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Abstract

Hypothesis testing on point processes has several applications such as model fit-
ting, plasticity detection, and non-stationarity detection. Standard tools for hy-
pothesis testing include tests on mean firing rate and time varying rate function.
However, these statistics do not fully describe a point process, and therefore, the
conclusions drawn by these tests can be misleading. In this paper, we introduce
a family of non-parametric divergence measures for hypothesis testing. A diver-
gence measure compares the full probability structure and,therefore, leads to a
more robust test of hypothesis. We extend the traditional Kolmogorov–Smirnov
and Craḿer–von-Mises tests to the space of spike trains via stratification, and
show that these statistics can be consistently estimated from data without any free
parameter. We demonstrate an application of the proposed divergences as a cost
function to find optimally matched point processes.

1 Introduction

Neurons communicate mostly through noisysequences of action potentials, also known asspike
trains. A point processcaptures the stochastic properties of such sequences of events [1]. Many
neuroscienceproblems such as model fitting (goodness-of-fit), plasticity detection, change point
detection, non-stationarity detection, and neural code analysis can be formulated as statistical infer-
ence on point processes [2, 3]. To avoid the complication of dealing with spike train observations,
neuroscientists often use summarizing statistics such as mean firing rate to compare two point pro-
cesses. However, this approach implicitly assumes a model for the underlying point process, and
therefore, the choice of the summarizing statistic fundamentally restricts the validity of the inference
procedure.

One alternative to mean firing rate is to use the distance between the inhomogeneous rate functions,
i.e.

∫

|λ1(t)− λ2(t)| dt, as a test statistic, which is sensitive to the temporal fluctuation of the
means of the point processes. In general the rate function does not fully specify a point process,
and therefore, ambiguity occurs when two distinct point processes have the same rate function.
Although physiologically meaningful change is often accompanied by the change in rate, there has
been evidence that the higher order statistics can change without a corresponding change of rate [4,
5]. Therefore, statistical tools that capture higher orderstatistics, such asdivergences, can improve
the state-of-the-art hypothesis testing framework for spike train observations, and may encourage
new scientific discoveries.

1



In this paper, we present a novel family of divergence measures between two point processes. Un-
like firing rate function based measures, a divergence measure is zeroif and only if the two point
processes are identical. Applying a divergence measure forhypothesis testing is, therefore, more
appropriate in a statistical sense. We show that the proposed measures can be estimated from
data without any assumption on the underlying probability structure. However, a distribution-free
(non-parametric) approach often suffers from having free parameters, e.g. choice of kernel in non-
parametric density estimation, and these free parameters often need to be chosen using computa-
tionally expensive methods such as cross validation [6]. Weshow that the proposed measures can
be consistently estimated in aparameter freemanner, making them particularly useful in practice.

One of the difficulties of dealing with continuous-time point process is the lack of well structured
space on which the corresponding probability laws can be described. In this paper we follow a rather
unconventional approach for describing the point process by a direct sum of Euclidean spaces of
varying dimensionality, and show that the proposed divergence measures can be expressed in terms
of cumulative distribution functions (CDFs) in these disjoint spaces. To be specific, we represent
the point process by the probability of having a finite numberof spikes and the probability of spike
times given that number of spikes, and since these time values are reals, we can represent them in
a Euclidean space using a CDF. We follow this particular approach since, first, CDFs can be easily
estimated consistently using empirical CDFs without any free parameter, and second, standard tests
on CDFs such as Kolmogorov–Smirnov (K-S) test [7] and Cramér–von-Mises (C-M) test [8] are
well studied in the literature. Our work extends the conventional K-S test and C-M test on the real
line to the space of spike trains.

The rest of the paper is organized as follows; in section 2 we introduce the measure space where
the point process is defined as probability measures, in section 3 and section 4 we introduce the
extended K-S and C-M divergences, and derive their respective estimators. Here we also prove the
consistency of the proposed estimators. In section 5, we compare various point process statistics in
a hypothesis testing framework. In section 6 we show an application of the proposed measures in
selecting the optimal stimulus parameter. In section 7, we conclude the paper with some relevant
discussion and future work guidelines.

2 Basic point process

We define a point process to be a probability measure over all possible spike trains. LetΩ be the
set of all finite spike trains, that is, eachω ∈ Ω can be represented by a finite set of action potential
timingsω = {t1 ≤ t2 ≤ . . . ≤ tn} ∈ R

n wheren is the number of spikes. LetΩ0,Ω1, · · · denote
the partitions ofΩ such thatΩn contains all possible spike trains with exactlyn events (spikes),
henceΩn = R

n. Note thatΩ =
⋃∞

n=0 Ωn is a disjoint union, and thatΩ0 has only one element
representing the empty spike train (no action potential). See Figure 1 for an illustration.

Define aσ-algebra onΩ by theσ-algebra generated by the union of Borel sets defined on the Eu-
clidean spaces;F = σ (

⋃∞

n=0 B (Ωn)). Note that any measurable setA ∈ F can be partitioned
into {An = A ∩ Ωn}

∞
n=0, such that eachAn is measurable in corresponding measurable space

(Ωn,B (Ωn)). HereA denotes a collection of spike trains involving varying number of action po-
tentials and corresponding action potential timings, whereasAn denotes a subset of these spike
trains involving onlyn action potentials each.

A (finite) point process is defined as a probability measureP on the measurable space(Ω,F) [1].
Let P andQ be two probability measures on(Ω,F), then we are interested in finding the diver-
genced(P,Q) betweenP andQ, where a divergence measure is characterized byd(P,Q) ≥ 0 and
d(P,Q) = 0 ⇐⇒ P = Q.

3 Extended K-S divergence

A Kolmogorov-Smirnov (K-S) type divergence betweenP andQ can be derived from theL1 dis-
tance between the probability measures, following the equivalent representation,

d1(P,Q) =

∫

Ω

d |P −Q| ≥ sup
A∈F

|P (A)−Q(A)| . (1)
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Figure 1: (Left) Illustration of how the point process spaceis stratified. (Right) Example of spike
trains stratified by their respective spike count.

Since (1) is difficult and perhaps impossible to estimate directly without a model, our strategy is to
use the stratified spaces(Ω0,Ω1, . . .) defined in the previous section, and take the supremum only in
the corresponding conditioned probability measures. LetFi = F ∩ Ωi := {F ∩ Ωi|F ∈ F}. Since
∪iFi ⊂ F ,

d1(P,Q) ≥
∑

n∈N

sup
A∈Fn

|P (A)−Q(A)| =
∑

n∈N

sup
A∈Fn

|P (Ωn)P (A|Ωn)−Q(Ωn)Q(A|Ωn)| .

Since eachΩn is a Euclidean space, we can induce the traditional K-S test statistic by further reduc-
ing the search space tõFn = {×i(−∞, ti]|t = (t1, . . . , tn) ∈ R

n}. This results in the following
inequality,

sup
A∈Fn

|P (A)−Q(A)| ≥ sup
A∈F̃n

|P (A)−Q(A)| = sup
t∈Rn

∣

∣

∣
F

(n)
P (t)− F

(n)
Q (t)

∣

∣

∣
, (2)

whereF (n)
P (t) = P [T1 ≤ t1 ∧ . . . ∧ Tn ≤ tn] is the cumulative distribution function (CDF)

corresponding to the probability measureP in Ωn. Hence, we define the K-S divergence as

dKS(P,Q) =
∑

n∈N

sup
t∈Rn

∣

∣

∣
P (Ωn)F

(n)
P (t)−Q(Ωn)F

(n)
Q (t)

∣

∣

∣
. (3)

Given a finite number of samplesX = {xi}
NP

i=1 andY = {yj}
NQ

j=1 from P andQ respectively, we
have the following estimator for equation (3).

d̂KS(P,Q) =
∑

n∈N

sup
t∈Rn

∣

∣

∣
P̂ (Ωn)F̂

(n)
P (t)− Q̂(Ωn)F̂

(n)
Q (t)

∣

∣

∣

=
∑

n∈N

sup
t∈Xn∪Yn

∣

∣

∣
P̂ (Ωn)F̂

(n)
P (t)− Q̂(Ωn)F̂

(n)
Q (t)

∣

∣

∣
, (4)

whereXn = X ∩Ωn, andP̂ andF̂P are the empirical probability and empirical CDF, respectively.
Notice that we only search the supremum over the locations ofthe realizationsXn ∪ Yn and not

the wholeRn, since the empirical CDF difference
∣

∣

∣
P̂ (Ωn)F̂

(n)
P (t)− Q̂(Ωn)F̂

(n)
Q (t)

∣

∣

∣
only changes

values at those locations.

Theorem 1(dKS is a divergence).

d1(P,Q) ≥ dKS(P,Q) ≥ 0 (5)

dKS(P,Q) = 0 ⇐⇒ P = Q (6)
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Proof. The first property and the⇐ proof for the second property are trivial. From the definition
of dKS and properties of CDF,dKS(P,Q) = 0 implies thatP (Ωn) = Q(Ωn) andF (n)

P = F
(n)
Q

for all n ∈ N. Given probability measures for each(Ωn,Fn) denoted asPn andQn, there exist
corresponding unique extended measuresP andQ for (Ω,F) such that their restrictions to(Ωn,Fn)
coincide withPn andQn, henceP = Q.

Theorem 2(Consistency of K-S divergence estimator). As the sample size approaches infinity,
∣

∣

∣
dKS − d̂KS

∣

∣

∣

a.u.
−−→ 0 (7)

Proof. Note that|
∑

sup · −
∑

sup ·| ≤
∑

|sup · − sup ·|. Due to the triangle inequality of the
supremum norm,

∣

∣

∣

∣

sup
t∈Rn

∣

∣

∣
P (Ωn)F

(n)
P (t)−Q(Ωn)F

(n)
Q (t)

∣

∣

∣
− sup

t∈Rn

∣

∣

∣
P̂ (Ωn)F̂

(n)
P (t)− Q̂(Ωn)F̂

(n)
Q (t)

∣

∣

∣

∣

∣

∣

∣

≤ sup
t∈Rn

∣

∣

∣

∣

∣

∣
P (Ωn)F

(n)
P (t)−Q(Ωn)F

(n)
Q (t)

∣

∣

∣
−
∣

∣

∣
P̂ (Ωn)F̂

(n)
P (t)− Q̂(Ωn)F̂

(n)
Q (t)

∣

∣

∣

∣

∣

∣
.

Again, using the triangle inequality we can show the following:
∣

∣

∣

∣

∣

∣
P (Ωn)F

(n)
P (t)−Q(Ωn)F

(n)
Q (t)

∣

∣

∣
−
∣

∣

∣
P̂ (Ωn)F̂

(n)
P (t)− Q̂(Ωn)F̂

(n)
Q (t)

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣
P (Ωn)F

(n)
P (t)−Q(Ωn)F

(n)
Q (t)− P̂ (Ωn)F̂

(n)
P (t) + Q̂(Ωn)F̂

(n)
Q (t)

∣

∣

∣

=
∣

∣

∣
P (Ωn)F

(n)
P (t)− P (Ωn)F̂

(n)
P (t)−Q(Ωn)F

(n)
Q (t) +Q(Ωn)F̂

(n)
Q (t)

+P (Ωn)F̂
(n)
P (t)− P̂ (Ωn)F̂

(n)
P (t) + Q̂(Ωn)F̂

(n)
Q (t)−Q(Ωn)F̂

(n)
Q (t)

∣

∣

∣

≤P (Ωn)
∣

∣

∣
F

(n)
P (t)− F̂

(n)
P (t)

∣

∣

∣
+Q(Ωn)

∣

∣

∣
F

(n)
Q (t)− F̂

(n)
Q (t)

∣

∣

∣

+ F̂
(n)
P (t)

∣

∣

∣
P (Ωn)− P̂ (Ωn)

∣

∣

∣
+ F̂

(n)
Q (t)

∣

∣

∣
Q(Ωn)− Q̂(Ωn)

∣

∣

∣
.

Then the theorem follows from the Glivenko-Cantelli theorem, andP̂ , Q̂
a.s.
−−→ P,Q.

Notice that the inequality in (2) can be made stricter by considering the supremum over not just the
product of the segments(−∞, ti] but over the all2n−1 possible products of the segments(−∞, ti]
and[ti,∞) in n dimensions [7]. However, the latter approach is computationally more expensive,
and therefore, in this paper we only explore the former approach.

4 Extended C-M divergence

We can extend equation (3) to derive a Cramér–von-Mises (C-M) type divergence for point pro-
cesses. Letµ = P +Q/2, thenP,Q are absolutely continuous with respect toµ. Note that,
F

(n)
P , F

(n)
Q ∈ L2(Ωn, µ|n) where|n denotes the restriction onΩn, i.e. the CDFs areL2 integrable,

since they are bounded. Analogous to the relation between K-S test and C-M test, we would like to
use the integrated squared deviation statistics in place ofthe maximal deviation statistic. By inte-
grating over the probability measureµ instead of the supremum operation, and usingL2 instead of
L∞ distance, we define

dCM (P,Q) =
∑

n∈N

∫

Rn

(

P (Ωn)F
(n)
P (t)−Q(Ωn)F

(n)
Q (t)

)2

dµ|n(t). (8)

This can be seen as a direct extension of the C-M criterion. The corresponding estimator can be
derived using the strong law of large numbers,

d̂CM (P,Q) =
∑

n∈N

[

1

2

∑

i

(

P̂ (Ωn)F̂
(n)
P (x

(n)
i )− Q̂(Ωn)F̂

(n)
Q (x

(n)
i )

)2

+
1

2

∑

i

(

P̂ (Ωn)F̂
(n)
P (y

(n)
i )− Q̂(Ωn)F̂

(n)
Q (y

(n)
i )

)2
]

. (9)
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Theorem 3(dCM is a divergence). For P andQ with square integrable CDFs,

dCM (P,Q) ≥ 0 (10)

dCM (P,Q) = 0 ⇐⇒ P = Q. (11)

Proof. Similar to theorem 1.

Theorem 4(Consistency of C-M divergence estimator). As the sample size approaches infinity,
∣

∣

∣
dCM − d̂CM

∣

∣

∣

a.u.
−−→ 0 (12)

Proof. Similar to (7), we find an upper bound and show that the bound uniformly converges to
zero. To simplify the notation, we definegn(x) = P (Ωn)F

(n)
P (x) − Q(Ωn)F

(n)
Q (x), andĝn(x) =

P̂ (Ωn)F̂
(n)
P (x(n))− Q̂(Ωn)F̂

(n)
Q (x(n)). Note that̂gn

a.u.
−−→ g by the Glivenko-Cantelli theorem and

P̂
a.s.
−−→ P by the strong law of large numbers.

∣

∣

∣
dCM − d̂CM

∣

∣

∣
=
1

2

∣

∣

∣

∣

∣

∑

n∈N

∫

g2ndP |n +
∑

n∈N

∫

g2ndQ|n −
∑

n∈N

∑

i

ĝn(xi)
2 −

∑

n∈N

∑

i

ĝn(yi)
2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

n∈N

[
∫

g2ndP |n −

∫

ĝ2ndP̂ |n +

∫

g2ndQ|n −

∫

ĝ2ndQ̂|n

]

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∑

n∈N

[∣

∣

∣

∣

∫

g2ndP |n −

∫

ĝ2ndP̂ |n

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

g2ndQ|n −

∫

ĝ2ndQ̂|n

∣

∣

∣

∣

]

∣

∣

∣

∣

∣

whereP̂ =
∑

i δ(xi) andQ̂ =
∑

i δ(yi) are the corresponding empirical measures. Without loss

of generality, we only find the bound on
∣

∣

∣

∫

g2ndP |n −
∫

ĝ2ndP̂ |n

∣

∣

∣
, then the rest is bounded similarly

for Q.
∣

∣

∣

∣

∫

g2ndP |n −

∫

ĝ2ndP̂ |n

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

g2ndP |n −

∫

ĝ2ndP |n +

∫

ĝ2ndP |n −

∫

ĝ2ndP̂ |n

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣

∣

∫

(

g2n − ĝ2n
)

dP |n

∣

∣

∣

∣

−

∣

∣

∣

∣

∫

ĝ2nd
(

P |n − P̂ |n

)

∣

∣

∣

∣

∣

∣

∣

∣

Applying Glivenko-Cantelli theorem and strong law of largenumbers, these two terms converges
sinceĝ2n is bounded. Hence, we show that the C-M test estimator is consistent.

5 Results

We present a set of two-sample problems and apply various statistics to perform hypothesis test-
ing. As a baseline measure, we consider the widely used Wilcoxon rank-sum test (or equiva-
lently, the Mann-Whitney U test) on the count distribution (e.g. [9]), which is a non-parametric
median test for the total number of action potentials, and the integrated squared deviation statistic
λL2 =

∫

(λ1(t)− λ2(t))
2
dt, whereλ(t) is estimated by smoothing spike timing with a Gaussian

kernel, evaluated at a uniform grid at least an order of magnitude smaller than the standard deviation
of the kernel. We report the performance of the test with varying kernel sizes.

All tests are quantified by the power of the test given a significance threshold (type-I error) at0.05.
The null hypothesis distribution is empirically computed by either generating independent samples
or by permuting the data to create at least 1000 values.

5.1 Stationary renewal processes

Renewal process is a widely used point process model that compensates the deviation from Poisson
process [10]. We consider two stationary renewal processeswith gamma interval distributions. Since
the mean rate of the two processes are the same, the rate function statistic and Wilcoxon test does
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Figure 2: Gamma distributed renewal process with shape parameterθ = 3 (H0) andθ = 0.5 (H1).
The mean number of action potential is fixed to 10. (Left) Spike trains from the null and alternate
hypothesis. (Right) Comparison of the power of each method.The error bars are standard deviation
over 20 Monte Carlo runs.

not yield consistent result, while the proposed measures obtain high power with a small number of
samples. The C-M test is more powerful than K-S in this case; this can be interpreted by the fact
that the difference in the cumulative is not concentrated but spread out over time because of the
stationarity.

5.2 Precisely timed spike trains

When the same stimulation is presented to a neuronal system, the observed spike trains some-
times show a highly repeatable spatio-temporal pattern at the millisecond time scale. Recently
these precisely timed spike trains (PTST) are abundantly reported bothin vivo and in vitro prepa-
rations [11, 12, 13]. Despite being highly reproducible, different forms of trial-to-trial variability
have also been observed [14]. It is crucial to understand this variability since for a system to utilize
PTSTs as a temporal code, it should presumably be robust to its variability structure, and possibly
learn to reduce it [15].

A precisely timed spike train in an interval is modeled byL number of probability density and
probability pairs{(fi(t), pi)}Li=1. Eachfi(t) corresponds to the temporal jitter, andpi corresponds
to the probability of generating the spike. Each realization of the PTST model produces at most
L spikes. The equi-intensity Poisson process has the rate function λ(t) =

∑

i pifi(t). We test if
the methods can differentiate between the PTST (H0) and equi-intensity Poisson process (H1) for
L = 1, 2, 3, 4 (see Figure 3 for theL = 4 case). Note thatL determines the maximum dimension for
the PTST.fi(t) were equal variance Gaussian distribution on a grid sampledfrom a uniform random
variable, andpi = 0.9.

As shown in Figure 3, only the proposed methods perform well.Since the rate function profile is
identical for both models, the rate function statisticλL2 fails to differentiate. The Wilcoxon test does
work for intermediate dimensions, however its performanceis highly variable and unpredictable. In
contrast to the previous example, the K-S test is consistently better than the C-M statistic in this
problem.

6 Optimal stimulation parameter selection

Given a set of point processes, we can find the one which is closest to a target point process in terms
of the proposed divergence. Here we use this method on a real dataset obtained from the somatosen-
sory system of an anesthetized rat (see supplement for procedure). Specifically, we address finding
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Figure 3: [Top] Precisely timed spike train model (H0) versus equi-intensity Poisson process (H1).
Spike trains from the null and alternate hypothesis forL = 4. [Bottom] Comparison of the power
of each method forL = 1, 2, 3, 4 on precisely timed spike train model (H0) versus equi-intensity
Poisson process (H1). (Left) Power comparison for methods except forN . The rate statisticλL2 are
not labeled, since they are not able to detect the difference. (Right) Wilcoxon test on the number of
action potentials. The error bars are standard deviation over 10 Monte Carlo runs.

optimal electrical stimulation settings to produce cortical spiking patterns similar to those observed
with tactile stimuli.

The target process has 240 realizations elicited by tactilestimulation of the ventral side of the first
digit with a mechanical tactor. We seek the closest out of 19 processes elicited by electrical stim-
ulation in the thalamus. Each process has 140 realizations that correspond to a particular setting
of electrical stimulation. The settings correspond to combinations of duration and amplitude for
biphasic current injection on two adjacent channels in the thalamus. The channel of interest and the
stimulating channels were chosen to have significant response to tactile stimulation.

The results from applying the C-M, K-S, andλL2 measures between the tactile responses and the sets
from each electrical stimulation setting are shown Figure 4. The overall trend among the measures
is consistent, but the location of the minima does not coincide forλL2.

7 Conclusion

In this paper, we have proposed two novel measures of divergence between point processes. The
proposed measures have been derived from the basic probability law of a point process and we have
shown that these measures can be efficiently estimated consistently from data. Using divergences for
statistical inference transcends first and second order statistics, and enables distribution-free spike
train analysis.

The time complexity of both methods isO
(
∑

n n
[

NP (n)NQ(n) +N2
P (n) +N2

Q(n)
])

where
NP (n) is the number of spike trains fromP that hasn spikes. In practice this is often faster than

7



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

0.2

0.4

0.6

0.8

1

Parameter index (sorted by duration then amplitude)

K−S

C−M

λ
L2

Tactile

T
ri
a
ls

 s
o
rt

e
d
 b

y
 c

o
u
n
t

th
e
n
 1

s
t 
s
p
ik

e

#15 (100uA,125µs) #17 (100uA,175µs)

0 0.02 0.04
Time (s)

0 0.02 0.040 0.02 0.04

0.1

0.2

0.3

0.4

A
v
e
ra

g
e
 s

p
ik

e
s
 p

e
r 

b
in

Figure 4: (Left) Dissimilarity/divergences from tactile response across parameter sets. The values
of each measure are shifted and scaled to be in the range of 0 to1. λL2 uses 2.5 ms bins with
no smoothing. (Right) Responses from the tactile response (left), stimulation settings selected by
λL2 (center), and the realizations selected by K-S and C-M (right). Top row shows the spike trains
stratified into number of spikes and then sorted by spike times. Bottom row shows the average
response binned at 2.5 ms; the variance is shown as a thin green line.

the binned rate function estimation which has time complexity O(BN) whereB is the number of
bins andN =

∑

n n(NP (n) +NQ(n)) is the total number of spikes in all the samples. Although,
we have observed that the statistic based on theL2 distance between the rate functions often outper-
forms the proposed method, this approach involves the search for the smoothing kernel size and bin
size which can make the process slow and prohibitive. In addition, it brings the danger of multiple
testing, since some smoothing kernel sizes may pickup spurious patterns that are only fluctuations
due to finite samples size.

A similar approach based on stratification has also been addressed in [16], where the authors have
discussed the problem of estimating Hellinger distance between two point processes. Although
conceptually similar, the advantage of the proposed approach is that it is parameter free, whereas the
other approach requires selecting appropriate kernels andthe corresponding kernel sizes for each
Euclidean partitions. However, a stratification-based approach suffers in estimation when the count
distributions of the point processes under consideration are flat, since in this situation the spike
train realizations tend to exist in separate Euclidean partitions, and given a finite set of realizations,
it becomes difficult to populate each partition sufficiently. Therefore, other methods should be
investigated that allow two spike trains to interact irrespective of their spike counts. Other possible
approaches include the kernel-based divergence measures as proposed in [17], since the measures
can be applied to any abstract space. However, it requires desinging an appropriate strictly positive
definite kernel on the space of spike trains.

In this literature, we have presented the divergences in thecontext of spike trains generated by
neurons. However, the proposed methods can be used for general point processes, and can be
applied to other areas. Although we have proved consistencyof the proposed measures, further
statistical analysis such as small sample power analysis, rate of convergence, and asymptotic prop-
erties would be interesting to address. A MATLAB implementation is freely available on the web
(http://code.google.com/p/iocane) with BSD-license.
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