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Abstract

Hypothesis testing on point processes has several apptisatuch as model fit-
ting, plasticity detection, and non-stationarity detecti Standard tools for hy-
pothesis testing include tests on mean firing rate and timgngarate function.
However, these statistics do not fully describe a point @sscand therefore, the
conclusions drawn by these tests can be misleading. In #@gempwe introduce
a family of non-parametric divergence measures for hymishesting. A diver-
gence measure compares the full probability structure #edefore, leads to a
more robust test of hypothesis. We extend the traditiondinggorov—Smirnov
and Crangr—von-Mises tests to the space of spike trains via stratific, and
show that these statistics can be consistently estimateddata without any free
parameter. We demonstrate an application of the proposetdgginces as a cost
function to find optimally matched point processes.

1 Introduction

Neurons communicate mostly through nosgquences of action potentialElso known aspike
trains. A point processcaptures the stochastic properties of such sequences misdi¢. Many
neurosciencgroblems such as model fitting (goodness-of-fit), plastidigtection, change point
detection, non-stationarity detection, and neural co@dyais can be formulated as statistical infer-
ence on point processes [2, 3]. To avoid the complicatioreafidg with spike train observations,
neuroscientists often use summarizing statistics sucheamtiring rate to compare two point pro-
cesses. However, this approach implicitly assumes a mode¢hé underlying point process, and
therefore, the choice of the summarizing statistic fundatally restricts the validity of the inference
procedure.

One alternative to mean firing rate is to use the distancedmthe inhomogeneous rate functions,
i.e. [|A1(t) — Xa2(t)| dt, as a test statistic, which is sensitive to the temporal dtitn of the
means of the point processes. In general the rate functiea dot fully specify a point process,
and therefore, ambiguity occurs when two distinct pointcesses have the same rate function.
Although physiologically meaningful change is often acpamied by the change in rate, there has
been evidence that the higher order statistics can chartgewtia corresponding change of rate [4,
5]. Therefore, statistical tools that capture higher ostatistics, such adivergencescan improve
the state-of-the-art hypothesis testing framework fokesprain observations, and may encourage
new scientific discoveries.



In this paper, we present a novel family of divergence messhetween two point processes. Un-
like firing rate function based measures, a divergence measuaeroif and only if the two point
processes are identical. Applying a divergence measurkyfoothesis testing is, therefore, more
appropriate in a statistical sense. We show that the propossasures can be estimated from
data without any assumption on the underlying probabilitycture. However, a distribution-free
(non-parametric) approach often suffers from having fraameters, e.g. choice of kernel in non-
parametric density estimation, and these free parametins weed to be chosen using computa-
tionally expensive methods such as cross validation [6].stMav that the proposed measures can
be consistently estimated imparameter freenanner, making them particularly useful in practice.

One of the difficulties of dealing with continuous-time poprocess is the lack of well structured
space on which the corresponding probability laws can beritesl. In this paper we follow a rather
unconventional approach for describing the point procesa tirect sum of Euclidean spaces of
varying dimensionality, and show that the proposed divecganeasures can be expressed in terms
of cumulative distribution functions (CDFs) in these disjcspaces. To be specific, we represent
the point process by the probability of having a finite nuntdfespikes and the probability of spike
times given that number of spikes, and since these time satgereals, we can represent them in
a Euclidean space using a CDF. We follow this particular @@agi since, first, CDFs can be easily
estimated consistently using empirical CDFs without aeg fparameter, and second, standard tests
on CDFs such as Kolmogorov—Smirnov (K-S) test [7] and Gamon-Mises (C-M) test [8] are
well studied in the literature. Our work extends the conigeral K-S test and C-M test on the real
line to the space of spike trains.

The rest of the paper is organized as follows; in section 2ni@duce the measure space where
the point process is defined as probability measures, imose8tand section 4 we introduce the

extended K-S and C-M divergences, and derive their resgeetitimators. Here we also prove the
consistency of the proposed estimators. In section 5, wepaogrvarious point process statistics in
a hypothesis testing framework. In section 6 we show an egijdin of the proposed measures in
selecting the optimal stimulus parameter. In section 7, arltde the paper with some relevant
discussion and future work guidelines.

2 Basic point process

We define a point process to be a probability measure oveoaliiple spike trains. Le® be the
set of all finite spike trains, that is, eache ) can be represented by a finite set of action potential
timingsw = {t; <ty <...<t,} € R" wheren is the number of spikes. L&Y, ), -- denote
the partitions of2 such that(2,, contains all possible spike trains with exactlyevents (spikes),
hence(?,, = R". Note that} = Uffzo Q, is a disjoint union, and th&®, has only one element
representing the empty spike train (no action potentiap Bigure 1 for an illustration.

Define ac-algebra o) by thes-algebra generated by the union of Borel sets defined on the Eu
clidean spacest = o (|J,_,B(,)). Note that any measurable séte F can be partitioned
into {4, = AN Q,}>2,, such that eacld,, is measurable in corresponding measurable space
(Q,,B(,)). Here A denotes a collection of spike trains involving varying nnbf action po-
tentials and corresponding action potential timings, wher,, denotes a subset of these spike

trains involving onlyn action potentials each.

A (finite) point process is defined as a probability meaddren the measurable spat®, 7) [1].
Let P and (@ be two probability measures df, F), then we are interested in finding the diver-
genced(P, Q) betweenP and@, where a divergence measure is characterized ByQ) > 0 and
d(P,Q)=0 < P=0Q.

3 Extended K-S divergence

A Kolmogorov-Smirnov (K-S) type divergence betweBrand( can be derived from thé&; dis-
tance between the probability measures, following thevedgmt representation,

(P.Q) = /Q AIP = Q|2 sup [P(4) - Q(A). 1)
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Figure 1: (Left) lllustration of how the point process sp&stratified. (Right) Example of spike
trains stratified by their respective spike count.

Since (1) is difficult and perhaps impossible to estimatediy without a model, our strategy is to
use the stratified spacéQ, (21, . . .) defined in the previous section, and take the supremum only in
the corresponding conditioned probability measures et F N Q; := {F NQ,;|F € F}. Since
U; Fi C F,

di(P.Q) =) sup |[P(A) = Q(A)] = Y sup [P(2)P(A|2) — Q(Qa)Q(A0)].
CTNAEF, ren A€

Since eaclf),, is a Euclidean space, we can induce the traditional K-S tastic by further reduc-
ing the search space 16, = {x;(—o0, ]|t = (t1,...,t,) € R™}. This results in the following
inequality,

sup |P(A) — Q(A)[ > sup |P(A) — Q(A)| = sup
AEF, AEF, teRn

0 -FP0). @
WhereFI(D”) (t) = P[Ty < t1 A... NT, < t,]is the cumulative distribution function (CDF)
corresponding to the probability measuren 2,,. Hence, we define the K-S divergence as

dics(P.Q) = 3 sup [POLFE (1) ~ QU ES (1) 3)
nENt "

Given a finite number of sample$ = {z;} ", andY = {yj};.vjl from P and (@ respectively, we

7

have the following estimator for equation (3).

dis(P,Q) =Y sup [P(2) F” (1) — Q) ES (1)

nGNtERn
=Y sw [POQE®) - Q) ES (1) (@)
nENtEX”UKl

whereX,, = X NQ,, andP andF'» are the empirical probability and empirical CDF, respestiv
Notice that we only search the supremum over the locatiorikeofealizationsX,, U Y,, and not

the wholeR™, since the empirical CDF differen#é’(Qn)Fl(D")(t) - QM) Aé”) (t)‘ only changes
values at those locations.
Theorem 1(dk g is a divergence)
di(P,Q) > dgs(P,Q) >0 (5)
dgs(P,Q)=0 <= P=Q (6)



Proof. The first property and the= proof for the second property are trivial. From the defimitio
of dxs and properties of CDR{xs(P,Q) = 0 implies thatP(£2,,) = Q(2,) andF(”) é")

for all n € N. Given probability measures for eafi,,, 7,,) denoted as®, and@,,, there exist
corresponding unique extended meastesnd() for (€2, F) such that their restrictions {62,,, F,,)
coincide withP, and@,, henceP = Q. O

Theorem 2 (Consistency of K-S divergence estimatoAs the sample size approaches infinity,
‘sz - JKS‘ 2250 (7)

Proof. Note that|> sup- — > sup-| < > |sup- —sup-|. Due to the triangle inequality of the
supremum norm,

sup | P(2) (1) = Q(2) G (1)] = sup |PQ)F(1) = Q) FG” <t>]'
< sup [P FE (1) = Q) FS (8)] - |P@) FL () — Q@) ES 1)

teRn
Again, using the triangle inequality we can show the follogyi

HP WFS(t) — Q(Qn)Fé”)(t)‘—P(Qn)F}(D”)(t)—Q(Qn) Ag‘)(t)H

<[P FE () = QUFS () = P () + Q) ES”

=|P@)FE () - P @) - QU FS (1) + Q) ES”
+PQ)FE (1) = PO)ER (1) + Q) ES” (1) = Q) ES 1)
F (1) - PO + @) [P () - £57(8)|

+ES()|Q(0) - Q)]

Then the theorem follows from the Glivenko-Cantelli themrandf?, Q 225 PQ. O

<P(2n)

+ B @) P@n) - P(52)

Notice that the inequality in (2) can be made stricter by @ering the supremum over not just the
product of the segments-co, ¢;] but over the alR™ — 1 possible products of the segmefitsxo, ¢;]
and[t;, o) in n dimensions [7]. However, the latter approach is computatly more expensive,
and therefore, in this paper we only explore the former aggo

4 Extended C-M divergence

We can extend equation (3) to derive a Cearvon-Mises (C-M) type divergence for point pro-
cesses. Leir = P+ Q/2, then P, are absolutely continuous with respect;to Note that,
F},”), Fé”) € Lo(Qy,, 1ln) where|,, denotes the restriction dn,,, i.e. the CDFs ard., integrable,
since they are bounded. Analogous to the relation betwe8rtést and C-M test, we would like to
use the integrated squared deviation statistics in platkeofnaximal deviation statistic. By inte-
grating over the probability measureinstead of the supremum operation, and udiagnstead of
L distance, we define

2
don(P.Q) =Y [ (POIFL®) - QOFS () dul (o) ®)
neN "
This can be seen as a direct extension of the C-M criteriore cdiresponding estimator can be
derived using the strong law of large numbers,

dm(RQ):Z[;Z(P(ﬂ JEE (@) — QS @)

neN

+ %Z (P(Qn)Fg)(%@)) - Q(Qn)Fé")(ygn))Y] . 9)



Theorem 3(d¢y is a divergence) For P and Q) with square integrable CDFs,

dem (P, Q) >0 (10)
dem(P,Q) =0 <= P=Q. (11)
Proof. Similar to theorem 1. O

Theorem 4(Consistency of C-M divergence estimatoAs the sample size approaches infinity,

don — donr| 2250 (12)

Proof. Similar to (7), we find an upper bound and show that the bounfbumly converges to
zero. To simplify the notation, we defing (z) = P(Q,)F5" (z) — Q(Qn)Fg’) (r), andg,(z) =
P(2,) FSY (a™) — Q(92,)ESY (™). Note thatg,, > g by the Glivenko-Cantelli theorem and
P 22 P by the strong law of large numbers.

2:/%ﬂph+§:/%ﬂQh SN an(@) =D anwi)?

neN neN neN 1 neN ¢

T [ [azart~ [ g, + [aql - [ gid@@
neN
/gZdP|n _/gndP|n ’/gndQ|rb - /gidéﬂn :||

neN |:
whereP = S, 0(x;) andQ = 3, 6(y;) are the corresponding empirical measures. Without loss
of generality, we only find the bound (#‘Iﬁg dP|, —

for Q.
[fsar- | \ /gndmn gapl,s [ o, [

Applying Glivenko-Cantelli theorem and strong law of lang@mbers, these two terms converges
sinceg? is bounded. Hence, we show that the C-M test estimator isstens. O

doy — dCM’ =

<

5 Results

We present a set of two-sample problems and apply variotistats to perform hypothesis test-
ing. As a baseline measure, we consider the widely used Wiltaank-sum test (or equiva-
lently, the Mann-Whitney U test) on the count distributiong(e[9]), which is a non-parametric
median test for the total number of action potentials, ardittegrated squared deviation statistic
Az = [ (M) — Ao (t))? dt, where\(t) is estimated by smoothing spike timing with a Gaussian
kernel, evaluated at a uniform grid at least an order of ntageismaller than the standard deviation
of the kernel. We report the performance of the test with waykernel sizes.

All tests are quantified by the power of the test given a sigaifce threshold (type-I error) @5.
The null hypothesis distribution is empirically computeddither generating independent samples
or by permuting the data to create at least 1000 values.

5.1 Stationary renewal processes

Renewal process is a widely used point process model thateasates the deviation from Poisson
process [10]. We consider two stationary renewal procegitegamma interval distributions. Since
the mean rate of the two processes are the same, the ratefusgttistic and Wilcoxon test does
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Figure 2: Gamma distributed renewal process with shapensesd = 3 (Hy) andéd = 0.5 (Hy).
The mean number of action potential is fixed to 10. (Left) 8gilains from the null and alternate
hypothesis. (Right) Comparison of the power of each metfibé.error bars are standard deviation
over 20 Monte Carlo runs.

not yield consistent result, while the proposed measur&sohigh power with a small number of

samples. The C-M test is more powerful than K-S in this cdse;dan be interpreted by the fact
that the difference in the cumulative is not concentratedspuead out over time because of the
stationarity.

5.2 Precisely timed spike trains

When the same stimulation is presented to a neuronal systambserved spike trains some-
times show a highly repeatable spatio-temporal pattermatnillisecond time scale. Recently
these precisely timed spike trains (PTST) are abundanplgrted bothin vivo andin vitro prepa-
rations [11, 12, 13]. Despite being highly reproducibldfedent forms of trial-to-trial variability
have also been observed [14]. It is crucial to understarsdveimiability since for a system to utilize
PTSTs as a temporal code, it should presumably be robust taiitability structure, and possibly
learn to reduce it [15].

A precisely timed spike train in an interval is modeled bynumber of probability density and
probability pairs{(fi(t), p;)}%_,. Eachfi(t) corresponds to the temporal jitter, amdcorresponds
to the probability of generating the spike. Each realizatdd the PTST model produces at most
L spikes. The equi-intensity Poisson process has the ragtidan\(t) = > p; fi(t). We test if
the methods can differentiate between the PTH{) @nd equi-intensity Poisson proces$s ] for

L =1,2,3,4 (see Figure 3 for thé& = 4 case). Note thal determines the maximum dimension for
the PTST.f;(¢) were equal variance Gaussian distribution on a grid sanfpdeda uniform random
variable, angp; = 0.9.

As shown in Figure 3, only the proposed methods perform w&ithce the rate function profile is
identical for both models, the rate function statistjg fails to differentiate. The Wilcoxon test does
work for intermediate dimensions, however its performaadeghly variable and unpredictable. In
contrast to the previous example, the K-S test is consligtéetter than the C-M statistic in this
problem.

6 Optimal stimulation parameter selection

Given a set of point processes, we can find the one which issiiés a target point process in terms
of the proposed divergence. Here we use this method on aatsat obtained from the somatosen-
sory system of an anesthetized rat (see supplement forguoele Specifically, we address finding
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Figure 3: [Top] Precisely timed spike train modé&ly) versus equi-intensity Poisson procels
Spike trains from the null and alternate hypothesisfioe 4. [Bottom] Comparison of the power
of each method fol. = 1,2, 3,4 on precisely timed spike train moddil{) versus equi-intensity
Poisson proces$l}). (Left) Power comparison for methods exceptfor The rate statistid ;- are
not labeled, since they are not able to detect the differefiRight) Wilcoxon test on the number of
action potentials. The error bars are standard deviatien b¥ Monte Carlo runs.

optimal electrical stimulation settings to produce cattigpiking patterns similar to those observed
with tactile stimuli.

The target process has 240 realizations elicited by testiibeulation of the ventral side of the first
digit with a mechanical tactor. We seek the closest out of riggsses elicited by electrical stim-
ulation in the thalamus. Each process has 140 realizatiatscbrrespond to a particular setting
of electrical stimulation. The settings correspond to corations of duration and amplitude for
biphasic current injection on two adjacent channels in llaéaimus. The channel of interest and the
stimulating channels were chosen to have significant resptintactile stimulation.

The results from applying the C-M, K-S, angd, measures between the tactile responses and the sets
from each electrical stimulation setting are shown Figur&lde overall trend among the measures
is consistent, but the location of the minima does not cdigédr Az5.

7 Conclusion

In this paper, we have proposed two novel measures of diweegketween point processes. The
proposed measures have been derived from the basic pribpkil of a point process and we have
shown that these measures can be efficiently estimatedstemidy from data. Using divergences for
statistical inference transcends first and second ordgstts, and enables distribution-free spike
train analysis.

The time complexity of both methods © (3, n [Np(n)Ng(n) + N3(n) + N3(n)]) where
Np(n) is the number of spike trains froR that hasn spikes. In practice this is often faster than
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Figure 4: (Left) Dissimilarity/divergences from tactilesponse across parameter sets. The values
of each measure are shifted and scaled to be in the range ol0 Xg, uses 2.5 ms bins with

no smoothing. (Right) Responses from the tactile respdef#, (stimulation settings selected by
A2 (center), and the realizations selected by K-S and C-M {yigfop row shows the spike trains
stratified into number of spikes and then sorted by spikegimBottom row shows the average
response binned at 2.5 ms; the variance is shown as a thin lgnee

the binned rate function estimation which has time compje®(BN) whereB is the number of
binsandN = >~ n(Np(n) + Ng(n)) is the total number of spikes in all the samples. Although,
we have observed that the statistic based orthdistance between the rate functions often outper-
forms the proposed method, this approach involves thelséarthe smoothing kernel size and bin
size which can make the process slow and prohibitive. Inteatdliit brings the danger of multiple
testing, since some smoothing kernel sizes may pickup agsipatterns that are only fluctuations
due to finite samples size.

A similar approach based on stratification has also beereaddd in [16], where the authors have
discussed the problem of estimating Hellinger distancevéen two point processes. Although
conceptually similar, the advantage of the proposed apprizathat it is parameter free, whereas the
other approach requires selecting appropriate kernelgrendorresponding kernel sizes for each
Euclidean partitions. However, a stratification-basedaagh suffers in estimation when the count
distributions of the point processes under consideratienflat, since in this situation the spike
train realizations tend to exist in separate Euclidearnitpars, and given a finite set of realizations,
it becomes difficult to populate each partition sufficientlyherefore, other methods should be
investigated that allow two spike trains to interact iresjve of their spike counts. Other possible
approaches include the kernel-based divergence measupgs@osed in [17], since the measures
can be applied to any abstract space. However, it requilgagleg an appropriate strictly positive
definite kernel on the space of spike trains.

In this literature, we have presented the divergences ircéimext of spike trains generated by
neurons. However, the proposed methods can be used foradgruent processes, and can be
applied to other areas. Although we have proved consistefhtlye proposed measures, further
statistical analysis such as small sample power analyis,of convergence, and asymptotic prop-
erties would be interesting to address. A MATLAB implemeiota is freely available on the web
(http://code.google.com/p/iocane) with BSD-license.
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