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Abstract

Recent studies compare gene expression data across dpeidestify core and

species specific genes in biological systems. To perforrh somparisons re-
searchers need to match genes across species. This is engival task since
the correct matches (orthologs) are not known for most gelResvious work in

this area used deterministic matchings or reduced mulédsional expression
data to binary representation. Here we develop a new meltaddan utilize soft
matches (given as priors) to infer both, unique and similgression patterns
across species and a matching for the genes in both specigsm&hod uses
a Dirichlet process mixture model which includes a latertadaatching vari-

able. We present learning and inference algorithms basedrational methods
for this model. Applying our method to immune response datashow that it

can accurately identify common and unique response pattgrimproving the

matchings between human and mouse genes.

1 Introduction

Researchers have been increasingly relying on cross spatédysis to understand how biological
systems operate. Sequence based methods have been siigcappfied to identify and charac-
terize coding and functional non coding regions in multigtecies [1]. However, sequence infor-
mation is static and thus provides only partial view of dalfactivity. More recent studies attempt
to integrate sequence and gene expression data from reufiglcies [2, 3, 4]. Unlike sequence,
expression levels are dynamic and differ across time andittons. By combining expression and
sequence data researchers were able to identify both "eor@™divergent” genes. "Core” genes
are similarly expressed across species and are usefulristracting models of conserved systems,
for example the cell cycle [2]. "Divergent” genes are simila sequence but differ in expression
across species. These are useful for identifying specesfgpresponses, for example why some
pathogens are resistant to drugs while others are not [3].

While useful, cross species analysis of expression dataalleciging. In addition to the regular

issues with expression data (noise, missing values, eteenwomparing expression levels across
species researchers need to match genes across specie@sEgenes the correct match in another
species (known as ortholog) is not known. A number of meth@d®& been suggested to solve the
matching problem. The first set of methods is based on a onedaeterministic assignment by

relying on top sequence matches. Such an assignment carethécusoncatenate the expression
vectors for matched genes across species and then clustestiiting vectors. For example, Stuart
et al. [5] constructed "metagenes” consisting of top seqaenatches from four species. These
were used to cluster the data from multiple species to iffentinserved and divergent patterns.
Bergmann et al. [6] defined one of the species (species A) efeeence and first clustered genes
in A. They then used matched genes in the second species (&prisig points for clustering



genes in B. When the clustering algorithm converges in B, g¢hat remain in the cluster are
considered "core” whereas genes that are removed are d&iner Quon et al. [4] used a mixture of
Gaussians model, which takes as input the expression datéhofogous genes and a phylogenetic
tree connecting the species, to reconstruct the expregsafites as well as detecting divergent
links in the phylogeny. The second set of methods alloweddirmatches but was either limited to
analyzing binary or discrete data with very few labels. B@meple, Lu et al. combined experiments
from multiple species by using Markov Random Fields [7] armdi€sian Random Fields [8] in which
edges represent sequence similarity and potential furgtionstrain similar genes across species to
have a similar expression pattern.

While both approaches led to successful applications, thfgrsfrom drawbacks that limit their
use in practice. In many cases the top sequence match issmaatirect ortholog and a deterministic
assignment may lead to wrong conclusions about the corngsrvaf genes. Methods that have
used soft assignments were limited to summarization of &ta (up or down regulated) and could
not utilize more complex profiles. Here we present a new ntkethat uses soft assignments to
allow comparison and clustering across species of arpitngpression data without requiring prior
knowledge on the phylogeny. Our method takes as input esjoreslatasets in two species and a
prior on matches between homologous genes in these spdeigge@ from sequence data). The
method simultaneously clusters the expression valuesofibr $§pecies while computing a posterior
for the assignment of orthologs for genes. We use Dirichlet®&s model to automatically detect
the number of clusters.

We have tested our method on simulated and immune respoteeldeboth cases the algorithm
was able to find correct matches and to improve upon methatisisled a deterministic assignment.
While the method was developed for, and applied to, bioldgiata, it is general and can be used to
address other problems including matchings of captionsmémes (see Section 5).

2 Problem definition

In this section, we first describe in details the cross sgegimlysis problem for gene expression
data. Next, we formalize this as a general clustering andmrag problem for cases in which the
matches are not known in advance.

Using microarrays or new sequencing technigues researchermonitor the expression levels of
genes under certain conditions or at specific time points.eBoh such measurement we obtain a
vector whose elements are the expression values for alkgémere are usually thousands of entries
in each vector). We assume that the input consists of miapaxperiments from two species and
each species has a different set of genes. While the exachesalbetween genes in both species
are not known for most genes, we have a prior for gene pairs flmm each species) which is
derived from sequence data [9]. Our goal is to simultangodisister the genes in both species.
Such clustering can identify coherent and divergent respebetween the species. In addition, we
would like to infer for each gene in one species whether tlegists a homolog that is similarly
expressed in the other species and if so, who.

The problem can also be formalized more generally in theodoilg way. Denote byx =
[x1,22,...,2,,] @ndy = [y1,92,...,¥n,] the datasets of samples from two different experiment
settings, where:l € RP» andy; € RPv. In addition, letM be a sparse non- negating x n, matrix
that encodes prior information regarding the matching of@as inx andy. We define the match
probability between:; andy; as follows:

p(z; andy; are matchegd= w =T p(z; i1s not matched = Ni =0 (1)

K3 3

whereN; = 1+ Z"” M(i, 7). m; 0 is the prior probability that; is not matched to any element
inY. We user; to denote the vectofr; o, ..., ,,). Finally, letm; € {0,1,....,n,} be the
latent matchlng variable. I, = 1 we say thatr is matched tay,,,. If m; =0 for we say thatr;
has no match iry. Our goal is to infer both, the latent vanabhe@ s and cluster membership for
pairs of sample$z;, v.,,)’s. The following notations are used in the rest of the papewercase
normal font, e.ge, is used for a single variable and lowercase bold fontxe.ig used for vectors.
Uppercase bold roman letters, suchMs denote matrices. Uppercase letters, E.gare used to
represent random variables afRfX ] represents the expectation of a random varidble



3 Model

Model selection is an important problem when analyzing vealld data. Many clustering algo-
rithms, including Gaussian mixture models, require as patithe number of clusters. In addition to
domain knowledge, this model selection question can besaddd using cross validation. Bayesian
nonparametric methods provide an alternative soluti@watlg the complexity of the model to grow
based on the amount of available data. Under-fitting is adactby the fact that the model allows
for unbounded complexity while over-fitting is mitigated the Bayesian assumption. We use this
approach to develop a nonparametric model for clusterimgraatching cross species expression
data. Our model, termed Dirichlet Process Mixture Modehwiatent Matchings (DPMMLM) ex-
tends the popular Dirichlet Process Mixture Model to casksre priors are provided to matchings
between vectors to be clustered.

3.1 Dirichlet Process

Let G, a probability measure on a measurable space. We @rite DP(a, Gy) if G is a random
probability measure drawn from a Dirichlet process (DP)} €kistence of the Dirichlet process was
first proven by [10]. Furthermore, measurestbhire discrete with probability one. This property
can be seen from the explicit stick-breaking constructioa th Sethuraman [11] as follows.

Let (V;)$2, and(n;)s2, be independent sequences of i.i.d random variabifesy Betda1, o) and
1; ~ Go. Then a random measufédefined as

1—1 o)
0, = V; [Ja-v)) G = > 0, @)
j=1 i=1

whered,, is a probability measure concentratedhais a random probability measure distributed
according to DPa, Gy) as shown in [11] .

3.2 Dirichlet Process Mixture Model (DPMM)

Dirichlet process has been used as a nonparametric pritiegrarameters of a mixture model. This
model is referred to as Dirichlet Process Mixture Model. Lbe the mixture membership indicator
variables for data variables. Using the stick-breaking construction in (2), the Dirighprocess
mixture model is given by

G ~ DP(a, Gy) zi,ni |G~ G wi|z,mi o~ F(m) )
whereF (n;) denotes the distribution of the observationgiven parameter;.

3.3 Dirichlet Process Mixture Model with Latent Matchings (DPMML M)

In this section, we describe the new mixture model based orwidff latent variables for data
matching betweex andy. We useFx(n), Fy (n) to denote the marginal distribution of and
Y respectively; and”x |y (y,n) to denote the conditional distribution &f givenY'. The parameter
7 is a random variable of the prior distributi@¥y (n | Ag) with hyperparametek,. Also, letz; be
the mixture membership of the sample pair, v,,, ). Our model is given by:

() (&9

G ~ DP(a, Go)
zi,mi | G ~ G
m; | mi ~ Discretdm;)
Ym, | i, zi,mi ~ Fy (n;),if m; >0

Fx(n;) otherwise

(4)

Ty | Mg, Z2iy N5y ~

The major difference between our model and a regular DPMMhésdependence af; on y if



m; > 0. In other words the assignment.ofo a cluster depends on both, its own expression levels
and the levels of thg component to which it is matched. 4fis not matched to any component
then we resort to the marginal distributiéhy of the mixture.

3.4 Mean-field variational methods

For probabilistic models, mean-field variational methodlg,[13] provide a deterministic and
bounded approximation to the intractable joint probapiitobserved and hidden variables. Briefly,
given a model with observed variablesind hidden variablel, we would like to computéog p(z),
which requires us to marginalize over all hidden variallleSincep(z, h) is often intractable, we
can find a tractable probability(h) that gives the best lower bound bfg p(x) using Jensen ’s
inequality:

logp(z) = /}q(h) log p(z, h) — q(h)logq(h) dh = Eqllog p(z, h)] — Eqllogq(h)]  (5)

Maximizing this lower bound is equivalent to finding the distition ¢(%) that minimizes the KL
divergence betweeq(h) andp(h | ). Hence,q(h) is the best approximation model within the
chosen parametric family.

3.5 \Variational Inference for DPMMLM

Although the DP mixture model is an "infinite” mixture modeiis intractable to solve the optimiza-
tion problem when allowing for infinitely many variables. \Wais follow the truncation approach
used in [14], and limit the number of cluster 6. When K is chosen to be large enough, the dis-
tribution is a drawn from the Dirichlet process [14]. To regdtthe number of clusters t&’, we set
Vi = 1 and thus obtaifl;~ x = 0in (2). The likelihood of the observed data is

Ny

sy o= [ sl i ][ v)

m,z,v.,mn
K o My J zf
H{(Wi,ofx(xi | nk))m" H (m,ij\Y(SUi |y ) fy (Y | nk))m} (6)
k=1 Jj=1
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wherep(z; | v) = v,, k:’ll(l — v ) andv is the stick breaking variables given in Section 3.1. The
first part of (6)p(n | A\o) p(v | ) is the likelihood of the model parameters and the secondigpart
the likelihood of the assignments to clusters and matchings

Following the variational inference framework for conjter@xponential graphical models [15] we
choose the distribution that factorizes oyef;, z; }i=1, .. n,, {Uk }x=1,.. .k and{nk}x=1,. x—1 as
follows:

TLU

K-1 K
q(m,z,v,n) H{q@ (m3) H%” 7)™} H G, (Vk) quk(nk) 7

whereqy, (m;) andgy, ,(2;) are multlnomlal dlstrlbutlons angim (vy,) are beta distributions. These
distributions are conjugate distributions for the likeldd of the parameters in (&), (7x) requires
special treatment due to the coupling of the marginal anditional distributions in the likelihood.
These issues are discussed in details in section 3.5.2.

Using this variational distribution we obtain a lower bouodthe log likelihood:
logp(x,y | o, Ao) > [logp( | /\o)] + Eflogp(V | a)]

+ Z{ llog p(Z; | V)] + ZZE (M) 71 (0g i + pis) | — Elloga(M.Z, V. )] (8)
7=0 k=1
where all expectations are with respect to the distribugian, z, v, n) and
i g = {E[log Fx iy (Xi | Y5, me)] + Eflog fy (Y; | mi)] 15 >0
" Ellog fx (Xi | nx)] ifj=0



To compute the terms in (8), we note that
E(M] ZF) = ¢i,30i5 = Vi

K
Ellogp(Zi | V)] =Y q(z > k)E[log(1 — Vi)] + q(2; = k)E[log V]
k=1

whereq(z; > k) = 327", Zf(:k;Jr] Pije andq(zi = k) = Y77 i j k-
3.5.1 Coordinate ascent inference algorithm

The lower bound above can be optimized by a coordinate astgotithm. The update rules for
all terms except for the,, (), are presented below. These are direct applications ofahational
inference for conjugate-exponential graphical model$. [ discuss the update rule fgg (1) in
section 3.5.2.

¢ Update forg,, (vg):

Ng Ny ng Ny K
Ver =14 > hijn ma=a+ I D Y i
i=1 j=0 i=1 j=0 t=k+1

e Update forgy, ; (z;) andgg, (m;):

k—1
0ijx o exp (pijr+ Y Bllog(l — Vi)] + Ellog Vi])
k=1
K k—1
$ij < exp (10% mig+ > Oijk(pijr+ > Ellog(l — Vi) + Ellog Vk]))
k=1 k=1

3.5.2 Application of the model to multivariate Gaussians

The previous sections described the model in a general teimthe rest of this section, and in
our experiments, we focus on data that is assumed to bebditgtd as a multivariate Gaussian with
unknown mean and covariance matrix. The prior distribufigris then given by the conjugate prior
Gaussian-Wishart distribution. In a classical DP GausMadure Model with Gaussian-Wishart

prior, the posterior distribution of the parameters coutdcomputed analytically. Unfortunately,
in our model, the coupling of the conditional and marginaitidbution in the likelihood makes it

difficult to derive analytical formulas for the posteriosttibution. Note that i{ X,Y) ~ N(u, %)

- _ [ Ex Xxvy
with 1 = (px, py) andX = (ZYX S > thenX ~ N (ux,Xx), Y ~ N(puy,Xy) and

XY =y~N(ux +Zxy Sy (y — py), Zx — Exv Sy Sy x). 9

Therefore, we introduce an approximation distributiontfer datasets which decouples the marginal
and conditional distributions as follows:

Ix@|px,Ax) = Nux,E=A%")  frylpy,Ay) = N(py,S =Ay")
Fxiy (@ |y, Wb, ux, Ax) = N(ux +b— Wy, X =A%)

whereW is ap, x p, projection matrix and\ is the precision matrix. In this approximation, we
assume that the covariance matricesXofind X |Y" are the same. In other words, the covariance
of X is independent of". The matrixW models the linear correlation of on Y, similar to
~Sxy 2yt in (9).

The priors forux, Ax anduy, Ay are given by Gaussian-Wishart(GW) distributions. A flat im-
proper prior is given toW andb, po(W) = 1,po(b) = 1 for all W,b. These assumptions lead
to decoupling of the marginal and conditional distributioherefore, the distributiog, (%) can
now be factorized into two GW distributions and a distribatiof W. To avoid over-cluttering
symbols, we omit the subscriptof the specific clustek.

@, () = GW (ux, Ax) GW (uy, Ay) g(W) g(b)



Posterior distribution of 1y, Ay: The update rules follow the standard posterior distrilutd
Gaussian-Wishart conjugate priors.

Posterior distribution of px, Ax and W, b: Due to the coupling ofix, Ax with W, we do a
coordinate ascent procedure to find the optimal postergiridution. The posterior distribution of
W, bis a singleton discrete distributignsuch thay(W™*) = 1, g(b*) = 1.

e Update for posterior distribution @fx, A x:

1 _
Kx = Kxo +nx mx = e (kxomxo +nx7)
X

Kxonx ,_

S)_(l = S)_(%J+VX+ (@ — mxo)(T —mxo)"  vx =vxo+nx
Kxo +Nx

Ng Ny Mg

whereny = Z Zwi’j’k’ T = % Z (Yi,0,kTi + Zwi,j,k(xi — b+ W"y;)) and

n=1;=0 i=1 j=1

Vx = Z{¢j7o,k($i —f) (a:L —E)T—FZ ¢i,j7k(xi —b—i—W*yj —T)(:CL —b—|—W*yj —f)T}.
i=1 =1

e Update forW™ b*: We find W™, b* that maximizes the log likelihood. Taking the deriva-
tive with respect tdW™ and solving forW*, we get

Nng Ny ne Ty -
W= (Z > i k(@i —mx — b)ij) (Z Zibi}j,kyjyf) '
i=1 j=1 i=1 j=1
b* = 7(2 Z¢1J,k(% —mx + W*yj))/i: 27?1:,]',1@
i=1j=1 i=1 j=1

4 Experiments and Results

4.1 Simulated data

We demonstrate the performance of the model in identifyeitg dhatchings as well as cluster mem-
bership of datapoints using simulated data. To generatmalaied dataset, we sample 120 data-
points from a mixture of three 5-dimensional Gaussians wéparation coefficient 2 leading to
well separated mixturés The covariance matrix was derived from the autocorretati@trix for

a first-order autoregressive process leading to highly midgr@ components (= 0.9). From these
samples, we use the first 3 dimensions to create 120 datapoiat [x1,...,2120]. The last two
dimensions of the first 100 datapoints are used to crgate[y, . . ., y100] (note that there are no
matches for 20 points im). Hence, the ground truthM matrix is a diagonal20 x 100 matrix.
We selected a large value for the diagonal entries=(1000) in order to place a strong prior for
the correct matchings. Next, for= 0,...,20, we randomly select entries on each row aM
and set them tgr, wherer ~ X3. We repeat the proceg® times for eacht to compute the
mean and standard deviation shown in Figure 1(a) and Figime ¥We compare the performance
of our model(DPMMLM) with a standard Dirichlet Process Mix¢ Model where each component
in x is matched based on the highest pripfz;, y;-) | i = 1,...,100 andj* = argmax M (i, j)}
(DPMM). For all models, the truncation levek( is set to 20 andv is 1. Figure 1(a) presents the
percentage of correct matchings inferred by DPMMLM and tlghést prior matching. For DP-
MMLM, a datapointz; is matched to the datapoipt with the largest posterior probability; ;.
With the added noise, DPMMLM can still achieve an accuracyp@% when the highest prior
matching leads to only 25% accuracy. Figure 1(b) and 1(cyghe Normalized Mutual Informa-
tion (NMI) and Adjusted Rand index [17] for the clusters méxl by the two models compared to
the true clusters. As can be seen, while the percentagerefotonatchings decreased with the added
noise, DPMMLM still achieves high NMI of 0.8 and Adjusted Riimdex of 0.92. In conclusion,
by relying on matchings of points DPMMLM can still performsry well in terms of its ability to
identify correct clusters even with the high noise levels.

Following [16], a Gaussian mixture is c-separated if for each @aijf) of components|m; — m;||*> >
¢® D max(AP®, X)) | whereA™ denotes the maximum eigenvalue of their covariance.
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Figure 1: Evaluation of the result on simulated data.

4.2 Immune response dataset

Cluster 1 Cluster 2 Cluster 3 Cluster 1 Cluster 2

2 4 6 8 2 4 6 8
Cluster 5 Cluster 3
2 2
0 0
2 -2
2 4 6 8 4 2 4 6 8 -
(&) DPMMLM (b) DPMM

Figure 2: The heatmap for clusters inferred for the immuispoase dataset.

We compared human and mouse immune response datasetstify isienilar and divergent genes.
We selected two experiments that studied immune resporgano negative bacteria. The first was
a time series of human response to Salmonella [18]. Cells iéected with Salmonella and were
profiled at: 0.5h, 1h, 2h, 3h and 4h. The second looked at magp@nse to Yersinia enterocolitica
with and without treatment by IFN-[19]. We used BLASTN to compute the sequence similarity
(bit-score) between all human and mouse genes. For eaclespex selected the most varying 500
genes and expanded the gene list to include all matched gettes other species with a bit score
greater tharY5. This led to a set of 1476 human and 1967 mouse genes whichmgared using
our model. TheM matrix is the bit scores between human and mouse genesdtdedtat?s.

The resulting clusters are presented in Figure 2(a). Irfignate, the first five dimensions are human
expression values and each gene in human is matched to treergene with the highest posterior.
Human genes which are not matched to any mouse gene in therchave a blank line on the
mouse side of the figure. The algorithm identified five differdusters. Clusters 1, 4 and 5 display
a similar expression pattern in human and mouse with gettesr eip or down regulated in response
to the infection. Genes in cluster 2 differ between the twecggs being mostly down regulated in
humans while slightly upregulated in mouse. Human genekistar 3 also differ from their mouse
orthologs. While they are strongly upregulated in humans ctirresponding mouse genes do not
change much.



P value Corrected P GO term description P value Corrected P GO term description

2.86216e-10 <0.001 regulation of apoptosis 5.06685e-07 0.001  response to stimulus
4.97408e-10 <0.001 regulation of cell death 6.15795e-07 0.001  negative regulation of biological process
7.82427e-10 <0.001 protein binding 7.70651e-07  0.001  cellular process

4.14320e-10 <0.001 regulation of programmed cell death 7.78266e-07  0.002  regulation of localization
4.49332e-09 <0.001 positive regulation of cellular process 1.09778e-06  0.002  response to organic substance
4.77653e-09 <0.001 positive regulation of biological process| 1.42704e-06  0.002  collagen metabolic process

8.27313e-09 <0.001 response to chemical stimulus 1.91735e-06  0.003  negative regulation of cellular process

1.17013e-07  0.001  cytoplasm 3.23244e-06  0.005  multicellular organismal macromolecple
metabolic process

1.28299e-07 0.001  response to stress 3.39901e-06 0.005 interspecies interaction

2.20104e-07 0.001  cell proliferation 3.66178e-06  0.005 negative regulation of apoptosis

Table 1: The GO enrichment result for cluster 1 identified IRMMLM.

We used the Gene Ontology (GO, www.geneontology.org) toutate the enrichment of functional
categories in each cluster based on the hypergeometrithdisin. Genes in cluster 1 (Table 1)
are associated with immune and stress responses. Imetgstie most significant category for
this cluster is "regulation of apoptosis” (corrected pueak0.001). Indeed, both Salmonella and
Yersinia are known to induce apoptosis in host cells [20]. Wtlastering the two datasets indepen-
dently the p-value for this category is greatly reduceddating that accurate matchings can lead to
better identification of core pathways (see Appendix). @lud contains the most coherent set of
upregulated genes across the two species. One of top GQpdatetpr this cluster is 'response to
molecule of bacterial origin’ (corrected p-valse0.001) which is the most accurate description of
the condition tested. See Appendix for complete GO tabledl afusters. In contrast to clusters in
which mouse and human genes are similarly expressed, cBigenes are strongly upregulated in
human cells while not changing in mouse. This cluster isobied for ribosomal proteins (corrected
p-value<0.001). This may indicate different strategies utilizedthg bacteria in the two experi-
ments. There are studies that show that pathogens can lgieethe synthesis of ribosomal genes
(which are required for translation) [21] whereas othedigsiindicate that ribosomal genes may not
change much, or may even be reduced, following infectioih [PBe results of our analysis indicate
that while following Salmonella infection in human cellsasomal genes are upregulated, they are
not activated following Yarsinia infection in mouse.

We have also analyzed the matchings obtained using seqdatecalone (prior) and by combining
sequence and expression data (posterior) using our mefhiloe.top posterior gene is the same
as the top prior gene in most cases (905 of the 1476 human)geHesvever, there are several
cases in which the prior and posterior differ. 293 human geare not matched to any mouse
gene in the cluster they are assigned to indicating that éineyexpressed in a species dependent
manner. Additionally, for 278 human genes the top postenmt prior mouse gene differ. To test
whether these differences inferred by the algorithm arégioally meaningful we compared our
Dirichlet method to a method that uses deterministic agsas, as was done in the past. Using
such assignments the algorithm identified only three aasie shown in Figure 2(b). Neither of
these clusters looked homogenous across species.

5 Conclusions

We have developed a new model for simultaneously clustenmgmatching genes across species.
The model uses a Dirichlet Process to infer the number oftedlsis We developed an efficient
variational inference method that scales to large datagigisalmost 2000 datapoints. We have
also demonstrated the power of our method on simulated ddtaranune response dataset. While
the method was presented in the context of expression distgdéneral and can be used for other
matching tasks in which a prior can be obtained. For examyten trying to determine a caption
for images extracted from webpages a prior can be obtainedlyiyg on the distance between the
image and the text on the page. Next, clustering can be emeglwoyutilize the abundance of images
that are extracted and improve the matching outcome.
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