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Abstract

Recent studies compare gene expression data across speciesto identify core and
species specific genes in biological systems. To perform such comparisons re-
searchers need to match genes across species. This is a challenging task since
the correct matches (orthologs) are not known for most genes. Previous work in
this area used deterministic matchings or reduced multidimensional expression
data to binary representation. Here we develop a new method that can utilize soft
matches (given as priors) to infer both, unique and similar expression patterns
across species and a matching for the genes in both species. Our method uses
a Dirichlet process mixture model which includes a latent data matching vari-
able. We present learning and inference algorithms based onvariational methods
for this model. Applying our method to immune response data we show that it
can accurately identify common and unique response patterns by improving the
matchings between human and mouse genes.

1 Introduction

Researchers have been increasingly relying on cross species analysis to understand how biological
systems operate. Sequence based methods have been successfully applied to identify and charac-
terize coding and functional non coding regions in multiplespecies [1]. However, sequence infor-
mation is static and thus provides only partial view of cellular activity. More recent studies attempt
to integrate sequence and gene expression data from multiple species [2, 3, 4]. Unlike sequence,
expression levels are dynamic and differ across time and conditions. By combining expression and
sequence data researchers were able to identify both ”core”and ”divergent” genes. ”Core” genes
are similarly expressed across species and are useful for constructing models of conserved systems,
for example the cell cycle [2]. ”Divergent” genes are similar in sequence but differ in expression
across species. These are useful for identifying species specific responses, for example why some
pathogens are resistant to drugs while others are not [3].

While useful, cross species analysis of expression data is challenging. In addition to the regular
issues with expression data (noise, missing values, etc.) when comparing expression levels across
species researchers need to match genes across species. Formost genes the correct match in another
species (known as ortholog) is not known. A number of methodshave been suggested to solve the
matching problem. The first set of methods is based on a one to one deterministic assignment by
relying on top sequence matches. Such an assignment can be used to concatenate the expression
vectors for matched genes across species and then cluster the resulting vectors. For example, Stuart
et al. [5] constructed ”metagenes” consisting of top sequence matches from four species. These
were used to cluster the data from multiple species to identify conserved and divergent patterns.
Bergmann et al. [6] defined one of the species (species A) as a reference and first clustered genes
in A. They then used matched genes in the second species (B) asstarting points for clustering
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genes in B. When the clustering algorithm converges in B, genes that remain in the cluster are
considered ”core” whereas genes that are removed are ”divergent”. Quon et al. [4] used a mixture of
Gaussians model, which takes as input the expression data oforthologous genes and a phylogenetic
tree connecting the species, to reconstruct the expressionprofiles as well as detecting divergent
links in the phylogeny. The second set of methods allowed forsoft matches but was either limited to
analyzing binary or discrete data with very few labels. For example, Lu et al. combined experiments
from multiple species by using Markov Random Fields [7] and Gaussian Random Fields [8] in which
edges represent sequence similarity and potential functions constrain similar genes across species to
have a similar expression pattern.

While both approaches led to successful applications, they suffer from drawbacks that limit their
use in practice. In many cases the top sequence match is not the correct ortholog and a deterministic
assignment may lead to wrong conclusions about the conservation of genes. Methods that have
used soft assignments were limited to summarization of the data (up or down regulated) and could
not utilize more complex profiles. Here we present a new method that uses soft assignments to
allow comparison and clustering across species of arbitrary expression data without requiring prior
knowledge on the phylogeny. Our method takes as input expression datasets in two species and a
prior on matches between homologous genes in these species (derived from sequence data). The
method simultaneously clusters the expression values for both species while computing a posterior
for the assignment of orthologs for genes. We use Dirichlet Process model to automatically detect
the number of clusters.

We have tested our method on simulated and immune response data. In both cases the algorithm
was able to find correct matches and to improve upon methods that used a deterministic assignment.
While the method was developed for, and applied to, biological data, it is general and can be used to
address other problems including matchings of captions to images (see Section 5).

2 Problem definition

In this section, we first describe in details the cross species analysis problem for gene expression
data. Next, we formalize this as a general clustering and matching problem for cases in which the
matches are not known in advance.

Using microarrays or new sequencing techniques researchers can monitor the expression levels of
genes under certain conditions or at specific time points. For each such measurement we obtain a
vector whose elements are the expression values for all genes (there are usually thousands of entries
in each vector). We assume that the input consists of microarray experiments from two species and
each species has a different set of genes. While the exact matches between genes in both species
are not known for most genes, we have a prior for gene pairs (one from each species) which is
derived from sequence data [9]. Our goal is to simultaneously cluster the genes in both species.
Such clustering can identify coherent and divergent responses between the species. In addition, we
would like to infer for each gene in one species whether thereexists a homolog that is similarly
expressed in the other species and if so, who.

The problem can also be formalized more generally in the following way. Denote byx =
[x1, x2, . . . , xnx

] andy = [y1, y2, . . . , yny
] the datasets of samples from two different experiment

settings, wherexi ∈ ℜpx andyj ∈ ℜpy . In addition, letM be a sparse non-negativenx×ny matrix
that encodes prior information regarding the matching of samples inx andy. We define the match
probability betweenxi andyj as follows:

p(xi andyj are matched) =
M(i, j)

Ni

= πi,j p(xi is not matched) =
1

Ni

= πi,0 (1)

whereNi = 1 +
∑ny

j=1
M(i, j). πi,0 is the prior probability thatxi is not matched to any element

in Y . We useπi to denote the vector(πi,0, . . . , πi,ny
). Finally, letmi ∈ {0, 1, . . . . , ny} be the

latent matching variable. Ifmi = 1 we say thatxi is matched toymi
. If mi = 0 for we say thatxi

has no match iny. Our goal is to infer both, the latent variablesmj ’s and cluster membership for
pairs of samples(xi, ymi

)’s. The following notations are used in the rest of the paper.Lowercase
normal font, e.gx, is used for a single variable and lowercase bold font, e.gx, is used for vectors.
Uppercase bold roman letters, such asM, denote matrices. Uppercase letters, e.gX, are used to
represent random variables andE[X] represents the expectation of a random variableX.
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3 Model

Model selection is an important problem when analyzing realworld data. Many clustering algo-
rithms, including Gaussian mixture models, require as an input the number of clusters. In addition to
domain knowledge, this model selection question can be addressed using cross validation. Bayesian
nonparametric methods provide an alternative solution allowing the complexity of the model to grow
based on the amount of available data. Under-fitting is addressed by the fact that the model allows
for unbounded complexity while over-fitting is mitigated bythe Bayesian assumption. We use this
approach to develop a nonparametric model for clustering and matching cross species expression
data. Our model, termed Dirichlet Process Mixture Model with Latent Matchings (DPMMLM) ex-
tends the popular Dirichlet Process Mixture Model to cases where priors are provided to matchings
between vectors to be clustered.

3.1 Dirichlet Process

LetG0 a probability measure on a measurable space. We writeG ∼ DP (α,G0) if G is a random
probability measure drawn from a Dirichlet process (DP). The existence of the Dirichlet process was
first proven by [10]. Furthermore, measures ofG are discrete with probability one. This property
can be seen from the explicit stick-breaking construction due to Sethuraman [11] as follows.

Let (Vi)∞i=1 and(ηi)∞i=1 be independent sequences of i.i.d random variables:Vi ∼ Beta(1, α) and
ηi ∼ G0. Then a random measureG defined as

θi = Vi

i−1
∏

j=1

(1− Vj) G =

∞
∑

i=1

θiδηi
(2)

whereδη is a probability measure concentrated atη, is a random probability measure distributed
according to DP(α,G0) as shown in [11] .

3.2 Dirichlet Process Mixture Model (DPMM)

Dirichlet process has been used as a nonparametric prior on the parameters of a mixture model. This
model is referred to as Dirichlet Process Mixture Model. Letz be the mixture membership indicator
variables for data variablesx. Using the stick-breaking construction in (2), the Dirichlet process
mixture model is given by

G ∼ DP(α,G0) zi, ηi | G ∼ G xi | zi, ηi ∼ F (ηi) (3)

whereF (ηi) denotes the distribution of the observationxi given parameterηi.

3.3 Dirichlet Process Mixture Model with Latent Matchings (DPMML M)

In this section, we describe the new mixture model based on DPwith latent variables for data
matching betweenx andy. We useFX(η), FY (η) to denote the marginal distribution ofX and
Y respectively; andFX|Y (y, η) to denote the conditional distribution ofX givenY . The parameter
η is a random variable of the prior distributionG0(η | λ0) with hyperparameterλ0. Also, letzi be
the mixture membership of the sample pair(xi, ymi

). Our model is given by:

G ∼ DP(α,G0)

zi, ηi | G ∼ G

mi | πi ∼ Discrete(πi)

ymi
|mi, zi, ηi ∼ FY (ηi), if mi > 0

xi |mi, zi, ηi,y ∼

{

FX|Y (ymi
, ηi) if mi > 0

FX(ηi) otherwise

(4)

The major difference between our model and a regular DPMM is the dependence ofxi on y if
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mi > 0. In other words the assignment ofx to a cluster depends on both, its own expression levels
and the levels of they component to which it is matched. Ifx is not matched to anyy component
then we resort to the marginal distributionFX of the mixture.

3.4 Mean-field variational methods

For probabilistic models, mean-field variational methods [12, 13] provide a deterministic and
bounded approximation to the intractable joint probability of observed and hidden variables. Briefly,
given a model with observed variablesx and hidden variablesh, we would like to computelog p(x),
which requires us to marginalize over all hidden variablesh. Sincep(x, h) is often intractable, we
can find a tractable probabilityq(h) that gives the best lower bound oflog p(x) using Jensen ’s
inequality:

log p(x) ≥

∫

h

q(h) log p(x, h)− q(h) log q(h) dh = Eq[log p(x, h)]− Eq[log q(h)] (5)

Maximizing this lower bound is equivalent to finding the distribution q(h) that minimizes the KL
divergence betweenq(h) andp(h | x). Hence,q(h) is the best approximation model within the
chosen parametric family.

3.5 Variational Inference for DPMMLM

Although the DP mixture model is an ”infinite” mixture model,it is intractable to solve the optimiza-
tion problem when allowing for infinitely many variables. Wethus follow the truncation approach
used in [14], and limit the number of cluster toK. WhenK is chosen to be large enough, the dis-
tribution is a drawn from the Dirichlet process [14]. To restrict the number of clusters toK, we set
VK = 1 and thus obtainθi>K = 0 in (2). The likelihood of the observed data is

p(x,y | α, λ0) =

∫

m,z,v,η

p(η | λ0) p(v | α)
nx
∏

i=1

p(zi | v)

K
∏

k=1

{

(

πi,0fX(xi | ηk)
)m0

i

ny
∏

j=1

(

πi,jfX|Y (xi | yj , ηk)fY (yj | ηk)
)m

j

i

}zk
i

(6)

wherep(zi | v) = vzi
∏zi−1

k=1
(1− vk) andv is the stick breaking variables given in Section 3.1. The

first part of (6)p(η | λ0) p(v | α) is the likelihood of the model parameters and the second partis
the likelihood of the assignments to clusters and matchings.

Following the variational inference framework for conjugate-exponential graphical models [15] we
choose the distribution that factorizes over{mi, zi}i=1,...,nx

, {vk}k=1,...,K and{ηk}k=1,...,K−1 as
follows:

q(m, z,v,η) =

nx
∏

i=1

{

qφi
(mi)

ny
∏

j=0

qθi,j (zi)
m

j

i

}

K−1
∏

k=1

qγk
(vk)

K
∏

k=1

qλk
(ηk) (7)

whereqφi
(mi) andqθi,j (zi) are multinomial distributions andqγk

(vk) are beta distributions. These
distributions are conjugate distributions for the likelihood of the parameters in (6).qλk

(ηk) requires
special treatment due to the coupling of the marginal and conditional distributions in the likelihood.
These issues are discussed in details in section 3.5.2.

Using this variational distribution we obtain a lower boundfor the log likelihood:

log p(x,y | α, λ0) ≥ E[log p(η | λ0)] + E[log p(V | α)]

+

nx
∑

i=1

{

E[log p(Zi | V)] +

ny
∑

j=0

K
∑

k=1

E[M j
i Z

k
i ](log πi,j + ρi,j,k)

}

− E[log q(M,Z,V,η)] (8)

where all expectations are with respect to the distributionq(m, z,v,η) and

ρi,j,k =

{

E[log fX|Y (Xi | Yj , ηk)] + E[log fY (Yj | ηk)] if j > 0

E[log fX(Xi | ηk)] if j = 0
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To compute the terms in (8), we note that

E[M j
i Z

k
i ] = φi,jθi,j,k = ψi,j,k

E[log p(Zi | V)] =

K
∑

k=1

q(zi > k)E[log(1− Vk)] + q(zi = k)E[log Vk]

whereq(zi > k) =
∑ny

j=0

∑K
t=k+1

ψi,j,t andq(zi = k) =
∑ny

j=0
ψi,j,k.

3.5.1 Coordinate ascent inference algorithm

The lower bound above can be optimized by a coordinate ascentalgorithm. The update rules for
all terms except for theqλ(η), are presented below. These are direct applications of the variational
inference for conjugate-exponential graphical models [15]. We discuss the update rule forqλ(η) in
section 3.5.2.

• Update forqγk
(vk):

γk,1 = 1 +

nx
∑

i=1

ny
∑

j=0

ψi,j,k γk,2 = α+

nx
∑

i=1

ny
∑

j=0

K
∑

t=k+1

ψi,j,t

• Update forqθi,j (zi) andqφi
(mi):

θi,j,k ∝ exp
(

ρi,j,k +

k−1
∑

k=1

E[log(1− Vk)] + E[log Vk]
)

φi,j ∝ exp
(

log πi,j +
K
∑

k=1

θi,j,k
(

ρi,j,k +
k−1
∑

k=1

E[log(1− Vk)] + E[log Vk]
)

)

3.5.2 Application of the model to multivariate Gaussians

The previous sections described the model in a general terms. In the rest of this section, and in
our experiments, we focus on data that is assumed to be distributed as a multivariate Gaussian with
unknown mean and covariance matrix. The prior distributionG0 is then given by the conjugate prior
Gaussian-Wishart distribution. In a classical DP GaussianMixture Model with Gaussian-Wishart
prior, the posterior distribution of the parameters could be computed analytically. Unfortunately,
in our model, the coupling of the conditional and marginal distribution in the likelihood makes it
difficult to derive analytical formulas for the posterior distribution. Note that if(X,Y ) ∼ N (µ,Σ)

with µ = (µX , µY ) andΣ =

(

ΣX ΣXY

ΣY X ΣY

)

thenX ∼ N (µX ,ΣX), Y ∼ N (µY ,ΣY ) and

X|Y = y ∼ N (µX +ΣXY Σ
−1

Y (y − µY ),ΣX − ΣXY Σ
−1

Y ΣY X). (9)

Therefore, we introduce an approximation distribution forthe datasets which decouples the marginal
and conditional distributions as follows:

fX(x | µX ,ΛX) = N (µX ,Σ = Λ−1

X ) fY (y | µY ,ΛY ) = N (µY ,Σ = Λ−1

Y )

fX|Y (x | y,W, b, µX ,ΛX) = N (µX + b−Wy,Σ = Λ−1

X )

whereW is apx × py projection matrix andΛ is the precision matrix. In this approximation, we
assume that the covariance matrices ofX andX|Y are the same. In other words, the covariance
of X is independent ofY . The matrixW models the linear correlation ofX on Y , similar to
−ΣXY Σ

−1

Y in (9).

The priors forµX ,ΛX andµY ,ΛY are given by Gaussian-Wishart(GW) distributions. A flat im-
proper prior is given toW andb, p0(W) = 1, p0(b) = 1 for all W, b. These assumptions lead
to decoupling of the marginal and conditional distributions. Therefore, the distributionqλk

(ηk) can
now be factorized into two GW distributions and a distribution of W. To avoid over-cluttering
symbols, we omit the subscriptk of the specific clusterk.

q∗λk
(ηk) = GW (µX ,ΛX) GW (µY ,ΛY ) g(W) g(b)
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Posterior distribution of µY ,ΛY : The update rules follow the standard posterior distribution of
Gaussian-Wishart conjugate priors.

Posterior distribution of µX ,ΛX and W, b: Due to the coupling ofµX ,ΛX with W, we do a
coordinate ascent procedure to find the optimal posterior distribution. The posterior distribution of
W, b is a singleton discrete distributiong such thatg(W∗) = 1, g(b∗) = 1.

• Update for posterior distribution ofµX ,ΛX :

κX = κX0 + nX mX =
1

κX
(κX0mX0 + nXx)

S−1

X = S−1

X0
+ VX +

κX0nX
κX0 + nX

(x−mX0)(x−mX0)
T νX = νX0 + nX

wherenX =

nx
∑

n=1

ny
∑

j=0

ψi,j,k, x =
1

nX

nx
∑

i=1

(

ψi,0,kxi +

ny
∑

j=1

ψi,j,k(xi − b + W∗yj)
)

and

VX =

nx
∑

i=1

{

ψi,0,k(xi−x)(xi−x)
T +

ny
∑

j=1

ψi,j,k(xi−b+W∗yj−x)(xi−b+W∗yj−x)
T
}

.

• Update forW∗, b∗: We findW∗, b∗ that maximizes the log likelihood. Taking the deriva-
tive with respect toW∗ and solving forW∗, we get

W∗ =
(

nx
∑

i=1

ny
∑

j=1

ψi,j,k(xi −mX − b)yTj

)(

nx
∑

i=1

ny
∑

j=1

ψi,j,kyjy
T
j

)−1

b∗ = −
(

nx
∑

i=1

ny
∑

j=1

ψi,j,k(xi −mX +W∗yj)
)

/

nx
∑

i=1

ny
∑

j=1

ψi,j,k

4 Experiments and Results

4.1 Simulated data

We demonstrate the performance of the model in identifying data matchings as well as cluster mem-
bership of datapoints using simulated data. To generate a simulated dataset, we sample 120 data-
points from a mixture of three 5-dimensional Gaussians withseparation coefficient =2 leading to
well separated mixtures1. The covariance matrix was derived from the autocorrelation matrix for
a first-order autoregressive process leading to highly dependent components (ρ = 0.9). From these
samples, we use the first 3 dimensions to create 120 datapoints x = [x1, . . . , x120]. The last two
dimensions of the first 100 datapoints are used to createy = [y1, . . . , y100] (note that there are no
matches for 20 points inx). Hence, the ground truthM matrix is a diagonal120 × 100 matrix.
We selected a large value for the diagonal entries (τ = 1000) in order to place a strong prior for
the correct matchings. Next, fort = 0, . . . , 20, we randomly selectt entries on each row ofM
and set them toτ

2
r, wherer ∼ χ2

1. We repeat the process20 times for eacht to compute the
mean and standard deviation shown in Figure 1(a) and Figure 1(b). We compare the performance
of our model(DPMMLM) with a standard Dirichlet Process Mixture Model where each component
in x is matched based on the highest prior:{(xi, yj∗) | i = 1, . . . , 100 andj∗ = argmaxjM(i, j)}
(DPMM). For all models, the truncation level (K) is set to 20 andα is 1. Figure 1(a) presents the
percentage of correct matchings inferred by DPMMLM and the highest prior matching. For DP-
MMLM, a datapointxi is matched to the datapointyj with the largest posterior probabilityφi,j .
With the added noise, DPMMLM can still achieve an accuracy of50% when the highest prior
matching leads to only 25% accuracy. Figure 1(b) and 1(c) show the Normalized Mutual Informa-
tion (NMI) and Adjusted Rand index [17] for the clusters inferred by the two models compared to
the true clusters. As can be seen, while the percentage of correct matchings decreased with the added
noise, DPMMLM still achieves high NMI of 0.8 and Adjusted Rand index of 0.92. In conclusion,
by relying on matchings of points DPMMLM can still performs very well in terms of its ability to
identify correct clusters even with the high noise levels.

1Following [16], a Gaussian mixture is c-separated if for each pair(i, j) of components,‖mi − mj‖
2 ≥

c2Dmax(λmax

i , λmax

j ) , whereλmax denotes the maximum eigenvalue of their covariance.
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Figure 1: Evaluation of the result on simulated data.

4.2 Immune response dataset
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Figure 2: The heatmap for clusters inferred for the immune response dataset.

We compared human and mouse immune response datasets to identify similar and divergent genes.
We selected two experiments that studied immune response togram negative bacteria. The first was
a time series of human response to Salmonella [18]. Cells were infected with Salmonella and were
profiled at: 0.5h, 1h, 2h, 3h and 4h. The second looked at mouseresponse to Yersinia enterocolitica
with and without treatment by IFN-γ [19]. We used BLASTN to compute the sequence similarity
(bit-score) between all human and mouse genes. For each species we selected the most varying 500
genes and expanded the gene list to include all matched genesin the other species with a bit score
greater than75. This led to a set of 1476 human and 1967 mouse genes which we compared using
our model. TheM matrix is the bit scores between human and mouse genes thresholded at75.

The resulting clusters are presented in Figure 2(a). In thatfigure, the first five dimensions are human
expression values and each gene in human is matched to the mouse gene with the highest posterior.
Human genes which are not matched to any mouse gene in the cluster have a blank line on the
mouse side of the figure. The algorithm identified five different clusters. Clusters 1, 4 and 5 display
a similar expression pattern in human and mouse with genes either up or down regulated in response
to the infection. Genes in cluster 2 differ between the two species being mostly down regulated in
humans while slightly upregulated in mouse. Human genes in cluster 3 also differ from their mouse
orthologs. While they are strongly upregulated in humans, the corresponding mouse genes do not
change much.
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P value Corrected P GO term description P value Corrected P GO term description
2.86216e-10 <0.001 regulation of apoptosis 5.06685e-07 0.001 response to stimulus
4.97408e-10 <0.001 regulation of cell death 6.15795e-07 0.001 negative regulation of biological process
7.82427e-10 <0.001 protein binding 7.70651e-07 0.001 cellular process
4.14320e-10 <0.001 regulation of programmed cell death 7.78266e-07 0.002 regulation of localization
4.49332e-09 <0.001 positive regulation of cellular process 1.09778e-06 0.002 response to organic substance
4.77653e-09 <0.001 positive regulation of biological process 1.42704e-06 0.002 collagen metabolic process
8.27313e-09 <0.001 response to chemical stimulus 1.91735e-06 0.003 negative regulation of cellular process
1.17013e-07 0.001 cytoplasm 3.23244e-06 0.005 multicellular organismal macromolecule

metabolic process
1.28299e-07 0.001 response to stress 3.39901e-06 0.005 interspecies interaction
2.20104e-07 0.001 cell proliferation 3.66178e-06 0.005 negative regulation of apoptosis

Table 1: The GO enrichment result for cluster 1 identified by DPMMLM.

We used the Gene Ontology (GO, www.geneontology.org) to calculate the enrichment of functional
categories in each cluster based on the hypergeometric distribution. Genes in cluster 1 (Table 1)
are associated with immune and stress responses. Interestingly the most significant category for
this cluster is ”regulation of apoptosis” (corrected p-value<0.001). Indeed, both Salmonella and
Yersinia are known to induce apoptosis in host cells [20]. When clustering the two datasets indepen-
dently the p-value for this category is greatly reduced indicating that accurate matchings can lead to
better identification of core pathways (see Appendix). Cluster 4 contains the most coherent set of
upregulated genes across the two species. One of top GO categories for this cluster is ’response to
molecule of bacterial origin’ (corrected p-value< 0.001) which is the most accurate description of
the condition tested. See Appendix for complete GO tables ofall clusters. In contrast to clusters in
which mouse and human genes are similarly expressed, cluster 3 genes are strongly upregulated in
human cells while not changing in mouse. This cluster is enriched for ribosomal proteins (corrected
p-value<0.001). This may indicate different strategies utilized bythe bacteria in the two experi-
ments. There are studies that show that pathogens can upregulate the synthesis of ribosomal genes
(which are required for translation) [21] whereas other studies indicate that ribosomal genes may not
change much, or may even be reduced, following infection [22]. The results of our analysis indicate
that while following Salmonella infection in human cells ribosomal genes are upregulated, they are
not activated following Yarsinia infection in mouse.

We have also analyzed the matchings obtained using sequencedata alone (prior) and by combining
sequence and expression data (posterior) using our method.The top posterior gene is the same
as the top prior gene in most cases (905 of the 1476 human genes). However, there are several
cases in which the prior and posterior differ. 293 human genes are not matched to any mouse
gene in the cluster they are assigned to indicating that theyare expressed in a species dependent
manner. Additionally, for 278 human genes the top posteriorand prior mouse gene differ. To test
whether these differences inferred by the algorithm are biologically meaningful we compared our
Dirichlet method to a method that uses deterministic assignments, as was done in the past. Using
such assignments the algorithm identified only three clusters as shown in Figure 2(b). Neither of
these clusters looked homogenous across species.

5 Conclusions

We have developed a new model for simultaneously clusteringand matching genes across species.
The model uses a Dirichlet Process to infer the number of clusters. We developed an efficient
variational inference method that scales to large datasetswith almost 2000 datapoints. We have
also demonstrated the power of our method on simulated data and immune response dataset. While
the method was presented in the context of expression data itis general and can be used for other
matching tasks in which a prior can be obtained. For example,when trying to determine a caption
for images extracted from webpages a prior can be obtained byrelying on the distance between the
image and the text on the page. Next, clustering can be employed to utilize the abundance of images
that are extracted and improve the matching outcome.
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