressed using so-called "domain adaptamethods. These techniques exploit
ample availability of training data from source domain to learn a model that works effectively
in a relatedtarget domain for which only few training examples are available. Morenfiaily, let
p'(X,Y) andp*(X,Y) be the distributions generating the target and the sourtze despectively.
Here, X denotes the input (a random feature vector) &nthe class (a discrete random variable).
The domain adaptation problem arises whene¥ék,Y) differs fromp*(X,Y). In covariance
shift, it is assumed that only the distributions of the infrétures differ in the two domain, i.e.,
p(Y]X) = p*(Y|X) butp!(X) # p*(X). Note that, without adaptation, this may lead to poor clas-
sification in the target domain since a model learned frommgelaource training set will be trained
to perform well in the dense source regionsXfwhich, under the covariance shift assumption,
will generally be different from the dense regions of thg&trdomain. Typically, covariance shift
algorithms (e.g., [16]) address this problem by modelirggrtitiop’ (X)) /p*(X). Unfortunately, the
much more common and challenging case is when the condititistaibutions are different, i.e.,
p'(Y|X) # p*(Y|X). When such differences are relatively small, however, Kedge gained by
analyzing data in the source domain may still yield valuatlermation to perform prediction for
test target data. This is precisely the scenario considertis paper.

"Note that image search results may have changed since tasgles were captured.



Caltech256 Bing

(@)

(b)

(©)

(d)

HON

(f)

(9)

Figure 1: Images in Caltech256 for several categories gmeesults retrieved by Bing image search
for the corresponding keywords. The Bing sets are both sgoadlg and visually less coherent:
presence of multiple objects in the same image, polysemigatarization, as well as variations in
viewpoints are some of the visual effects present in Inteimages which cause significant data
distribution differences between the Bing sets and theesponding Caltech256 groups.




2 Relationship to other methods

Most of the prior work on learning visual models from imagearsé has focused on the task of
“cleaning up” Internet photos. For example, in the pionagvork of Fergus et al. [10], visual filters
learned from image search were used to rerank photos onsiediaisual consistency. Subsequent
approaches [2, 25, 20] have employed similar outlier rejactichemes to automatically construct
clean(er) data sets of images for training and testing tlojessifiers. Even techniques aimed at
learning explicit object classifiers from image search [, lzave identified outlier removal as the
key-ingredient to improve recognition. In our paper we fom another fundamental, yet largely
ignored, aspect of the problem: we argue that the currentgeErformance of classification models
learned from the Web is due to the distribution differencesvieen Internet photos and image test
examples. To the best of our knowledge we propose the firstsyic empirical analysis of domain
adaptation methods to address sample distribution diftergin object categorization due to the use
of weakly-labeled Web images as training data. We note thabik concurrent to our own, Saenko
et al. [24] have also analyzed cross-domain adaptation jecoblassifiers. However, their work
focuses on the statistical differences caused by varymtgtiig conditions (uncontrolled versus
studio setups) and by images taken with different camemstya digital SLR versus a webcam).

Transfer learning, also known as multi-task learning, latesl to domain adaptation. In computer
vision, transfer learning has been applied to a wide rangeadfiems including object categorization
(see, e.g., [21, 8, 22]). However, transfer learning addrea different problem. In transfer learning
there is a single distribution of the inpyi§X) but there are multiple output variabl&s, ..., Y,
associated td@" distinct tasks (e.g., learning classifiers for differenjeab classes). Typically, it

is assumed that some relations exist among the tasks; for@&asome common structure when
learning classifierp(Y1| X, 61), ..., p(Yr|X, 67) can be enforced by assuming that the parameters
01,...,0r are generated from a shared prigf). The fundamental difference is that in domain
adaptation we have a single task but different domainsdikerent sources of data.

As our approach relies on a mix of labeled and weakly-labeted)es, it is loosely related to semi-

supervised methods for object classification [15, 19]. Withis genre, the algorithm described

in [11] is perhaps the closest to our work as it also relies eakly-labeled Internet images. How-

ever, unlike our approach, these semi-supervised methedieaigned to work in cases where the
test examples and the training data are generated from e diatribution.

3 Approach overview

3.1 Experimental setup

Our objective is to evaluate domain adaptations methodb@aisk of object classification, using
photos from a human-labeled data set as target domain egawapdl images retrieved by a keyword-
based image search engine as examples of the source domain.

We used Caltech256 as the data set for the target domainisiscan established benchmark for
object categorization and it contains a large number oBels§256) thus allowing us to average out
performance variations due to especially easy or difficatiégories. From each class, we randomly
sampledh images as target training examples, and otherimages as target test examples.

We formed the weakly-labeled source data by collecting dipents images retrieved by Bing im-

age search for each of the Caltech256 category text labédilsough it may have been possible to
improve the relevancy of the image results for some of thesela by manually selecting less am-
biguous search keywords, we chose to issue queries on thenged Caltech256 text class labels
to avoid subjective alteration of the results. However, liden to ensure valid testing, we removed
near duplicates of Caltech256 images from the source trgset by a human-supervised process.

3.2 Feature representation and classification model

In order to study the effect of large weakly-labeled tragngets on object recognition performance,
we need a baseline system that achieves good performanbgamh @ategorization and that supports
efficient learning and test evaluation. The current beslighd results on Caltech256 were obtained
by a kernel combination classifier using 39 different featkernels, one for each feature type [13].
However, since both training as well testing are computatiy very expensive with this classifier,
this model is unsuitable for our needs.



Instead, in this work we use as image representation theestas features recently proposed by
Torresani et al. [28]. This descriptor is particularly abie for our task as it has been shown to
yield near state-of-the-art results with simple linearan vector machines, which can be learned
very efficiently even for large training sets. The descript®asures the closeness of an image
to a basis set of classes and can be used as an intermediasergation to learn classifiers for
new classes. The basis classifiers of the classeme desaipttearned from weakly-labeled data
collected for a large and semantically broad set of attebuthe final descriptor contains 2659
attributes). To eliminate the risk of the test classes baiready explicitely represented in the feature
vector, in this work we removed from the descriptor 34 atit@s, corresponding to categories related
to Caltech256 classes. We use a binarized version of thigiges obtained by thresholding t
the output of the attribute classifiers: this yields for eanhge a 2625-dimensional binary vector
describing the predicted presence/absence of visuabats in the photo. This binarization has
been shown to yield very little degradation in recogniti@nfprmance (see [28] for further details).
We denote withf () € {0, 1}* the binary attribute vector extracted from imagwith F = 2625.

Object class recognition is traditionally formulated as @altiolass classification problem: given a
test imager, predict the class label € {1,..., K} of the object present in it, wherE is the
number of possible classes (in the case of Caltech®56s 256). In this paper we implement
multi-class classification using binary classifiers trained using tlome-versus-the-rest scheme
and perform prediction according to thénner-take-all strategy. Thek-th binary classifier (distin-
guishing between clagsand the other classes) is trained on a target trainin@seind a collection
D; of weakly-labeled source training examplé, is formed by aggregating the Caltech256 train-
ing images of all classes, using the data from/kta class as positive examples and the data from
the remaining classes as negative examplesZiie— {(ff,y;k)}ﬁv:tl wheref! = f(x!) denotes
the feature vector of theth image,N; = (K - n;) is the total number of images in the strongly-
labeled data set, angf, € {—1,1} is 1 iff examplei belongs to clasg. The source training
setD; = {f;}i=, is the collection ofn, images retrieved by Bing using the category name of
the k-th class as keyword. As discussed in the next section,rdiffenethods will make different
assumptions on the labels of the source examples.

We adopt a linear SVM as the model for the binary one-vs-ést-¢lassifiers. This choice is pri-
marily motivated by the availability of several simple ydfeetive domain adaptation variants of
SVM [5, 26], in addition to the aforementioned reasons ofdyperformance and efficiency.

4 Methods

We now present the specific domain adaptation SVM algorithfasbrevity, we drop the subscript
k indicating dependence on the specific class. The hypermdeast’ of all classifiers are selected
S0 as to minimize the multiclass cross validation error @ténget training data. For all algorithms,
we cope with the largely unequal number of positive and negakamples by normalizing the cost
entries in the loss function by the respective class sizes.

4.1 BaselinesSVM, SVM, SViY?

We include in our evaluation three algorithmst based on domain adaptation and use them as
comparative baselines. We indicate wBWYM a linear SVM learned exclusively from the target
examples.SVM denotes an SVM learned from the source examples using theersas-the-rest
scheme and assuming no outliers are present in the imagehgeaults.SVM“! is a linear SVM
trained on the union of the target and source examples. By, for each class, we train a
binary SVM on the data obtained by mergiR§ with D;, where the data in the latter set is assumed
to contain only positive examples, i.e., no outliers. Thpdrparametet' is kept the same for alk’
binary classifiers but tuned distinctly for each of the threthods by selecting the hyperparameter
value yielding the best multiclass performance on the targming set (we used hold out validation
onD: for SVM and 5-fold cross validation for bo®VM as wellSVMY).

4.2 Mixture of source and target hypothesesM XSVM

One of the simplest possible strategies for domain adaptatnsists of using as final classifier a
convex combination of the two SVM hypotheses learned indéeetly from the source and target
data. Despite its simplicity, this classifier has been shtmwneld good empirical results [26].



Let us represent the source and target multiclass hypatlesseector-valued functioris’ (f) —
RX, h'(f) — RX, where thek-th outputs are the respective SVM scores for clas$l XSVM
computes a convex combinatituif) = sh*(f)+(1—B)h'(f) and predicts the clags associated

to the largest output, i.ek* = argmaxyeqy,.. k) hr(f). The parametef < [0, 1] is determined
via grid search by optimizing multiclass error on the tatgaining set. We avoid biased estimates
resulting from learning the hypothedi$ and3 on the same training set by applying a two-stage
procedure: we learn 5 distinct hypothegdsusing 5-fold cross validation (with the hyperpameter
value found forSVM) and compute predictioh’(f) at each training samplg’ using the cross
validation hypothesis that was not trained on that exampéethen use these predicted outputs to
determine the optima#. Last, we learn the final hypothegi$ using the entire target training set.

4.3 Domain weighting: DWSVM

Another straightforward yet popular domain adaptationrageh is to train a classifier using both
the source and the target examples by weighting differéh#éytwo domains in the learning objec-
tive [5, 12, 4]. We follow the implementation proposed in J2&d weight the loss function values
differently for the source and target examples by using tistritt SVM hyperparameter§;, and
Ct, encoding the relative importance of the two domains. Theesof these hyperparameters are
selected by minimizing the multiclass 5-fold cross validiaerror on the target training set.

4.4 Feature augmentation:AUGSVM

We denote withAUGSVM the domain adaptation method described in [5]. The key-afethis
approach is to create a feature-augmented version of edehdnal examplef, where distinct
feature augmentation mapping$, ¢' are used for the source and target data, respectively:

SH=[ o] ad e =[r 0" 1] &

where0 indicates aF’-dimensional vector of zeros. A linear SVM is then trainedtios union of
the feature-augmented source and target examples (usingla byperparameter). The principle
behind this mapping is that the SVM trained in the featurgraented space has the ability to distin-
guish features having common behavior in the two domairseaated to the first’ SVM weights)
from features having different properties in the two dorsain

4.5 Transductive learning: TSVM

The previous methods implement different strategies tasidie relative importance of the source
and the training examples in the learning process. Howelethese techniques assume that the
source data is fully and correctly labeled. Unfortunat@your practical problem this assumption
is violated due to outliers and irrelevant results beingen in the images retrieved by keyword
search. To tackle this problem we propose to perform tragtsauinference on the label of the
source datauring the learning: the key-idea is to exploit the availability of stronglyskeled target
training data to simultaneously determine the correctltabéthe source training examples and
incorporate this labeling information to improve the cliss To address this task we employ the
transductive SVM model introduced in [17]. Although thistimed is traditionally used to infer
the labels of unlabeled data available at learning timeytpots a proper inductive hypothesis and
therefore can be used also to predict labels of unseen testggs. The problem of learning a
transductive SVM in our context can be formulated as foltows

Nt n*®
1 ce s
in Slwll”+C* Dl £+ — > i(yjw' f3)
’ i=1 j=1

. 1 & . .
subjectto — > " max]0, signw” £5)] = p 2)

J=1

wherel() denotes the loss functiom is the vector of SVM weightsy® contains the labels of the
source examples, and thiare scalar coefficients used to counterbalance the effaheafnequal
number of positive and negative examples: wecset 1/n' if y! = 1, ¢t = 1/((K — 1)n') other-
wise. The scalar parametedefines the fraction of source examples that we expect to biéyeo
and is tuned via cross validation. Note tA&@VMsolves jointly for the separating hyperplane and
the labels of the source examples by trading off maximiradithe margin and minimization of the
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prediction errors on both source and target data. This dagdition can be interpreted as implement-
ing the cluster assumption, i.e., the expectation thattp@ina data cluster have the same label. We
solve the optimization problemin Eq. 2 for a quadratic sofirgin loss function (i.e., ! is chosen to

be the square of the hinge loss) using the minimization #@tlyorproposed in [27], which computes
an efficient primal solution using the modified finite Newtoethod of [18]. This minimization
approach is ideally suited to large-scale sparse datawsetisas ours (about 70% of our features are
zero). We used the same values of hyperparameférs({*, andp) for all classes: = 1,..., K
and selected them by minimizing the multiclass cross vatidaerror. We also tried letting vary

for each individual class but that led to slightly inferiesults, possibly due to overfitting.

5 Experimental results

We now present the experimental results. Figure 2 showsdbieracy achieved by the different
algorithms when using® = 300 and a varying number of training target example$)( The
accuracy is measured as the average of the mean recogritoper class, usingi! = 25 test
examples for each class. The best accuracy is achieved dgthain adaptation metho@sVMand
DWSVM which produce significant improvements over the SVM trdinsing only target examples
(SVM), particularly for small values oft. Forn! = 5, TSVMyields a65% improvement over the
best published results on this benchmark (for the same nuofibeamples, an accuracy 66.7% is
reported in [13]). Our method achieves this performancetajyaing additional images, the Internet
photos, but since these are collected automatically andtoeguire any human supervision, the
gain we achieve is effectively "Thuman-cost free”. It is i@sgting to note that while using solely
source training images yields very low accuraty.$% for SVMF), adding even just a single labeled
target image produces a significant improvemd®\YM achievesl8.5% accuracy withn! = 1,
and27.1% with n* = 5): this indicates that the method can indeed adapt the filast work
effectively on the target domain given a small amount ofrgjtg-labeled data. It is interesting to
note that whileTSVMimplements a form of outlier rejection as it solves for thiedis of the source
examplesDWsVM assumes that all source imagesI¥)j are positive examples for clags Yet,
DWSVMachieves results similar to those DBVM this suggests that domain adaptation rather than
outlier rejection is the key-factor contributing to the irmpement with respect to the baselines.

By analyzing the performance of the baselines in figure 2 veeoke that training exclusively with
Web images $VM) yields much lower accuracy than using strongly-labeled ¢gvM): this is
consistent with prior work [9, 29]. Furthermore, the poocwaacy of SVMY compared tdSVM
suggests that naively adding a large number of source drartgpthe target training set without
consideration of the domain differences not only does nipt Ingt actually worsens the recognition.

Figure 3 illustrates the significant manual annotationrsgyiroduced by our approach: theaxis
is the number of target labeled images provided 8/Mwhile the y-axis shows the number of
additional labeled examples that would be needed®W to achieve the same accuracy.
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The settingn® = 300 in the results above was chosen by studying the recognitiooracy as
a function of the number of source examples: we carried owxgeriment where we fixed the
numbern? of target training example for each category to an interatedvalue ¢ = 10), and
varied the numben® of top image results used as source training examples foraass. Figure 4
summarizes the results. We notice that the performanceedd¥fM trained only on source images
(SVIVF) peaks ak® = 100 and decreases monotonically after this value. This reanlbe explained
by observing thatimage search engines provide imagegisact®arding to estimated relevancy with
respect to the keyword. It is conceivable to assume thatéség down in the ranking list will often
tend to be outliers, which may lead to degradation of redagnparticularly for non-robust models.
Despite this, we see that the domain adaptation methS¥®&landDWSVMexhibit a monotonically
non-decreasing accuracy@asgrows: this indicates that these methods are highly roloustitiiers
and can make effective use of source data even when incgeasitauses a likely decrease of the
fraction of inliers and relevant results. Contrast thedmusb performances with the accuracy of
SVMYt which grows as we begin adding source examples but therysieapidly aftern® = 10
and approaches the poor recognitiorSv\F for large values of.*.

Our approach compares very favorably with competing algovs also in terms of computational
complexity: trainingTSVM (without cross validation) on Caltech256 with = 5 andn® = 300
takes 84 minutes on a AMD Opteron Processor 280 2.4GHzjmigthe multiclass method of [13]
using 5 labeled examples per class takes about 23 hours sartie machine (for fairness of com-
parison, we excluded cross validation even for this methAdetailed analysis of training time as a
function of the number of labeled training examples is régubin figure 5. Evaluation of our model
on a test example takes 0.18ms, while the method of [13] reg@i7ms.

6 Discussion and future work

In this work we have investigated the application of domaliagation methods to object categoriza-
tion using Web photos as source data. Our analysis inditlaégswhile object classifiers learned
exclusively from Web data are inferior to fully-superviseamdels, the use of domain adaptation
methods to combine Web photos with small amounts of strolagilgled data leads to state-of-the-
art results. The proposed strategy should be particuladul in scenarios where labeled data is
scarce or expensive to acquire. Future work will includeligppion of our approach to combine

data from multiple source domains (e.g., images obtain@u fifferent search engines or photo
sharing sites) and different media (e.qg., text and videaldifional material including software and

our source training data may be obtained from [1].
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