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Abstract

Deep networks can potentially express a learning problem more efficiently than lo-
cal learning machines. While deep networks outperform locallearning machines
on some problems, it is still unclear how their nice representation emerges from
their complex structure. We present an analysis based on Gaussian kernels that
measures how the representation of the learning problem evolves layer after layer
as the deep network builds higher-level abstract representations of the input. We
use this analysis to show empirically that deep networks build progressively bet-
ter representations of the learning problem and that the best representations are
obtained when the deep network discriminates only in the last layers.

1 Introduction

Local learning machines such as nearest neighbors classifiers, radial basis function (RBF) kernel
machines or linear classifiers predict the class of new data points from their neighbors in the input
space. A limitation of local learning machines is that they cannot generalize beyond the notion
of continuity in the input space. This limitation becomes detrimental when the Bayes classifier
has more variations (ups and downs) than the number of labeled samples available. This situation
typically occurs on problems where an instance — let’s say, ahandwritten digit — can take various
forms due to irrelevant variation factors such as its position, its size, its thickness and more complex
deformations. These multiple factors of variation can greatly increase the complexity of the learning
problem (Bengio, 2009).

This limitation motivates the creation of learning machines that can map the input space into a
higher-level representation where regularities of higherorder than simple continuity in the input
space can be expressed. Engineered feature extractors, nonlocal kernel machines (Zien et al., 2000)
or deep networks (Rumelhart et al., 1986; LeCun et al., 1998;Hinton et al., 2006; Bengio et al., 2007)
can implement these more complex regularities. Deep networks implement them by distorting the
input space so that initially distant points in the input space appear closer. Also, their multilayered
nature acts as a regularizer, allowing them to share at a given layer features computed at the previous
layer (Bengio, 2009). Understanding how the representation is built in a deep network and how to
train it efficiently received a lot of attention (Goodfellowet al., 2009; Larochelle et al., 2009; Erhan
et al., 2010). However, it is still unclear how their nice representation emerges from their complex
structure, in particular, how the representation evolves from layer to layer.

The main contribution of this paper is to introduce an analysis based on RBF kernels and on the
kernel principal component analysis (kPCA, Schölkopf et al., 1998) that can capture and quantify the
layer-wise evolution of the representation in a deep network. In practice, for each layer1 ≤ l ≤ L

of the deep network, we take a small labeled datasetD, compute its imageD(l) at the layerl of the
deep network and measure what dimensionality the local model built on top ofD(l) must have in
order to solve the learning problem with a certain accuracy.
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Figure 1: As we move from the input to the output of the deep network, better representations of
the learning problem are built. We measure this improvementwith the layer-wise RBF analysis
presented in Section 2 and Section 3.2. This analysis relates the prediction errore(d) to the di-
mensionalityd of a local model built at each layer of the deep network. As thedata is propagated
through the deep network, lower errors are obtained with lower-dimensional local models. The plots
on the right illustrate this dynamic where the thick gray arrows indicate the forward path of the deep
network and wheredo is a fixed number of dimensions.

We apply this novel analysis to a multilayer perceptron (MLP), a pretrained multilayer perceptron
(PMLP) and a convolutional neural network (CNN). We observein each case that the error and the
dimensionality of the local model decrease as we propagate the dataset through the deep network.
This reveals that the deep network improves the representation of the learning problem layer after
layer. This progressive layer-wise simplification is illustrated in Figure 1. In addition, we observe
that the CNN and the PMLP tend to postpone the discriminationto the last layers, leading to more
transferable features and better-generalizing representations than for the simple MLP. This result
suggests that the structure of a deep network, by enforcing aseparation of concerns between low-
level generic features and high-level task-specific features, has an important role to play in order to
build good representations.

2 RBF analysis of a learning problem

We would like to quantify the complexity of a learning problem p(y | x) where samples are drawn
independently from a probability distributionp(x, y). A simple way to do it is to measure how many
degrees of freedom (or dimensionalityd) a local model must have in order to solve the learning
problem with a certain errore. This analysis relates the dimensionalityd of the local model to its
prediction errore(d).

In practice, there are many ways to define the dimensionalityof a model, for example, (1) the
number of samples given to the learning machine, (2) the number of required hidden nodes of a
neural network (Murata et al., 1994), (3) the number of support vectors of a SVM or (4) the number
of leading kPCA components of the input distributionp(x) used in the model. The last option is
chosen for the following two reasons:

First, the kPCA components are added cumulatively to the prediction model as the dimensionality of
the model increases, thus offering stability, while in the case of support vector machines, previously
chosen support vectors might be dropped in favor of other support vectors in higher-dimensional
models.

Second, the leading kPCA components obtained with a finite and typically small number of samples
n are similar to those that would be obtained in the asymptoticcase wherep(x, y) is fully observed
(n → ∞). This property is shown by Braun (2006) and Braun et al. (2008) in the case of a single
kernel, and by extension, in the case of a finite set of kernels.

This last property is particularly useful sincep(x, y) is unknown and only a finite number of observa-
tions are available. The analysis presented here is strongly inspired from the relevant dimensionality
estimation (RDE) method of Braun et al. (2008) and is illustrated in Figure 2 for a small two-

2



d = 1 d = 2 d = 3 d = 4 d = 5 d = 6
e(d) = 0.5 e(d) = 0.25 e(d) = 0.25 e(d) = 0 e(d) = 0 e(d) = 0

Figure 2: Illustration of the RBF analysis on a toy dataset of12 samples. As we add more and more
leading kPCA components, the model becomes more flexible, creating a better decision boundary.
Note that with four leading kPCA components out of the 12 kPCAcomponents, all the samples are
already classified perfectly.

dimensional toy example. In the next lines, we present the computation steps required to estimate
the error as a function of the dimensionality.

Let {(x1, y1), . . . , (xn, yn)} be a dataset ofn points drawn independently fromp(x, y) whereyi is
an indicator vector having value1 at the index corresponding to the class ofxi and0 elsewhere. Let
X = (x1, . . . , xn) andY = (y1, . . . , yn) be the matrices associated to the inputs and labels of the
dataset. We compute the kernel matrixK associated to the dataset:

[K]ij = k(xi, xj) where k(x, x′) = exp

(

−
‖x− x′‖2

2σ2

)

.

The kPCA componentsu1, . . . , un are obtained by performing an eigendecomposition ofK where
eigenvectorsu1, . . . , un have unit length and eigenvaluesλ1, . . . , λn are sorted by decreasing mag-
nitude:

K = (u1| . . . |un) · diag(λ1, . . . , λn) · (u1| . . . |un)
⊤

Let Û = (u1| . . . |ud) andΛ̂ = diag(λ1, . . . , λd) be a d-dimensional approximation of the eigende-
composition. We fit a linear modelβ⋆ that maps the projection on thed leading components of the
training data to the log-likelihood of the classes

β⋆ = argminβ || exp(Û Û⊤β)− Y ||
2

F

whereβ is a matrix of same size asY and where the exponential function is applied element-wise.
The predicted class log-probabilitylog(ŷ) of a test point(x, y) is computed as

log(ŷ) = k(x,X)Û Λ̂−1Û⊤β⋆ + C

wherek(x,X) is a matrix of size1× n computing the similarities between the new point and each
training point and whereC is a normalization constant. The test error is defined as:

e(d) = Pr(argmax ŷ 6= argmax y)

The training and test error can be used as an approximation bound for the asymptotic casen → ∞
where the data would be projected on the real eigenvectors ofthe input distribution. In the next
sections, the training and test error are depicted respectively as dotted and solid lines in Figure 3 and
as the bottom and the top of error bars in Figure 4. For each dimension, the kernel scale parameterσ
that minimizese(d) is retained, leading to a different kernel for each dimensionality. The rationale
for taking a different kernel for each model is that the optimal scale parameter typically shrinks as
more leading components of the input distribution are observed.

3 Methodology

In order to test our two hypotheses (the progressive emergence of good representations in deep
networks and the role of the structure for postponing discrimination), we consider three deep net-
works of interest, namely a convolutional neural network (CNN), a multilayer perceptron (MLP)
and a variant of the multilayer perceptron pretrained in an unsupervised fashion with a deep belief
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network (PMLP). These three deep networks are chosen in order to evaluate how the two types of
regularizers implemented respectively by the CNN and the PMLP impact on the evolution of the
representation layer after layer. We describe how they are built, how they are trained and how they
are analyzed layer-wise with the RBF analysis described in Section 2.

Themultilayer perceptron(MLP) is a deep network obtained by alternating linear transformations
and element-wise nonlinearities. Each layer maps an input vector of sizem into an output vector
of sizen and consists of (1) a linear transformationlinearm→n(x) = w · x + b wherew is a
weight matrix of sizen × m learned from the data and (2) a non-linearity applied element-wise
to the output of the linear transformation. Our implementation of the MLP maps two-dimensional
images of28 × 28 pixels into a vector of size10 (the 10 possible digits) by applying successively
the following functions:

f1(x) = tanh(linear28×28→784(x))

f2(x) = tanh(linear784→784(x))

f3(x) = tanh(linear784→784(x))

f4(x) = softmax(linear784→10(x))

The pretrained multilayer perceptron(Hinton et al., 2006) that we abbreviate PMLP in this paper
is a variant of the MLP where weights are initialized with a deep belief network (DBN, Hinton
et al., 2006) using an unsupervised greedy layer-wise pretraining procedure. This particular weight
initialization acts as a regularizer, allowing to learn better-generalizing representation of the learning
problem than the simple MLP.

The convolutional neural network(CNN, LeCun et al., 1998) is a deep network obtained by al-
ternatingconvolution filtersy = convolvea×b

m→n(x) transforming a set ofm input features maps
{x1, . . . , xm} into a set ofn output features maps{yi =

∑m

j=1 wij ⋆ xj + bi , i = 1 . . . , n} where
the convolution filterswij of sizea × b are learned from data, andpooling unitssubsampling each
feature map by a factor two. Our implementation maps images of 32 × 32 pixels into a vector of
size10 (the 10 possible digits) by applying successively the following functions:

f1(x) = tanh(pool(convolve5×5
1→36(x)))

f2(x) = tanh(pool(convolve5×5
36→36(x)))

f3(x) = tanh(linear5×5×36→400(x))

f4(x) = softmax(linear400→10(x))

The CNN is inspired by the structure of biological visual systems (Hubel and Wiesel, 1962). It
combines three ideas into a single architecture: (1) only local connections between neighboring
pixels are allowed, (2) the convolution operator applies the same filter over the whole feature map
and (3) a pooling mechanism at the top of each convolution filter adds robustness to input distortion.
These mechanisms act as a regularizer on images and other types of sequential data, and learn well-
generalizing models from few data points.

3.1 Training the deep networks

Each deep network is trained on the MNIST handwriting digit recognition dataset (LeCun et al.,
1998). The MNIST dataset consists of predicting the digit0 – 9 from scanned handwritten digits of
28 × 28 pixels. We partition randomly the MNIST training set in three subsets of 45000, 5000 and
10000 samples that are respectively used for training the deep network, selecting the parameters of
the deep network and performing the RBF analysis.

We consider three training procedures:

1. No training: the weights of the deep network are left at their initial value. If the deep
network hasn’t received unsupervised pretraining, the weights are set randomly according
to a normal distributionN (0, γ−1) whereγ denotes for a given layer the number of input
nodes that are connected to a single output node.

2. Training on an alternate task: the deep network is trained on a binary classification task that
consists of determining whether the digit is original (positive example) or whether it has
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been transformed by one of the 11 possible rotation/flip combinations that differs from the
original (negative example). This problem has therefore540000 labeled samples (45000
positives and495000 negatives). The goal of training a deep network on an alternate task
is to learn features on a problem where the number of labeled samples is abundant and then
reuse these features to learn the target task that has typically few labels. In the alternate task
described earlier, negative examples form a cloud around the manifold of positive examples
and learning this manifold potentially allows the deep network to learn features that can be
transfered to the digit recognition task.

3. Training on the target task: the deep network is trained on the digit recognition task using
the45000 labeled training samples.

These procedures are chosen in order to assess the forming ofgood representations in deep networks
and to test the role of the structure of deep networks on different aspects of learning, such as the
effectiveness of random projections, the transferabilityof features from one task to another and the
generalization to new samples of the same distribution.

3.2 Applying the RBF analysis to deep networks

In this section, we explain how the RBF analysis described inSection 2 is applied to analyze layer-
wise the deep networks presented in Section 3.

Let f = fL◦· · ·◦f1 be the trained deep network of depthL. LetD be the analysis dataset containing
the10000 samples of the MNIST dataset on which the deep network hasn’tbeen trained. For each
layer, we build a new datasetD(l) corresponding to the mapping of the original datasetD to thel
first layers of the deep network. Note that by definition, the index zero corresponds to the raw input
data (mapped through zero layers):

D(l) =

{

D l = 0 ,
{(fl ◦ · · · ◦ f1(x), t) | (x, t) ∈ D)} 1 ≤ l ≤ L .

Then, for each datasetD(0), . . . ,D(L) we perform the RBF analysis described in Section 2. We use
n = 2500 samples for computing the eigenvectors and the remaining7500 samples to estimate the
prediction error of the model. This analysis yields for eachdatasetD(l) the error as a function of the
dimensionality of the modele(d). A typical evolution ofe(d) is depicted in Figure 1.

The goal of this analysis is to observe the evolution ofe(d) layer after layer for the deep networks
and training procedures presented in Section 3 and to test the two hypotheses formulated in Section 1
(the progressive emergence of good representations in deepnetworks and the role of the structure
for postponing discrimination). The interest of using a local model to solve the learning problem
is that the local models are blind with respect to possibly better representations that could be ob-
tained in previous or subsequent layers. This local scopingproperty allows for fine isolation of the
representations in the deep network. The need for local scoping also arises when “debugging” deep
architectures. Sometimes, deep architectures perform reasonably well even when the first layers do
something wrong. This analysis is therefore able to detect these “bugs”.

The sizen of the dataset is selected so that it is large enough to approximate well the asymptotic
case (n → ∞) but also be small enough so that computing the eigendecomposition of the kernel
matrix of sizen × n is fast. We choose a set of scale parameters for the RBF kernelcorresponding
to the0.01, 0.05, 0.10, 0.25, 0.5, 0.75, 0.9, 0.95 and0.99 quantiles of the distribution of distances
between pairs of data points.

4 Results

Layer-wise evolution of the errore(d) is plotted in Figure 3 in the supervised training case. The
layer-wise evolution of the error whend is fixed to16 dimensions is plotted in Figure 4. Both figures
capture the simultaneous reduction of error and dimensionality performed by the deep network when
trained on the target task. In particular, they illustrate that in the last layers, a few number of
dimensions is sufficient to build a good model of the target task.
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Figure 3: Layer-wise evolution of the errore(d) when the deep network has been trained on the
target task. The solid line and the dotted line represent respectively the test error and the training
error. As the data distribution is mapped through more and more layers, more accurate and lower-
dimensional models of the learning problem can be obtained.

From these results, we first demonstrate some properties of deep networks trained on an “asymp-
totically” large number of samples. Then, we demonstrate the important role of structure in deep
networks.

4.1 Asymptotic properties of deep networks

When the deep network is trained on the target task with an “asymptotically” large number of sam-
ples (45000 samples) compared to the number of dimensions of the local model, the deep network
builds representations layer after layer in which a low number of dimensions can create more accu-
rate models of the learning problem.

This asymptotic property of deep networks should not be thought of as a statistical superiority of
deep networks over local models. Indeed, it is still possible that a higher-dimensional local model
applied directly on the raw data performs as well as a local model applied at the output of the deep
network. Instead, this asymptotic property has the following consequence:

Despite the internal complexity of deep networks a local interpretation of the representation is pos-
sible at each stage of the processing. This means that deep networks do not explode the original data
distribution into a statistically intractable distribution before recombining everything at the output,
but instead, apply controlled distortions and reductions of the input space that preserve the statistical
tractability of the data distribution at every layer.

4.2 Role of the structure of deep networks

We can observe in Figure 4 (left) that even when the convolutional neural network (CNN) and the
pretrained MLP (PMLP) have not received supervised training, the first layers slightly improve the
representation with respect to the target task. On the otherhand, the representation built by a simple
MLP with random weights degrades layer after layer. This observation highlights the structural
prior encoded by the CNN: by convolving the input with several random convolution filters and
subsampling subsequent feature maps by a factor two, we obtain a random projection of the input
data that outperforms the implicit projection performed byan RBF kernel in terms of task relevance.
This observation closely relates to results obtained in (Ranzato et al., 2007; Jarrett et al., 2009) where
it is observed that training the deep network while keeping random weights in the first layers still
allows for good predictions by the subsequent layers. In thecase of the PMLP, the successive layers
progressively disentangle the factors of variation (Hinton and Salakhutdinov, 2006; Bengio, 2009)
and simplify the learning problem.

We can observe in Figure 4 (middle) that the phenomenon is even clearer when the CNN and the
PMLP are trained on an alternate task: they are able to creategeneric features in the first layers
that transfer well to the target task. This observation suggests that the structure embedded in the
CNN and the PMLP enforces a separation of concerns between the first layers that encode low-
level features, for example, edge detectors, and the last layers that encode high-level task-specific
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Figure 4: Evolution of the errore(do) as a function of the layerl whendo has been fixed to16
dimensions. The top and the bottom of the error bars represent respectively the test error and the
training error of the local model.

MLP, alternate task

MLP, target task

PMLP, alternate task

PMLP, target task

CNN, alternate task

CNN, target task

Figure 5: Leading components of the weights (receptive fields) obtained in the first layer of each
architecture. The filters learned by the CNN and the pretrained MLP are richer than the filters
learned by the MLP. The first component of the MLP trained on the alternate task dominates all
other components and prevents good transfer on the target task.

features. On the other hand, the standard MLP trained on the alternate task leads to a degradation of
representations. This degradation is even higher than in the case of random weights, despite all the
prior knowledge on pixel neighborhood contained implicitly in the alternate task.

Figure 5 shows that the MLP builds receptive fields that are spatially informative but dissimilar
between the two tasks. The fact that receptive fields are different for each task indicates that the
MLP tries to discriminate already in the first layers. The absence of a built-in separation of concerns
between low-level and high-level feature extractors seemsto be a reason for the inability to learn
transferable features. It indicates that end-to-end transfer learning on unstructured learning ma-
chines is in general not appropriate and supports the recentsuccess of transfer learning on restricted
portions of the deep network (Collobert and Weston, 2008; Weston et al., 2008) or on structured
deep networks (Mobahi et al., 2009).

When the deep networks are trained on the target task, the CNN and the PMLP solve the problem
differently as the MLP. In Figure 4 (right), we can observe that the CNN and the PMLP tend to
postpone the discrimination to the last layers while the MLPstarts to discriminate already in the first
layers. This result suggests that again, the structure contained in the CNN and the PMLP enforces
a separation of concerns between the first layers encoding low-level generic features and the last
layers encoding high-level task-specific features. This separation of concerns might explain the
better generalization of the CNN and PMLP observed respectively in (LeCun et al., 1998; Hinton
et al., 2006). It also rejoins the findings of Larochelle et al. (2009) showing that the pretraining of the
PMLP must be unsupervised and not supervised in order to build well-generalizing representations.

5 Conclusion

We present a layer-wise analysis of deep networks based on RBF kernels. This analysis estimates
for each layer of the deep network the number of dimensions that is necessary in order to model well
a learning problem based on the representation obtained at the output of this layer.
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We observe that a properly trained deep network creates representations layer after layer in which a
more accurate and lower-dimensional local model of the learning problem can be built.

We also observe that despite a steady improvement of representations for each architecture of interest
(the CNN, the MLP and the pretrained MLP), they do not solve the problem in the same way: the
CNN and the pretrained MLP seem to separate concerns by building low-level generic features in
the first layers and high-level task-specific features in thelast layers while the MLP does not enforce
this separation. This observation emphasizes the limitations of black box transfer learning and, more
generally, of black box training of deep architectures.
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