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Abstract

We extend logistic regression by using t-exponential families which were intro-
duced recently in statistical physics. This gives rise to a regularized risk mini-
mization problem with a non-convex loss function. An efficient block coordinate
descent optimization scheme can be derived for estimating the parameters. Be-
cause of the nature of the loss function, our algorithm is tolerant to label noise.
Furthermore, unlike other algorithms which employ non-convex loss functions,
our algorithm is fairly robust to the choice of initial values. We verify both these
observations empirically on a number of synthetic and real datasets.

1 Introduction

Many machine learning algorithms minimize a regularized risk [1]:

J(θ) = Ω(θ) + Remp(θ), where Remp(θ) =
1

m

m�

i=1

l(xi, yi, θ). (1)

Here, Ω is a regularizer which penalizes complex θ; and Remp, the empirical risk, is obtained by
averaging the loss l over the training dataset {(x1, y1), . . . , (xm, ym)}. In this paper our focus is on
binary classification, wherein features of a data point x are extracted via a feature map φ and the
label is usually predicted via sign(�φ(x), θ�). If we define the margin of a training example (x, y) as
u(x, y, θ) := y �φ(x), θ�, then many popular loss functions for binary classification can be written
as functions of the margin. Examples include1

l(u) = 0 if u > 0 and 1 otherwise . (0 − 1 loss) (2)

l(u) = max(0, 1 − u) (Hinge Loss) (3)

l(u) = exp(−u) (Exponential Loss) (4)

l(u) = log(1 + exp(−u)) (Logistic Loss). (5)

The 0 − 1 loss is non-convex and difficult to handle; it has been shown that it is NP-hard to even
approximately minimize the regularized risk with the 0 − 1 loss [2]. Therefore, other loss functions
can be viewed as convex proxies of the 0 − 1 loss. Hinge loss leads to support vector machines
(SVMs), exponential loss is used in Adaboost, and logistic regression uses the logistic loss.

Convexity is a very attractive property because it ensures that the regularized risk minimization
problem has a unique global optimum [3]. However, as was recently shown by Long and Servedio
[4], learning algorithms based on convex loss functions are not robust to noise2. Intuitively, the
convex loss functions grows at least linearly with slope |l�(0)| as u ∈ (−∞, 0), which introduces
the overwhelming impact from the data with u � 0. There has been some recent and some not-
so-recent work on using non-convex loss functions to alleviate the above problem. For instance, a
recent manuscript by [5] uses the cdf of the Guassian distribution to define a non-convex loss.

1We slightly abuse notation and use l(u) to denote l(u(x, y, θ)).
2Although, the analysis of [4] is carried out in the context of boosting, we believe, the results hold for a

larger class of algorithms which minimize a regularized risk with a convex loss function.
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In this paper, we continue this line of inquiry and propose a non-convex loss function which is
firmly grounded in probability theory. By
extending logistic regression from the ex-
ponential family to the t-exponential fam-
ily, a natural extension of exponential family
of distributions studied in statistical physics
[6–10], we obtain the t-logistic regression
algorithm. Furthermore, we show that a
simple block coordinate descent scheme can
be used to solve the resultant regularized
risk minimization problem. Analysis of this
procedure also intuitively explains why t-
logistic regression is able to handle label
noise.

Our paper is structured as follows: In sec-
tion 2 we briefly review logistic regression
especially in the context of exponential fam-
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Figure 1: Some commonly used loss functions for binary
classification. The 0-1 loss is non-convex. The hinge, expo-
nential, and logistic losses are convex upper bounds of the
0-1 loss.

ilies. In section 3, we review t-exponential families, which form the basis for our proposed t-logistic
regression algorithm introduced in section 4. In section 5 we utilize ideas from convex multiplica-
tive programming to design an optimization strategy. Experiments that compare our new approach
to existing algorithms on a number of publicly available datasets are reported in section 6, and the
paper concludes with a discussion and outlook in section 7. Some technical details as well as extra
experimental results can be found in the supplementary material.

2 Logistic Regression

Since we build upon the probabilistic underpinnings of logistic regression, we briefly review some
salient concepts. Details can be found in any standard textbook such as [11] or [12]. Assume we are
given a labeled dataset (X,Y) = {(x1, y1), . . . , (xm, ym)} with the xi’s drawn from some domain
X and the labels yi ∈ {±1}. Given a family of conditional distributions parameterized by θ, using
Bayes rule, and making a standard iid assumption about the data allows us to write

p(θ |X,Y) = p(θ)

m�

i=1

p(yi| xi; θ)/p(Y |X) ∝ p(θ)

m�

i=1

p(yi| xi; θ) (6)

where p(Y |X) is clearly independent of θ. To model p(yi| xi; θ), consider the conditional expo-
nential family of distributions

p(y| x; θ) = exp (�φ(x, y), θ� − g(θ | x)) , (7)

with the log-partition function g(θ | x) given by

g(θ | x) = log (exp (�φ(x,+1), θ�) + exp (�φ(x,−1), θ�)) . (8)

If we choose the feature map φ(x, y) = y
2φ(x), and denote u = y �φ(x), θ� then it is easy to see

that p(y| x; θ) is the logistic function

p(y| x; θ) =
exp(u/2)

exp(u/2) + exp(−u/2)
=

1

1 + exp(−u)
. (9)

By assuming a zero mean isotropic Gaussian prior N(0, 1√
λ
I) for θ, plugging in (9), and taking

logarithms, we can rewrite (6) as

− log p(θ |X,Y) =
λ

2
�θ�

2
+

m�

i=1

log (1 + exp (−yi �φ(xi), θ�)) + const. . (10)

Logistic regression computes a maximum a-posteriori (MAP) estimate for θ by minimizing (10) as
a function of θ. Comparing (1) and (10) it is easy to see that the regularizer employed in logistic

regression is λ
2 �θ�

2
, while the loss function is the negative log-likelihood − log p(y| x; θ), which

thanks to (9) can be identified with the logistic loss (5).
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3 t-Exponential family of Distributions

In this section we will look at generalizations of the log and exp functions which were first intro-
duced in statistical physics [6–9]. Some extensions and machine learning applications were pre-
sented in [13]. In fact, a more general class of functions was studied in these publications, but for
our purposes we will restrict our attention to the so-called t-exponential and t-logarithm functions.

The t-exponential function expt for (0 < t < 2) is defined as follows:

expt(x) :=

�
exp(x) if t = 1

[1 + (1 − t)x]
1/(1−t)
+ otherwise.

(11)

where (·)+ = max(·, 0). Some examples are shown in Figure 2. Clearly, expt generalizes the usual
exp function, which is recovered in the limit as t → 1. Furthermore, many familiar properties of exp
are preserved: expt functions are convex, non-decreasing, non-negative and satisfy expt(0) = 1 [9].
But expt does not preserve one very important property of exp, namely expt(a + b) �= expt(a) ·
expt(b). One can also define the inverse of expt namely logt as

logt(x) :=

�
log(x) if t = 1
�
x1−t − 1

�
/(1 − t) otherwise.

(12)

Similarly, logt(ab) �= logt(a) + logt(b). From Figure 2, it is clear that expt decays towards 0 more
slowly than the exp function for 1 < t < 2. This important property leads to a family of heavy
tailed distributions which we will later exploit.

-3 -2 -1 0 1 2

1
2
3
4
5
6
7

x

expt
exp(x)

t = 1.5

t = 0.5

t → 0

1 2 3 4 5 6 7

-3
-2
-1
0
1
2

x

logt

log(x)
t = 1.5

t = 0.5
t → 0

-4 -2 0 2 4

2

4

6

margin

loss

0-1 loss

t = 1 (logistic)

t = 1.3

t = 1.6
t = 1.9

Figure 2: Left: expt and Middle: logt for various values of t indicated. The right figure depicts the
t-logistic loss functions for different values of t. When t = 1, we recover the logistic loss

Analogous to the exponential family of distributions, the t-exponential family of distributions is
defined as [9, 13]:

p(x; θ) := expt (�φ(x), θ� − gt(θ)) . (13)

A prominent member of the t-exponential family is the Student’s-t distribution [14]. Just like in the
exponential family case, gt the log-partition function ensures that p(x; θ) is normalized. However,
no closed form solution exists for computing gt exactly in general. A closely related distribution,
which often appears when working with t-exponential families is the so-called escort distribution
[9, 13]:

qt(x; θ) := p(x; θ)t/Z(θ) (14)

where Z(θ) =
�
p(x; θ)tdx is the normalizing constant which ensures that the escort distribution

integrates to 1.

Although gt(θ) is not the cumulant function of the t-exponential family, it still preserves convexity.
In addition, it is very close to being a moment generating function

∇θgt(θ) = Eqt(x;θ) [φ(x)] . (15)

The proof is provided in the supplementary material. A general version of this result appears as
Lemma 3.8 in Sears [13] and a version specialized to the generalized exponential families appears
as Proposition 5.2 in [9]. The main difference from∇θg(θ) of the normal exponential family is that
now ∇θgt(θ) is equal to the expectation of its escort distribution qt(x; θ) instead of p(x; θ).
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4 Binary Classification with the t-exponential Family

In t-logistic regression we model p(y| x; θ) via a conditional t-exponential family distribution

p(y| x; θ) = expt (�φ(x, y), θ� − gt(θ | x)) , (16)

where 1 < t < 2, and compute the log-partition function gt by noting that

expt (�φ(x,+1), θ� − gt(θ | x)) + expt (�φ(x,−1), θ� − gt(θ | x)) = 1. (17)

Even though no closed form solution exists, one can compute gt given θ and x using numerical
techniques efficiently.

The Student’s-t distribution can be regarded as a counterpart of the isotropic Gaussian prior in the
t-exponential family [14]. Recall that a one dimensional Student’s-t distribution is given by

St(x|µ, σ, v) =
Γ((v + 1)/2)

√
vπΓ(v/2)σ1/2

�

1 +
(x − µ)2

vσ

�−(v+1)/2

, (18)

where Γ(·) denotes the usual Gamma function and v > 1 so that the mean is finite. If we select t
satisfying −(v + 1)/2 = 1/(1 − t) and denote,

Ψ =

�
Γ((v + 1)/2)

√
vπΓ(v/2)σ1/2

�−2/(v+1)

,

then by some simple but tedious calculation (included in the supplementary material)

St(x|µ, σ, v) = expt(−λ̃(x − µ)2/2 − g̃t) (19)

where λ̃ =
2Ψ

(t − 1)vσ
and g̃t =

Ψ − 1

t − 1
.

Therefore, we work with the Student’s-t prior in our setting:

p(θ) =

d�

j=1

p(θj) =

d�

j=1

St(θj|0, 2/λ, (3 − t)/(t − 1)). (20)

Here, the degree of freedom for Student’s-t distribution is chosen such that it also belongs to the
expt family, which in turn yields v = (3 − t)/(t − 1). The Student’s-t prior is usually preferred to
the Gaussian prior when the underlying distribution is heavy-tailed. In practice, it is known to be a
robust3 alternative to the Gaussian distribution [16, 17].

As before, if we let φ(x, y) = y
2φ(x) and plot the negative log-likelihood − log p(y| x; θ), then we

no longer obtain a convex loss function (see Figure 2). Similarly, − log p(θ) is no longer convex
when we use the Student’s-t prior. This makes optimizing the regularized risk challenging, therefore
we employ a different strategy.

Since logt is also a monotonically increasing function, instead of working with log, we can equiva-
lently work with the logt function (12) and minimize the following objective function:

Ĵ(θ) = − logt p(θ)

m�

i=1

p(yi| xi; θ)/p(Y |X)

=
1

t − 1

�

p(θ)

m�

i=1

p(yi| xi; θ)/p(Y |X)

�1−t

+
1

1 − t
, (21)

where p(Y |X) is independent of θ. Using (13), (18), and (11), we can further write

Ĵ(θ) ∝

d�

j=1

�
1 + (1 − t)(−λ̃θ2j /2 − g̃t)

�

� �� �
rj(θ)

m�

i=1

�
1 + (1 − t)(

�yi
2
φ(xi), θ

�
− gt(θ | xi))

�

� �� �
li(θ)

+const. .

=

d�

j=1

rj(θ)

m�

i=1

li(θ) + const. (22)

3There is no unique definition of robustness. For example, one of the definitions is through the outlier-
proneness [15]: p(θ |X,Y, xn+1, yn+1) → p(θ |X,Y) as xn+1 → ∞.
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Since t > 1, it is easy to see that rj(θ) > 0 is a convex function of θ. On the other hand, since gt
is convex and t > 1 it follows that li(θ) > 0 is also a convex function of θ. In summary, Ĵ(θ) is
a product of positive convex functions. In the next section we will present an efficient optimization
strategy for dealing with such problems.

5 Convex Multiplicative Programming

In convex multiplicative programming [18] we are interested in the following optimization problem:

min
θ

P(θ) �

N�

n=1

zn(θ) s.t. θ ∈ Rd, (23)

where zn(θ) are positive convex functions. Clearly, (22) can be identified with (23) by setting
N = d+m and identifying zn(θ) = rn(θ) for n = 1, . . . , d and zn+d(θ) = ln(θ) for n = 1, . . . ,m.

The optimal solutions to the problem (23) can be obtained by solving the following parametric
problem (see Theorem 2.1 of Kuno et al. [18]):

min
ξ

min
θ

MP(θ, ξ) �

N�

n=1

ξnzn(θ) s.t. θ ∈ Rd, ξ > 0,

N�

n=1

ξn ≥ 1. (24)

The optimization problem in (24) is very reminiscent of logistic regression. In logistic regression,
ln(θ) = −

�
yn

2 φ(xn), θ
�
+g(θ | xn), while here ln(θ) = 1+(1−t)

��
yn

2 φ(xn), θ
�
− gt(θ | xn)

�
.

The key difference is that in t-logistic regression each data point xn has a weight (or influence) ξn
associated with it.

Exact algorithms have been proposed for solving (24) (for instance, [18]). However, the computa-
tional cost of these algorithms grows exponentially with respect toN which makes them impractical
for our purposes. Instead, we apply a block coordinate descent based method. The main idea is to
minimize (24) with respect to θ and ξ separately.

ξ-Step: Assume that θ is fixed, and denote z̃n = zn(θ) to rewrite (24) as:

min
ξ

N�

n=1

ξnz̃n s.t. ξ > 0,

N�

n=1

ξn ≥ 1. (25)

Since the objective function is linear in ξ and the feasible region is a convex set, (25) is a con-
vex optimization problem. By introducing a non-negative Lagrange multiplier γ ≥ 0, the partial
Lagrangian and its gradient with respect to ξn� can be written as

L(ξ, γ) =

N�

n=1

ξnz̃n + γ ·

�

1 −

N�

n=1

ξn

�

(26)

∂

∂ξn�

L(ξ, γ) = z̃n� − γ
�

n�=n�

ξn. (27)

Setting the gradient to 0 obtains γ = z̃n��
n�=n� ξn

. Since z̃n� > 0, it follows that γ cannot be 0. By the

K.K.T. conditions [3], we can conclude that
�N

n=1 ξn = 1. This in turn implies that γ = z̃n�ξn� or

(ξ1, . . . , ξN) = (γ/z̃1, . . . , γ/z̃N), with γ =

N�

n=1

z̃
1
N
n . (28)

Recall that ξn in (24) is the weight (or influence) of each term zn(θ). The above analysis shows
that γ = z̃n(θ)ξn remains constant for all n. If z̃n(θ) becomes very large then its influence ξn
is reduced. Therefore, points with very large loss have their influence capped and this makes the
algorithm robust to outliers.

θ-Step: In this step we fix ξ > 0 and solve for the optimal θ. This step is essentially the same as
logistic regression, except that each component has a weight ξ here.

min
θ

N�

n=1

ξnzn(θ) s.t. θ ∈ Rd . (29)
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This is a standard unconstrained convex optimization problem which can be solved by any off the
shelf solver. In our case we use the L-BFGS Quasi-Newton method. This requires us to compute
the gradient ∇θzn(θ):

for n = 1, . . . , d ∇θzn(θ) = ∇θrn(θ) = (t − 1)λ̃θn · en

for n = 1, . . . ,m ∇θzn+d(θ) = ∇θln(θ) = (1 − t)
�yn
2
φ(xn) − ∇θgt(θ | xn)

�

= (1 − t)
�yn
2
φ(xn) − Eqt(yn| xn;θ)

�yn
2
φ(xn)

��
,

where en denotes the d dimensional vector with one at the n-th coordinate and zeros elsewhere (n-th
unit vector). qt(y| x; θ) is the escort distribution of p(y| x; θ) (16):

qt(y| x; θ) =
p(y| x; θ)t

p(+1| x; θ)t + p(−1| x; θ)t
. (30)

The objective function is monotonically decreasing and is guaranteed to converge to a stable point
of P(θ). We include the proof in the supplementary material.

6 Experimental Evaluation

Our experimental evaluation is designed to answer four natural questions: 1) How does the gener-
alization capability (measured in terms of test error) of t-logistic regression compare with existing
algorithms such as logistic regression and support vector machines (SVMs) both in the presence and
absence of label noise? 2) Do the ξ variables we introduced in the previous section have a natu-
ral interpretation? 3) How much overhead does t-logistic regression incur as compared to logistic
regression? 4) How sensitive is the algorithm to initialization? The last question is particularly
important given that the algorithm is minimizing a non-convex loss.

To answer the above questions empirically we use six datasets, two of which are synthetic. The
Long-Servedio dataset is an artificially constructed dataset to show that algorithms which minimize
a differentiable convex loss are not tolerant to label noise Long and Servedio [4]. The examples have
21 dimensions and play one of three possible roles: large margin examples (25%, x1,2,...,21 = y);
pullers (25%, x1,...,11 = y, x12,...,21 = −y); and penalizers (50%, Randomly select and set 5 of
the first 11 coordinates and 6 out of the last 10 coordinates to y, and set the remaining coordinates
to −y). The Mease-Wyner is another synthetic dataset to test the effect of label noise. The input x
is a 20-dimensional vector where each coordinate is uniformly distributed on [0, 1]. The label y is

+1 if
�5

j=1 xj ≥ 2.5 and −1 otherwise [19]. In addition, we also test on Mushroom, USPS-N (9
vs. others), Adult, and Web datasets, which are often used to evaluate machine learning algorithms
(see Table 1 in supplementary material for details).

For simplicity, we use the identity feature map φ(x) = x in all our experiments, and set t ∈
{1.3, 1.6, 1.9} for t-logistic regression. Our comparators are logistic regression, linear SVMs4, and
an algorithm (the probit) which employs the probit loss, L(u) = 1 − erf(2u), used in Brown-
Boost/RobustBoost [5]. We use the L-BFGS algorithm [21] for the θ-step in t-logistic regression.
L-BFGS is also used to train logistic regression and the probit loss based algorithms. Label noise is
added by randomly choosing 10% of the labels in the training set and flipping them; each dataset is
tested with and without label noise. We randomly select and hold out 30% of each dataset as a vali-
dation set and use the rest of the 70% for 10-fold cross validation. The optimal parameters namely λ
for t-logistic and logistic regression and C for SVMs is chosen by performing a grid search over the
parameter space

�
2−7,−6,...,7

�
and observing the prediction accuracy over the validation set. The

convergence criterion is to stop when the change in the objective function value is less than 10−4.
All code is written in Matlab, and for the linear SVM we use the Matlab interface of LibSVM [22].
Experiments were performed on a Qual-core machine with Dual 2.5 Ghz processor and 32 Gb RAM.

In Figure 3, we plot the test error with and without label noise. In the latter case, the test error of
t-logistic regression is very similar to logistic regression and Linear SVM (with 0% test error in

4We also experimented with RampSVM [20], however, the results are worser than the other algorithms. We
therefore report these results in the supplementary material.
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Figure 3: The test error rate of various algorithms on six datasets (left to right, top: Long-Servedio,
Mease-Wyner, Mushroom; bottom: USPS-N, Adult, Web) with and without 10% label noise. All
algorithms are initialized with θ = 0. The blue (light) bar denotes a clean dataset while the magenta
(dark) bar are the results with label noise added. Also see Table 3 in the supplementary material.

Long-Servedio and Mushroom datasets), with a slight edge on some datasets such as Mease-Wyner.
When label noise is added, t-logistic regression (especially with t = 1.9) shows significantly5 better
performance than all the other algorithms on all datasets except the USPS-N, where it is marginally
outperformed by the probit.

To obtain Figure 4 we used the noisy version of the datasets, chose one of the 10 folds used in the
previous experiment, and plotted the distribution of the 1/z ∝ ξ obtained after training with t = 1.9.
To distinguish the points with noisy labels we plot them in cyan while the other points are plotted in
red. Analogous plots for other values of t can be found in the supplementary material. Recall that ξ
denotes the influence of a point. One can clearly observe that the ξ of the noisy data is much smaller
than that of the clean data, which indicates that the algorithm is able to effectively identify these
points and cap their influence. In particular, on the Long-Servedio dataset observe the 4 distinct
spikes. From left to right, the first spike corresponds to the noisy large margin examples, the second
spike represents the noisy pullers, the third spike denotes the clean pullers, while the rightmost spike
corresponds to the clean large margin examples. Clearly, the noisy large margin examples and the
noisy pullers are assigned a low value of ξ thus capping their influence and leading to the perfect
classification of the test set. On the other hand, logistic regression is unable to discriminate between
clean and noisy training samples which leads to bad performance on noisy datasets.

Detailed timing experiments can be found in Table 4 in the supplementary material. In a nutshell,
t-logistic regression takes longer to train than either logistic regression or the probit. The reasons
are not difficult to see. First, there is no closed form expression for gt(θ | x). We therefore resort
to pre-computing it at some fixed locations and using a spline method to interpolate values at other
locations. Second, since the objective function is not convex several iterations of the ξ and θ steps
might be needed. Surprisingly, the L-BFGS algorithm, which is not designed to optimize non-
convex functions, is able to minimize (22) directly in many cases. When it does converge, it is often
faster than the convex multiplicative programming algorithm. However, on some cases (as expected)
it fails to find a direction of descent and exits. A common remedy for this is the bundle L-BFGS
with a trust-region approach. [21]

Given that the t-logistic objective function is non-convex, one naturally worries about how different
initial values affect the quality of the final solution. To answer this question, we initialized the
algorithm with 50 different randomly chosen θ ∈ [−0.5, 0.5]d, and report test performances of
the various solutions obtained in Figure 5. Just like logistic regression which uses a convex loss
and hence converges to the same solution independent of the initialization, the solution obtained

5We provide the significance test results in Table 2 of supplementary material.
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Figure 4: The distribution of ξ obtained after training t-logistic regression with t = 1.9 on datasets
with 10% label noise. Left to right, top: Long-Servedio, Mease-Wyner, Mushroom; bottom: USPS-
N, Adult, Web. The red (dark) bars (resp. cyan (light) bars) indicate the frequency of ξ assigned to
points without (resp. with) label noise.

by t-logistic regression seems fairly independent of the initial value of θ. On the other hand, the
performance of the probit fluctuates widely with different initial values of θ.
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Figure 5: The Error rate by different initialization. Left to right, top: Long-Servedio, Mease-Wyner,
Mushroom; bottom: USPS-N, Adult, Web.

7 Discussion and Outlook

In this paper, we generalize logistic regression to t-logistic regression by using the t-exponential
family. The new algorithm has a probabilistic interpretation and is more robust to label noise. Even
though the resulting objective function is non-convex, empirically it appears to be insensitive to ini-
tialization. There are a number of avenues for future work. On Long-Servedio experiment, if the
label noise is increased significantly beyond 10%, the performance of t-logistic regression may de-
grade (see Fig. 6 in supplementary materials). Understanding and explaining this issue theoretically
and empirically remains an open problem. It will be interesting to investigate if t-logistic regression
can be married with graphical models to yield t-conditional random fields. We will also focus on
better numerical techniques to accelerate the θ-step, especially a faster way to compute gt.
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