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Abstract

We propose a new nonparametric learning method based on multivariate dyadic
regression trees (MDRTs). Unlike traditional dyadic decision trees (DDTs) or
classification and regression trees (CARTs), MDRTs are constructed using penal-
ized empirical risk minimization with a novel sparsity-inducing penalty. Theoret-
ically, we show that MDRTs can simultaneously adapt to the unknown sparsity
and smoothness of the true regression functions, and achieve the nearly optimal
rates of convergence (in a minimax sense) for the class of (α,C)-smooth func-
tions. Empirically, MDRTs can simultaneously conduct function estimation and
variable selection in high dimensions. To make MDRTs applicable for large-scale
learning problems, we propose a greedy heuristics. The superior performance of
MDRTs are demonstrated on both synthetic and real datasets.

1 Introduction

Many application problems need to simultaneously predict several quantities using a common set
of variables, e.g. predicting multi-channel signals within a time frame, predicting concentrations of
several chemical constitutes using the mass spectra of a sample, or predicting expression levels of
many genes using a common set of phenotype variables. These problems can be naturally formulated
in terms of multivariate regression.

In particular, let
{
(x1,y1), . . . , (xn,yn)

}
be n independent and identically distributed pairs of data

with xi ∈ X ⊂ Rd and yi ∈ Y ⊂ Rp for i = 1, . . . , n. Moreover, we denote the jth dimension of y
by yj = (y1

j , . . . ,y
n
j )T and kth dimension of x by xk = (x1

k, . . . ,xn
k )T . Without loss of generality,

we assume X = [0, 1]d and the true model on yj is :
yi

j = fj(xi) + ϵi
j , i = 1, . . . , n, (1)

where fj : Rd → R is a smooth function. In the sequel, let f = (f1, . . . , fp), where f : Rd → Rp is
a p-valued smooth function. The vector form of (1) then becomes yi = f(xi)+ϵi, i = 1, . . . , n. We
also assume that the noise terms

{
ϵi
j

}
i,j

are independently distributed and bounded almost surely.
This is a general setting of the nonparametric multivariate regression. From the minimax theory, we
know that estimating f in high dimensions is very challenging. For example, when f1, . . . , fp lie in
a d-dimensional Sobolev ball with order α and radius C, the best convergence rate for the minimax
risk is p · n−2α/(2α+d). For a fixed α, such rate can be very slow when d becomes large.

However, in many real world applications, the true regression function f may depend only on a
small set of variables. In other words, the problem is jointly sparse:

f(x) = f(xS) = (f1(xS), . . . , fp(xS)),
where xS = (xk : k ∈ S), S ⊂ {1, . . . , d} is a subset of covariates with size r = |S| ≪ d. If
S has been given, the minimax lower bound can be improved to be p · n−2α/(2α+r), which is the
best possible rate can be expected. For sparse learning problems, our task is to develop an estimator,
which adaptively achieves this faster rate of convergence without knowing S in advance.

1



Previous research on these problems can be roughly divided into three categories: (i) parametric lin-
ear models, (ii) nonparametric additive models, and (iii) nonparametric tree models. The methods
in the first category assume that the true models are linear and use some block-norm regulariza-
tion to induce jointly sparse solutions [16, 11, 13, 5]. If the linear model assumptions are correct,
accurate estimates can be obtained. However, given the increasing complexity of modern appli-
cations, conclusions inferred under these restrictive linear model assumptions can be misleading.
Recently, significant progress has been made on inferring nonparametric additive models with joint
sparsity constraints [7, 10]. For additive models, each fj(x) is assumed to have an additive form:
fj(x) =

∑d
k=1 fjk(xk). Although they are more flexible than linear models, the additivity assump-

tions might still be too stringent for real world applications.

A family of more flexible nonparametric methods are based on tree models. One of the most popular
tree methods is the classification and regression tree (CART) [2]. It first grows a full tree by orthog-
onally splitting the axes at locally optimal splitting points, then prunes back the full tree to form
a subtree. Theoretically, CART is hard to analyze unless strong assumptions have been enforced
[8]. In contrast to CART, dyadic decision trees (DDTs) are restricted to only axis-orthogonal dyadic
splits, i.e. each dimension can only be split at its midpoint. For a broad range of classification prob-
lems, [15] showed that DDTs using a special penalty can attain nearly optimal rate of convergence in
a minimax sense. [1] proposed a dynamic programming algorithm for constructing DDTs when the
penalty term has an additive form, i.e. the penalty of the tree can be written as the sum of penalties
on all terminal nodes. Though intensively studied for classification problems, the dyadic decision
tree idea has not drawn much attention in the regression settings. One of the closest results we are
aware of is [4], in which a single response dyadic regression procedure is considered for non-sparse
learning problems. Another interesting tree model, “Bayesian Additive Regression Trees (BART)”,
is proposed under Bayesian framework [6], which is essentially a “sum-of-trees” model. Most of the
existing work adopt the number of terminal nodes as the penalty. Such penalty cannot lead to sparse
models since a tree with a small number of terminal nodes might still involve too many variables.

To obtain sparse models, we propose a new nonparametric method based on multivariate dyadic
regression trees (MDRTs). Similar to DDTs, MDRTs are constructed using penalized empirical
risk minimization. The novelty of MDRT is to introduce a sparsity-inducing term in the penalty,
which explicitly induces sparse solutions. Our contributions are two-fold: (i) Theoretically, we
show that MDRTs can simultaneously adapt to the unknown sparsity and smoothness of the true
regression functions, and achieve the nearly optimal rate of convergence for the class of (α, C)-
smooth functions. (ii) Empirically, to avoid computationally prohibitive exhaustive search in high
dimensions, we propose a two-stage greedy algorithm and its randomized version that achieve good
performance in both function estimation and variable selection. Note that our theory and algorithm
can be straightforwardly adapted to univariate sparse regression problem, which is a special case of
the multivariate one. To the best of our knowledge, this is the first time such a sparsity-inducing
penalty is equipped to tree models for solving sparse regression problems.

The rest of this paper is organized as follows. Section 2 presents MDRTs in detail. Section 3
studies the statistical properties of MDRTs. Section 4 presents the algorithms which approximately
compute the MDRT solutions. Section 5 reports empirical results of MDRTs and their comparison
with CARTs. Conclusions are made in Section 6.

2 Multivariate Dyadic Regression Trees

We adopt the notations in [15]. A MDRT T is a multivariate regression tree that recursively divides
the input space X by means of axis-orthogonal dyadic splits. The nodes of T are associated with
hyperrectangles (cells) in X = [0, 1]d. The root node corresponds to X itself. If a node is associated
to the cell B =

∏d
j=1[aj , bj ], after being dyadically split on the dimension k, the two children are

associated to the subcells Bk,1 and Bk,2:

Bk,1 =
{
xi ∈ B |xi

k ≤ ak + bk

2

}
and Bk,2 = B \ Bk,1.

The set of terminal nodes of a MDRT T is denoted as term(T ). Let Bt be the cell in X induced by
a terminal node t, the partition induced by term(T ) can be denoted as π(T ) = {Bt|t ∈ term(T )}.
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For each terminal node t, we can fit a multivariate m-th order polynomial regression on data points
falling in Bt. Instead of using all covariates, such a polynomial regression is only fitted on a set of
active variables, which is denoted as A(t). For each node b ∈ T (not necessarily a terminal node),
A(b) can be an arbitrary subset of {1, . . . , d} satisfying two rules:

1. If a node is dyadically split perpendicular to the axis k, k must belong to the active sets of
its two children.

2. For any node b, let par(b) be its parent node, then A(par(b)) ⊂ A(b).

For a MDRT T , we define Fm
T to be the class of p-valued measurable m-th order polynomials

corresponding to π(T ). Furthermore, for a dyadic integer N = 2L, let TN be the collection of all
MDRTs such that no terminal cell has a side length smaller than 2−L.

Given integers M and N , let FM,N be defined as
FM,N = ∪0≤m≤M ∪T∈TN

Fm
T .

The final MDRT estimator with respect to FM,N , denoted as f̂M,N , can then be defined as

f̂M,N = arg min
f∈FM,N

1
n

n∑
i=1

∥yi − f(xi)∥2
2 + pen(f). (2)

To define in detail pen(f) for f ∈ FM,N , let T and m be the MDRT and the order of polynomials
corresponding to f , pen(f) then takes the following form:

pen(f) = λ · p

n

(
log n(rT + 1)m(NT + 1)rT + |π(T )| log d

)
, (3)

where λ > 0 is a regularization parameter, rT = | ∪t∈term(T ) A(t)| corresponds to the number of
relevant dimensions and

NT = min{s ∈ {1, 2, . . . , N} |T ∈ Ts}.
There are two terms in (3) within the parenthesis. The latter one penalizing the number of terminal
nodes |π(T )| has been commonly adopted in the existing tree literature. The former one is novel.
Intuitively, it penalizes non-sparse models since the number of relevant dimensions rT appears in
the exponent term. In the next section, we will show that this sparsity-inducing term is derived by
bounding the VC-dimension of the underlying subgraph of regression functions. Thus it has a very
intuitive interpretation.

3 Statistical Properties

In this section, we present theoretical properties of the MDRT estimator. Our main technical result
is Theorem 1, which provides the nearly optimal rate of the MDRT estimator.

To evaluate the algorithm performance, we use the L2-risk with respect to the Lebesgue measure
µ(·), which is defined as R(f̂ , f) = E

∑p
j=1

∫
X |f̂j(x) − fj(x)|2dµ(x), where f̂ is the function

estimate constructed from n observed samples. Note that all the constants appear in this section are
generic constants, i.e. their values can change from one line to another in the analysis.

Let N0 = {0, 1, . . .} be the set of natural number, we first define the class of (α,C)-smooth func-
tions.

Definition 1 ((α, C)-smoothness) Let α = q + β for some q ∈ N0, 0 < β ≤ 1, and let C > 0. A
function g : Rd → R is called (α, C)-smooth if for every α = (α1, . . . , αd), αi ∈ N0,

∑d
j=1 αj =

q, the partial derivative ∂qg

∂x
α1
1 ...∂x

αd
d

exists and satisfies, for all x, z ∈ Rd,∣∣∣∣ ∂qg(x)
∂xα1

1 . . . ∂xαd

d

− ∂qg(z)
∂xα1

1 . . . ∂xαd

d

∣∣∣∣ ≤ C · ∥x − z∥β
2 .

In the following, we denote the class of (α,C)-smooth functions by D(α, C).

Assumption 1 We assume f1, . . . , fp ∈ D(α,C) for some α,C > 0 and for all j ∈ {1, . . . , p},
fj(x) = fj(xS) with r = |S| ≪ d.

Theorem 3.2 of [9] shows that the lower minimax rate of convergence for class D(α, C) is exactly
the same as that for class of d-dimensional Sobolev ball with order α and radius C.
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Proposition 1 The proof of this proposition can be found in [9].

lim inf
n→∞

1
p
· n2α/(2α+d) inf

bf
sup

f1,...,fp∈D(α,C)

R(f̂ , f) > 0.

Therefore, the lower minimax rate of convergence is p · n−2α/(2α+d). Similarly, if the problem is
jointly sparse with the index set S and r = |S| ≪ d, the best rate of convergence can be improved
to p · n−2α/(2α+r) when S is given.

The following is another technical assumption needed for the main theorem.

Assumption 2 Let 1 ≤ γ < ∞, we assume that
max

1≤j≤p
sup
x

|fj(x)| ≤ γ and max
1≤i≤n

∥yi∥∞ ≤ γ a.s.

This condition is mild. Indeed, we can even allow γ to increase with the sample size n at a certain
rate. This will not affect the final result. For example, when {ϵi

j}i,j are i.i.d. Gaussian random
variables, this assumption easily holds with γ = O(

√
log n), which only contributes a logarithmic

term to the final rate of convergence.

The next assumption specifies the scaling of the relevant dimension r and ambient dimension d with
respect to the sample size n.

Assumption 3 r = O(1) and d = O(exp(nξ)) for some 0 < ξ < 1.

Here, r = O(1) is crucial, since even if r increases at a logarithmic rate with respect to n, i.e.
r = O(log n), it is hopeless to get any consistent estimator for the class D(α,C) since n−(1/ log n) =
1/e. On the other hand, the ambient dimension d can increase exponentially fast with the sample
size, which is a realistic scaling for high dimensional settings.

The following is the main theorem.

Theorem 1 Under Assumptions 1 to 3, there exist a positive number λ that only depends on α, γ
and r, such that

pen(f) = λ · p

n

(
(log n)(rT + 1)m(NT + 1)rT + |π(T )| log d

)
, (4)

For large enough M, N , the solution f̂M,N obtained from (2) satisfies

R(f̂M,N , f) ≤ c · p ·
(

log n + log d

n

)2α/(2α+r)

, (5)

where c is some generic constant.

Remark 1 As discussed in Proposition 1, the obtained rate of convergence in (5) is nearly optimal
up to a logarithmic term.

Remark 2 Since the estimator defined in (2) does not need to know the smoothness α and the
sparsity level r in advance, MDRTs are simultaneously adaptive to the unknown smoothness and
sparsity level.

Proof of Theorem 1: To find an upper bound of R(f̂M,N , f), we need to analyze and control
the approximation and estimation errors separately. Our analysis closely follows the least squares
regression analysis in [9] and some specific coding scheme of trees in [15].

Without loss of generality, we always assume f̂M,N obtained from (2) satisfies the condition that
max1≤j≤p supx |f

M,N
j (x)| ≤ γ. if this is not true, we can always truncate f̂M,N at the rate γ and

obtain the desired result in Theorem 1.

Let Sm
T be the class of scalar-valued measurable m-th order polynomials corresponding to π(T ),

and let Gm
T be the class of all subgraphs of functions of Sm

T , i.e.
Gm

T =
{
(z, t) ∈ Rd × R; t ≤ g(z); g ∈ Sm

T

}
.

Let VGm
T

be the VC-dimension of Gm
T , we have the following lemma:
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Lemma 1 Let rT and NT be defined as in (3), we know that
VGm

T
≤ (rT + 1)m · (NT + 1)rT . (6)

Sketch of Proof: From Theorem 9.5 of [9], we only need to show the dimension of Gm
T is upper

bounded by the R.H.S. of (6). By the definition of rT and NT , the result follows from a straightfor-
ward combinatorial analysis. �
The next lemma provides an upper bound of the approximation error for the class D(α, C).

Lemma 2 Let f = (f1, . . . , fp) be the true regression function, there exists a set of piecewise
polynomials h1, . . . , hp ∈ ∪T∈TK Sm

T

∀j ∈ {1, . . . , p}, sup
x∈X

|fj(x) − hj(x)| ≤ cK−α

where K ≤ N , c is a generic constant depends on r.

Sketch of Proof: This is a standard approximation result using multivariate piecewise polynomials.
The main idea is based on a multivariate Taylor expansion of the function fj at a given point x0.
Then try to utilize Definition 1 to bound the remainder terms. For the sake of brevity, we omit the
technical details. �
The next lemma is crucial, it provides an oracle inequality to bound the risk using an approximation
term and an estimation term. Its analysis follows from a simple adaptation of Theorem 12.1 on page
227 of [9].

First, we define R̃(g, f) =
∑p

j=1

∫
X |gj(x) − fj(x)|2dµ(x),

Lemma 3 [9] Choose

pen(f) ≥ 5136 · pγ4

n

(
log(120eγ4n)VGm

T
+

[[T ]] log 2
2

)
(7)

for some prefix code [[T ]] > 0 satisfying
∑

T∈TN
2−[[T ]] ≤ 1. Then, we have

R(f̂M,N , f) ≤ 12840 · p · γ4

n
+ 2 inf

T∈TN

inf
g∈FM,N

{
p · pen(g) + R̃(g, f)

}
. (8)

One appropriate prefix code [[T ]] for each MDRT T is proposed in [15], which specifies that
[[T ]] = 3|π(T )| − 1 + (|π(T )| − 1) log d/ log 2. A simpler upper bound for [[T ]] is [[T ]] ≤
(3 + log d/ log 2)|π(T )|.

Remark 3 The derived constants in the Lemma 3 will be pessimistic due to the very large numerical
values. This may result in selecting oversimplified tree structures. In practice, we always use cross-
validation to choose the tuning parameters.

To prove Theorem 1, first, using Assumption 1 and Lemma 2, we know that for any K ≤ N , there
must exists generic constants c1, c2, c3 and a function f ′ that is conformal with a MDRT T ′ ∈ TK ,
satisfying f ′(x) = f ′(xS) and |π(T ′)| ≤ (K + 1)r such that

R̃(f ′, f) ≤ c1 · p · K−2α, (9)
and

pen(f ′) ≤ c2
(log n)(r + 1)M (K + 1)r

n
+ c3

log d(K + 1)r

n
. (10)

The desired result then follows by plugging (9) and (10) into (8) and balancing these three terms.

4 Computational Algorithm

Exhaustive search of f̂M,N in the MDRT space has similar complexity as that of DDTs and could be
computationally very expansive. To make MDRTs scalable for high dimensional massive datasets,
using similar ideas as CARTs, we propose a two-stage procedure: (1) we grow a full tree in a greedy
manner; (2) we prune back the full tree to from the final tree. Before going to the detail of the
algorithm, we firstly introduce some necessary notations.

Given a MDRT T , denote the corresponding multivariate m-th order polynomial fit on π(T ) by
f̂m

T = {f̂m
t }t∈π(T ), where f̂m

t is the m-th order polynomial regression fit on the partition Bt. For
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each xi falling in Bt, let f̂m
t (xi,A(t)) be the predicted function value for xi. We denote the the

local squared error (LSE) on node t by R̂m(t,A(t)):

R̂m(t,A(t)) =
1
n

∑
xi∈Bt

∥yi − f̂m
t (xi,A(t))∥2

2.

It is worthwhile noting that R̂m(t,A(t)) is calculated as the average with respect to the total sample
size n, instead of the number of data points contained in Bt. The total MSE of the tree R̂(T ) can
then be computed by the following equation:

R̂(T ) =
∑

t∈term(T )
R̂m(t,A(t)).

The total cost of T , which is defined as the the right hand side of (2), then can be written as:
Ĉ(T ) = R̂(T ) + pen(f̂m

T ). (11)
Our goal is to find the tree structure with the polynomial regression on each terminal node that can
minimize the total cost.

The first stage is tree growing, in which a terminal node t is first selected in each step. We then
perform one of two actions a1 and a2:

a1: adding another dimension k ̸∈ A(t) to A(t), and refit the regression model on all data
points falling in Bt;

a2: dyadically splitting t perpendicular to the dimension k ∈ A(t).

In each tree growing step, we need to decide which action to perform. For action a1, we denote the
drop in LSE as:

∆R̂m
1 (t, k) = R̂m(t,A(t)) − R̂m(t,A(t) ∪ {k}). (12)

For action a2, let sl(t(k)) be the side length of Bt on dimension k ∈ A(t). If sl(t(k)) > 2−L, the
dimension k of Bt can then be dyadically split. In this case, let t

(k)
L and t

(k)
R be the left and right

child of node t. The drop in LSE takes the following form:
∆R̂m

2 (t, k) = R̂m(t,A(t)) − R̂m(t(k)
L ,A(t) − R̂m(t(k)

R ,A(t)). (13)

For each terminal node t, we greedily perform the action a∗ on the dimension k∗, which are deter-
mined by

(a∗, k∗) = argmax
a∈{1,2},k∈{1...d}

∆R̂m
a (t, k). (14)

In high dimensional setting, the above greedy procedure may not lead to the optimal tree since suc-
cessively locally optimal splits cannot guarantee the global optimum. Once an irrelevant dimension
has been added in or split, the greedy procedure can never fix the mistake. To make the algorithm
more robust, we propose a randomized scheme. Instead of greedily performing the action on the
dimension that leads the maximum drop in LSE, we randomly choose which action to perform ac-
cording to a multinomial distribution. In particular, we normalize ∆R̂ such that:

2∑
a=1

∑
k

∆R̂m
a (t, k) = 1. (15)

And a sample (a∗, k∗) is drawn from multinomial(1, ∆R̂). The action a∗ is then performed on the
dimension k∗. In general, when the randomized scheme is adopted, we need to repeat our algorithm
many times to pick the best tree.

The second stage is cost complexity pruning. For each step, we either merge a pair of terminal nodes
or remove a variable from the active set of a terminal node such that the resulted tree has the smaller
cost. We repeat this process until the tree becomes a single root node with an empty active set. The
tree with the minimum cost in this process is returned as the final tree. The pseudocode for the
growing stage and cost complexity pruning stage are presented in the Appendix. Moreover, to avoid
a cell with too few data points, we pre-define a quantity nmax. Let n(t) be the the number of data
points fall into Bt, if n(t) ≤ nmax, Bt will no longer be split. It is worthwhile noting that we ignore
those actions that lead to ∆R = 0. In addition, whenever we perform the mth order polynomial
regression on the active set of a node, we need to make sure it is not rank deficient.
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5 Experimental Results

In this section, we present numerical results for MDRTs applied to both synthetic and real datasets.
We compare five methods: [1] Greedy MDRT with M = 1 (MDRT(G, M=1)); [2] Randomized
MDRT with M = 1 (MDRT(R, M=1)); [3] Greedy MDRT with M = 0 (MDRT(G, M=0)); [4]
Randomized MDRT with M = 0 (MDRT(R, M=0)); [5] CART. For randomized scheme, we run
50 random trials and pick the minimum cost tree.

As for CART, we adopt the MATLAB package from [12], which fits piecewise constant on each
terminal node with the cost complexity criterion: Ĉ(T ) = R̂(T ) + ρ p

n |π(T )|, where ρ is the tuning
parameter playing the same role as λ in (3).

Synthetic Data: For the synthetic data experiment, we consider the high dimensional compound
symmetry covariance structure of the design matrix with n = 200 and d = 100. Each dimension xj

is generated according to

xj =
Wj + tU

1 + t
, j = 1, . . . , d,

where W1, . . . , Wd and U are i.i.d. sampled from Uniform(0,1). Therefore the correlation between
xj and xk is t2/(1 + t2) for j ̸= k.

We study three models as shown below: the first one is linear; the second one is nonlinear but
additive; the third one is nonlinear with three-way interactions. All these models only involve four
relevant variables. The noise terms, denoted as ϵ , are independently drawn from a standard normal
distribution.

Model 1: yi
1 = 2xi

1 + 3xi
2 + 4xi

3 + 5xi
4 + ϵi

1 yi
2 = 5xi

1 + 4xi
2 + 3xi

3 + 2xi
4 + ϵi

2

Model 2: yi
1 = exp(xi

1) + (xi
2)

2 + 3xi
3 + 2xi

4 + ϵi
1 yi

2 = (xi
1)

2 + 2xi
2 + exp(xi

3) + 3xi
4 + ϵi

2

Model 3: yi
1 = exp(2xi

1x
i
2 + xi

3) + xi
4 + ϵi

1 yi
2 = sin(xi

1x
i
2) + (xi

3)
2 + 2xi

4 + ϵi
2

We compare the performances of different methods using two criteria: (i) variable selection and (ii)
function estimation. For each model, we generate 100 designs and an equal-sized validation set per
design. For more detailed experiment protocols, we set nmax = 5 and L = 6. By varying the values
of λ or ρ from large to small, we obtain a full regularization path. The tree with the minimum MSE
on the validation set is then picked as the best tree. For criterion (i), if the variables involved in the
best tree are exactly the first four variables, the variable selection task for this design is deemed as
successful. The numerical results are presented in Table 1. For each method, the three quantities
reported in order are the number of success out of 100 designs, the mean and standard deviation of
the MSE on the validation set. Note that we omit “MDRT” in Table 1 due to space limitations.

From Table 1, the performance of MDRT with M = 1 is dominantly better in both variable selection
and estimation than those of the others. For linear models, MDRT with M = 1 always select
the correct variables even for large ts. For variable selection, MDRT with M = 0 has a better
performance compared with CART due to its sparsity-inducing penalty. In contrast, CART is more
flexible in the sense that its splits are not necessarily dyadic. As a consequence, they are comparable
in function estimation. Moreover, the performance of randomized scheme is slightly better than
its deterministic version in variable selection. Another observation is that, when t becomes larger,
although the performance of variable selection decreases on all methods, the estimation performance
becomes slightly better. This might be counter-intuitive at the first sight. In fact, with the increase
of t, all methods tend to select more variables. Due to the high correlations, even the irrelevant
variables are also helpful in predicting the responses. This is an expected effect.

Real Data: In this subsection, we compare these methods on three real datasets. The first dataset
is the Chemometrics data (Chem for short), which has been extensively studied in [3]. The data are
from a simulation of a low density tubular polyethylene reactor with n = 56, d = 22 and p = 6.
Following the same procedures in [3], we log-transformed the responses because they are skewed.
The second dataset is Boston Housing 1 with n = 506, d = 10 and p = 1. We add 10 irrelevant
variables randomly drawn from Uniform(0,1) to evaluate the variable selection performance. The
third one, Space ga2, is an election data with spatial coordinates on 3107 US counties. Our task
is to predict the x, y coordinates of each county given 5 variables regarding voting information.

1Available from UCI Machine Learning Database Repository: http:archive.ics.uci.edu/ml
2Available from StatLib: http:lib.stat.cmu.edu/datasets/
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Table 1: Comparison of Variable Selection and Function Estimation on Synthetic Datasets
Model 1 R, M=1 G, M=1 R, M=0 G, M=0 CART
t = 0 100 2.03 (0.14) 100 2.08 (0.15) 100 5.84 (0.51) 97 5.74 (0.54) 52 6.17 (0.55)
t = 0.5 100 2.05 (0.14) 100 2.06 (0.15) 76 5.42 (0.53) 68 5.36 (0.60) 29 5.48 (0.51)
t = 1 100 2.05 (0.13) 100 2.05 (0.16) 19 5.40 (0.60) 20 5.56 (0.69) 3 5.30 (0.58)

Model 2 R, M=1 G, M=1 R, M=0 G, M=0 CART
t = 0 100 2.07 (0.13) 100 2.06 (0.15) 39 3.21 (0.26) 31 3.22 (0.28) 25 3.52 (0.31)
t = 0.5 96 2.05 (0.15) 93 2.09 (0.17) 17 3.10 (0.25) 11 3.15 (0.26) 5 3.20 (0.27)
t = 1 76 2.09 (0.14) 68 2.21 (0.19) 2 3.17 (0.30) 2 3.16 (0.26) 1 3.16 (0.27)

Model 3 R, M=1 G, M=1 R, M=0 G, M=0 CART
t = 0 98 2.68 (0.31) 95 2.67 (0.47) 75 3.90 (0.47) 63 4.03 (0.54) 29 4.35 (0.73)
t = 0.5 84 2.56 (0.21) 86 2.52 (0.25) 32 3.63 (0.47) 32 3.60 (0.40) 15 3.69 (0.38)
t = 1 65 2.51 (0.26) 50 2.62 (0.23) 3 3.75 (0.45) 4 3.88 (0.51) 2 3.66 (0.38)

For Space ga, we normalize the responses to [0, 1]. Similarly, we add other 15 irrelevant variables
randomly drawn from Uniform(0,1). For all these datasets, we scale the input variables into a unit
cube.

For evaluation purpose, each dataset is randomly split such that half data are used for training and
the other half for testing. We run a 5-fold cross-validation on the training set to pick the best tuning
parameter λ∗ and ρ∗. We then train MDRTs and CART on the entire training data using λ∗ and ρ∗.
We repeat this process 20 times and report the mean and standard deviation of the testing MSE in
Table 2. nmax is set to be 5 for the first dataset and 20 for the latter two. For all datasets, we set
L = 6. Moreover, for randomized scheme, we run 50 random trials and pick the minimum cost tree.

Table 2: Testing MSE on Real Datasets
R, M=1 G, M=1 R, M=0 G, M=0 CART

Chem 0.15 (0.09) 0.18 (0.12) 0.38 (0.18) 0.52 (0.06) 0.40 (0.09)
Housing 20.18 (2.94) 21.60 (2.83) 24.67 (2.05) 29.46 (1.95) 25.91 (3.05)
Space ga 0.054 (7.8e-4) 0.055 (8.0e-4) 0.068 (7.2e-4) 0.068 (9.2e-4) 0.064 (8.3e-4)

From Table 2, we see that MDRT with M = 1 has the best estimation performance. Moreover,
randomized scheme does improve the performance compared to the deterministic counterpart. In
particularly, such an improvement is quite significant when M = 0. The performance of MDRT(G,
M=0) is always worse than CART since CART can have more flexible splits. However, using ran-
domized scheme, the performance of MDRT(R, M=0) achieves a comparable performance as CART.

As for variable selection of Housing data, in all the 20 runs, MDRT(G, M=1) and MDRT(R, M=1)
never select the artificially added variables. However, for the other three methods, nearly 10 out of
20 runs involve at least one extraneous variable. In particular, we compare our results with those
reported in [14]. They find that there are 4 (indus, age, dis, tax) irrelevant variables in the Housing
data. Our experiments confirm this result since in 15 out of the 20 trials, MDRT(G, M=1) and
MDRT(R, M=1) never select these four variables. Similarly, for Space ga data, there are only 2 and
1 times that MDRT(G, M=1) and MDRT(R, M=1) involve the artificially added variables.

6 Conclusions
We propose a novel sparse learning method based on multivariate dyadic regression trees (MDRTs).
Our approach adopts a new sparsity-inducing penalty that simultaneously conduct function estima-
tion and variable selection. Some theoretical analysis and practical algorithms have been developed.
To the best of our knowledge, it is the first time that such a penalty is introduced in the tree literature
for high dimensional sparse learning problems.
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[1] G. Blanchard, C. Schäfer, Y. Rozenholc, and K.-R. Müller. Optimal dyadic decision trees.
Machine Learning Journal, 66(2-3):209–241, 2007.

[2] Leo Breiman, Jerome Friedman, Charles J. Stone, and R.A. Olshen. Classification and regres-
sion trees. Wadsworth Publishing Co Inc, 1984.

[3] Leo Breiman and Jerome H. Friedman. Predicting multivariate responses in multiple linear
regression. J. Roy. Statist. Soc. B, 59:3, 1997.

[4] R. Castro, R. Willett, and R. Nowak. Fast rates in regression via active learning. NIPS, 2005.
[5] Xi Chen, Weike Pan, James T. Kwok, and Jamie G. Carbonell. Accelerated gradient method

for multi-task sparse learning problem. In ICDM, 2009.
[6] Hugh A. Chipman, Edward I. George, and Robert E. McCulloch. Bart: Bayesian additive re-

gression trees. Technical report, Department of Mathematics and Statistics, Acadia University,
Canada, 2006.

[7] Jerome H. Friedman. Multivariate adaptive regression splines. The Annals of Statistics, 19:1–
67, 1991.

[8] S. Gey and E. Nedelec. Model selection for cart regression trees. IEEE Tran. on Info. Theory,
51(2):658– 670, 2005.

[9] László Györfi, Michael Kohler, Adam Krzyżak, and Harro Walk. A Distribution-Free Theory
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