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Abstract

Deep networks can potentially express a learning problene eificiently than lo-
cal learning machines. While deep networks outperform lzahing machines
on some problems, it is still unclear how their nice représtion emerges from
their complex structure. We present an analysis based oss@awkernels that
measures how the representation of the learning problehaes/tayer after layer
as the deep network builds higher-level abstract reprasens of the input. We
use this analysis to show empirically that deep networkkilprogressively bet-
ter representations of the learning problem and that therbpsesentations are
obtained when the deep network discriminates only in thiddgers.

1 Introduction

Local learning machines such as nearest neighbors classiféalial basis function (RBF) kernel
machines or linear classifiers predict the class of new daiteépfrom their neighbors in the input
space. A limitation of local learning machines is that theyot generalize beyond the notion
of continuity in the input space. This limitation becomedrideental when the Bayes classifier
has more variations (ups and downs) than the number of ldisaleples available. This situation
typically occurs on problems where an instance — let’s sémgradwritten digit — can take various
forms due to irrelevant variation factors such as its positits size, its thickness and more complex
deformations. These multiple factors of variation can tiyéacrease the complexity of the learning
problem (Bengio, 2009).

This limitation motivates the creation of learning maclsirtbat can map the input space into a
higher-level representation where regularities of highreler than simple continuity in the input
space can be expressed. Engineered feature extractolscaldternel machines (Zien et al., 2000)
or deep networks (Rumelhartetal., 1986; LeCun et al., 1988pn et al., 2006; Bengio et al., 2007)
can implement these more complex regularities. Deep n&sniarplement them by distorting the
input space so that initially distant points in the inputapappear closer. Also, their multilayered
nature acts as a regularizer, allowing them to share at a tayer features computed at the previous
layer (Bengio, 2009). Understanding how the represemtasiduilt in a deep network and how to
train it efficiently received a lot of attention (Goodfell@tal., 2009; Larochelle et al., 2009; Erhan
et al., 2010). However, it is still unclear how their nice regentation emerges from their complex
structure, in particular, how the representation evolvesflayer to layer.

The main contribution of this paper is to introduce an analpssed on RBF kernels and on the
kernel principal component analysis (KPCA, Sliopf et al., 1998) that can capture and quantify the
layer-wise evolution of the representation in a deep ndtwlor practice, for each layer < < L

of the deep network, we take a small labeled dat&@setompute its imag®®) at the layer of the
deep network and measure what dimensionality the local iimdk on top of D) must have in
order to solve the learning problem with a certain accuracy.
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Figure 1: As we move from the input to the output of the deepvogk, better representations of
the learning problem are built. We measure this improvemsétiit the layer-wise RBF analysis
presented in Section 2 and Section 3.2. This analysis sethie prediction erroe(d) to the di-
mensionalityd of a local model built at each layer of the deep network. Asdag is propagated
through the deep network, lower errors are obtained witletesvmensional local models. The plots
on the right illustrate this dynamic where the thick grayows indicate the forward path of the deep
network and wherd, is a fixed number of dimensions.

We apply this novel analysis to a multilayer perceptron (NL&pretrained multilayer perceptron

(PMLP) and a convolutional neural network (CNN). We obsénveach case that the error and the
dimensionality of the local model decrease as we propabatéataset through the deep network.
This reveals that the deep network improves the representaf the learning problem layer after

layer. This progressive layer-wise simplification is ithaded in Figure 1. In addition, we observe
that the CNN and the PMLP tend to postpone the discrimindatiche last layers, leading to more

transferable features and better-generalizing repraens than for the simple MLP. This result
suggests that the structure of a deep network, by enforceeparation of concerns between low-
level generic features and high-level task-specific fesgtunas an important role to play in order to
build good representations.

2 RBF analysis of a learning problem

We would like to quantify the complexity of a learning prote(y | =) where samples are drawn
independently from a probability distributigriz, y). A simple way to do it is to measure how many
degrees of freedom (or dimensionality a local model must have in order to solve the learning
problem with a certain errar. This analysis relates the dimensionalitpf the local model to its
prediction errore(d).

In practice, there are many ways to define the dimensionafitg model, for example, (1) the
number of samples given to the learning machine, (2) the eurabrequired hidden nodes of a
neural network (Murata et al., 1994), (3) the number of supyectors of a SVM or (4) the number
of leading kPCA components of the input distributipfx) used in the model. The last option is
chosen for the following two reasons:

First, the KPCA components are added cumulatively to théigtien model as the dimensionality of
the model increases, thus offering stability, while in tase of support vector machines, previously
chosen support vectors might be dropped in favor of othepatiprectors in higher-dimensional
models.

Second, the leading kPCA components obtained with a findeygrically small number of samples
n are similar to those that would be obtained in the asymptatie where(x, y) is fully observed
(n — o0). This property is shown by Braun (2006) and Braun et al. 80 the case of a single
kernel, and by extension, in the case of a finite set of kernels

This last property is particularly useful singér, y) is unknown and only a finite number of observa-
tions are available. The analysis presented here is syramgpired from the relevant dimensionality
estimation (RDE) method of Braun et al. (2008) and is illatgd in Figure 2 for a small two-



e i X

d= d : 2
e(d)=05 e(d) =025 e(d) =025 e(d)=0

Figure 2: lllustration of the RBF analysis on a toy dataseitamples. As we add more and more
leading kPCA components, the model becomes more flexildatiog a better decision boundary.
Note that with four leading kPCA components out of the 12 kRfdAponents, all the samples are
already classified perfectly.

dimensional toy example. In the next lines, we present tmepeation steps required to estimate
the error as a function of the dimensionality.

Let {(z1,¥1),---,(zn,yn)} be a dataset of points drawn independently frop{x, y) wherey; is

an indicator vector having valueat the index corresponding to the classpfind0 elsewhere. Let

X = (x1,...,2,) andY = (y1,...,y,) be the matrices associated to the inputs and labels of the
dataset. We compute the kernel matkixassociated to the dataset:

_ 2
[K);j = k(xi,z;)  where k(x,2') =exp (—me)

202
The KPCA components,, ..., u, are obtained by performing an eigendecompositioi’affhere
eigenvectors.y, . . . , u, have unit length and eigenvalugs, . . . , \,, are sorted by decreasing mag-
nitude:

K = (ug]...|un) - diag(Ag, .o M) - (ua] - Jun) "

LetU = (uy]...|uq) andA = diag(\i, ..., \s) be a d-dimensional approximation of the eigende-
composition. We fit a linear modeét* that maps the projection on tlideading components of the
training data to the log-likelihood of the classes

. A 2
B* = argmingl| exp(UU " B) - Y|

where( is a matrix of same size a$ and where the exponential function is applied element-wise
The predicted class log-probabililyg(y) of a test poin{z, y) is computed as

log(§) = k(z, X)UATYUTg* + C

wherek(z, X) is a matrix of sizel x n computing the similarities between the new point and each
training point and wheré€’ is a normalization constant. The test error is defined as:

e(d) = Pr(argmax §j # argmaxy)

The training and test error can be used as an approximatiemddior the asymptotic case — oo
where the data would be projected on the real eigenvectotiseoinput distribution. In the next
sections, the training and test error are depicted resjedctis dotted and solid lines in Figure 3 and
as the bottom and the top of error bars in Figure 4. For eachkrsion, the kernel scale parameter
that minimizes:(d) is retained, leading to a different kernel for each dimemeiity. The rationale
for taking a different kernel for each model is that the ojtiscale parameter typically shrinks as
more leading components of the input distribution are oleser

3 Methodology

In order to test our two hypotheses (the progressive emeegehgood representations in deep
networks and the role of the structure for postponing disicration), we consider three deep net-
works of interest, namely a convolutional neural networg, a multilayer perceptron (MLP)

and a variant of the multilayer perceptron pretrained in masupervised fashion with a deep belief



network (PMLP). These three deep networks are chosen im todevaluate how the two types of
regularizers implemented respectively by the CNN and thé.Plilnpact on the evolution of the
representation layer after layer. We describe how they aite how they are trained and how they
are analyzed layer-wise with the RBF analysis describecati@n 2.

The multilayer perceptror{MLP) is a deep network obtained by alternating linear tfamsations
and element-wise nonlinearities. Each layer maps an ingetbov of sizem into an output vector
of sizen and consists of (1) a linear transformatibnear,,,—,,(x) = w -z + b wherew is a
weight matrix of sizen x m learned from the data and (2) a non-linearity applied elémase

to the output of the linear transformation. Our implemeéotabf the MLP maps two-dimensional
images of28 x 28 pixels into a vector of siz&0 (the 10 possible digits) by applying successively
the following functions:

fi(z) = tanh(linearag 28784 (7))
f2(x) = tanh(linearzgq—,784())
f3(x) = tanh(linearrgq—,784())
fa(z) = softmax(linearrgs—10(x))

The pretrained multilayer perceptrofHinton et al., 2006) that we abbreviate PMLP in this paper
is a variant of the MLP where weights are initialized with agdeelief network (DBN, Hinton

et al., 2006) using an unsupervised greedy layer-wiseginitg procedure. This particular weight
initialization acts as a regularizer, allowing to learntbegeneralizing representation of the learning
problem than the simple MLP.

The convolutional neural networkCNN, LeCun et al., 1998) is a deep network obtained by al-
ternatingconvolution filtersy = convolve®%, (x) transforming a set ofn input features maps
{z1,...,z,} into a set ofn output features mapgy; = Z;’;l wi;*x;+b;, i =1...,n} where

the convolution filterav;; of sizea x b are learned from data, amooling unitssubsampling each
feature map by a factor two. Our implementation maps ima@&2 &« 32 pixels into a vector of

size10 (the 10 possible digits) by applying successively the feifg functions:

f1(z) = tanh(pool(convolve: 5, (x)))
f2(x) = tanh(pool(convolvess 56(x)))

f3(z) = tanh(linears x5 x36—400())
fa(x) = softmax(linearypp—10(z))

The CNN is inspired by the structure of biological visualteyss (Hubel and Wiesel, 1962). It
combines three ideas into a single architecture: (1) ordplleonnections between neighboring
pixels are allowed, (2) the convolution operator appliesgame filter over the whole feature map
and (3) a pooling mechanism at the top of each convoluticer fitids robustness to input distortion.
These mechanisms act as a regularizer on images and otkerdypequential data, and learn well-
generalizing models from few data points.

3.1 Training the deep networks

Each deep network is trained on the MNIST handwriting digitagnition dataset (LeCun et al.,
1998). The MNIST dataset consists of predicting the digi9 from scanned handwritten digits of
28 x 28 pixels. We partition randomly the MNIST training set in tArgubsets of 45000, 5000 and
10000 samples that are respectively used for training tep detwork, selecting the parameters of
the deep network and performing the RBF analysis.

We consider three training procedures:

1. No training the weights of the deep network are left at their initialueal If the deep
network hasn’t received unsupervised pretraining, thektsiare set randomly according
to a normal distribution\V'(0,v~!) wherey denotes for a given layer the number of input
nodes that are connected to a single output node.

2. Training on an alternate taskhe deep network is trained on a binary classification taak t
consists of determining whether the digit is original (p@si example) or whether it has



been transformed by one of the 11 possible rotation/flip doatlons that differs from the
original (negative example). This problem has theref@@)00 labeled samplesit000
positives andt95000 negatives). The goal of training a deep network on an altertaak
is to learn features on a problem where the number of labelegples is abundant and then
reuse these features to learn the target task that hasltyea labels. In the alternate task
described earlier, negative examples form a cloud arownthtmifold of positive examples
and learning this manifold potentially allows the deep reeknto learn features that can be
transfered to the digit recognition task.

3. Training on the target taskhe deep network is trained on the digit recognition tashais
the 45000 labeled training samples.

These procedures are chosen in order to assess the forngngafepresentations in deep networks
and to test the role of the structure of deep networks onréifteaspects of learning, such as the
effectiveness of random projections, the transferahilftieatures from one task to another and the
generalization to new samples of the same distribution.

3.2 Applying the RBF analysis to deep networks

In this section, we explain how the RBF analysis describefidction 2 is applied to analyze layer-
wise the deep networks presented in Section 3.

Let f = fro---of; be the trained deep network of defdthLet D be the analysis dataset containing
the 10000 samples of the MNIST dataset on which the deep network haeet trained. For each
layer, we build a new datas&t!) corresponding to the mapping of the original dataRdb the!l
first layers of the deep network. Note that by definition, tidex zero corresponds to the raw input
data (mapped through zero layers):

m_{7P b=
> _{ {(fie---o fi@),0) | (1) € D)} S

Then, for each datas@®), ..., D(X) we perform the RBF analysis described in Section 2. We use
n = 2500 samples for computing the eigenvectors and the remairiifg samples to estimate the
prediction error of the model. This analysis yields for edatase® (") the error as a function of the
dimensionality of the model(d). A typical evolution ofe(d) is depicted in Figure 1.

The goal of this analysis is to observe the evolutior @f) layer after layer for the deep networks
and training procedures presented in Section 3 and to eestthhypotheses formulated in Section 1
(the progressive emergence of good representations inrdgerks and the role of the structure
for postponing discrimination). The interest of using adlomodel to solve the learning problem
is that the local models are blind with respect to possiblyengepresentations that could be ob-
tained in previous or subsequent layers. This local scopingerty allows for fine isolation of the
representations in the deep network. The need for localisg@so arises when “debugging” deep
architectures. Sometimes, deep architectures perforeomedly well even when the first layers do
something wrong. This analysis is therefore able to detexsd “bugs”.

The sizen of the dataset is selected so that it is large enough to appabe well the asymptotic
case 4 — oo) but also be small enough so that computing the eigendecsitiggoof the kernel
matrix of sizen x n is fast. We choose a set of scale parameters for the RBF kesrnelsponding
to the 0.01,0.05,0.10,0.25,0.5,0.75,0.9,0.95 and 0.99 quantiles of the distribution of distances
between pairs of data points.

4 Results

Layer-wise evolution of the errar(d) is plotted in Figure 3 in the supervised training case. The
layer-wise evolution of the error whehis fixed to16 dimensions is plotted in Figure 4. Both figures
capture the simultaneous reduction of error and dimenbigiperformed by the deep network when
trained on the target task. In particular, they illustrdtattin the last layers, a few number of
dimensions is sufficient to build a good model of the targsit.ta
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Figure 3: Layer-wise evolution of the errefd) when the deep network has been trained on the

target task. The solid line and the dotted line represemieai/ely the test error and the training

error. As the data distribution is mapped through more ancertayers, more accurate and lower-
dimensional models of the learning problem can be obtained.

From these results, we first demonstrate some propertiesegf detworks trained on an “asymp-
totically” large number of samples. Then, we demonstrageinfiportant role of structure in deep
networks.

4.1 Asymptotic properties of deep networks

When the deep network is trained on the target task with amfiasgtically” large number of sam-
ples @5000 samples) compared to the number of dimensions of the locdemthe deep network
builds representations layer after layer in which a low nardf dimensions can create more accu-
rate models of the learning problem.

This asymptotic property of deep networks should not beghbof as a statistical superiority of
deep networks over local models. Indeed, it is still pogsthht a higher-dimensional local model
applied directly on the raw data performs as well as a localehapplied at the output of the deep
network. Instead, this asymptotic property has the follmpéonsequence:

Despite the internal complexity of deep networks a locariptetation of the representation is pos-
sible at each stage of the processing. This means that deeprke do not explode the original data
distribution into a statistically intractable distriboti before recombining everything at the output,
but instead, apply controlled distortions and reductidrte®input space that preserve the statistical
tractability of the data distribution at every layer.

4.2 Role of the structure of deep networks

We can observe in Figure 4 (left) that even when the convariati neural network (CNN) and the
pretrained MLP (PMLP) have not received supervised trginine first layers slightly improve the
representation with respect to the target task. On the btoed, the representation built by a simple
MLP with random weights degrades layer after layer. Thiseolrtion highlights the structural
prior encoded by the CNN: by convolving the input with seVvesmdom convolution filters and
subsampling subsequent feature maps by a factor two, wéhabtandom projection of the input
data that outperforms the implicit projection performedibyRBF kernel in terms of task relevance.
This observation closely relates to results obtained imgat et al., 2007; Jarrett et al., 2009) where
it is observed that training the deep network while keepargdom weights in the first layers still
allows for good predictions by the subsequent layers. lrcése of the PMLP, the successive layers
progressively disentangle the factors of variation (Hinémd Salakhutdinov, 2006; Bengio, 2009)
and simplify the learning problem.

We can observe in Figure 4 (middle) that the phenomenon is elearer when the CNN and the
PMLP are trained on an alternate task: they are able to cgmateric features in the first layers
that transfer well to the target task. This observation sstgthat the structure embedded in the
CNN and the PMLP enforces a separation of concerns betweefirsh layers that encode low-
level features, for example, edge detectors, and the lastdahat encode high-level task-specific
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Figure 4: Evolution of the erro¢(d,) as a function of the layer whend, has been fixed ta6
dimensions. The top and the bottom of the error bars represspectively the test error and the
training error of the local model.
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Figure 5: Leading components of the weights (receptive d)etdbtained in the first layer of each
architecture. The filters learned by the CNN and the pretcaiMILP are richer than the filters
learned by the MLP. The first component of the MLP trained andhliernate task dominates all
other components and prevents good transfer on the tagjet ta

features. On the other hand, the standard MLP trained ortdraate task leads to a degradation of
representations. This degradation is even higher thareieake of random weights, despite all the
prior knowledge on pixel neighborhood contained implicitl the alternate task.

Figure 5 shows that the MLP builds receptive fields that agdialty informative but dissimilar
between the two tasks. The fact that receptive fields arerdifit for each task indicates that the
MLP tries to discriminate already in the first layers. Theeadz® of a built-in separation of concerns
between low-level and high-level feature extractors seenige a reason for the inability to learn
transferable features. It indicates that end-to-end tearisarning on unstructured learning ma-
chines is in general not appropriate and supports the recengss of transfer learning on restricted
portions of the deep network (Collobert and Weston, 2008stéveet al., 2008) or on structured
deep networks (Mobahi et al., 2009).

When the deep networks are trained on the target task, the @ditha PMLP solve the problem
differently as the MLP. In Figure 4 (right), we can observattthe CNN and the PMLP tend to
postpone the discrimination to the last layers while the Mta?ts to discriminate already in the first
layers. This result suggests that again, the structureaswd in the CNN and the PMLP enforces
a separation of concerns between the first layers encodmdeleel generic features and the last
layers encoding high-level task-specific features. Thgaestion of concerns might explain the
better generalization of the CNN and PMLP observed resgeygtin (LeCun et al., 1998; Hinton
etal., 2006). It also rejoins the findings of Larochelle ef2009) showing that the pretraining of the
PMLP must be unsupervised and not supervised in order td imaill-generalizing representations.

5 Conclusion

We present a layer-wise analysis of deep networks based énkBiels. This analysis estimates
for each layer of the deep network the number of dimensicmissmecessary in order to model well
a learning problem based on the representation obtainéeé autput of this layer.



We observe that a properly trained deep network createsgeptations layer after layer in which a
more accurate and lower-dimensional local model of theniegrproblem can be built.

We also observe that despite a steady improvement of regegisms for each architecture of interest
(the CNN, the MLP and the pretrained MLP), they do not soleepfoblem in the same way: the
CNN and the pretrained MLP seem to separate concerns hyiriyilolv-level generic features in
the first layers and high-level task-specific features ifdbelayers while the MLP does not enforce
this separation. This observation emphasizes the limitatdf black box transfer learning and, more
generally, of black box training of deep architectures.
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