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Abstract

Neuronal connection weights exhibit short-term depres$®TD). The present
study investigates the impact of STD on the dynamics of aigoatis attractor
neural network (CANN) and its potential roles in neural imf@tion processing.
We find that the network with STD can generate both static ematling bumps,
and STD enhances the performance of the network in trackiteyreal inputs.
In particular, we find that STD endows the network with slogcdying plateau
behaviors, namely, the network being initially stimulatedan active state will
decay to silence very slowly in the time scale of STD rathantthat of neural
signaling. We argue that this provides a mechanism for heysiems to hold
short-term memory easily and shut off persistent actiwitiaturally.

1 Introduction

Networks of various types, formed by a large number of nesitbrough synapses, are the substrate
of brain functions. The network structure is the key thaed®ines the responsive behaviors of a
network to external inputs, and hence the computationsamehted by the neural system. Under-
standing the relationship between the structure of a newtalork and the function it can achieve
is at the core of using mathematical models for elucidatiragrfunctions.

In the conventional modeling of neuronal networks, it ieafassumed that the connection weights
between neurons, which model the efficacy of the activitiggre-synaptic neurons on modulating
the states of post-synaptic neurons, are constants, oroveyyin long-time scales when learning
occurs. However, experimental data has consistently keddhat neuronal connection weights
change in short time scales, varying from hundreds to thaissaf milliseconds (see, e.g., [1]). This
is called short-term plasticity (STP). A predominant tydesd P is short-term depression (STD),
which decreases the connection efficacy when a pre-symaation fires. The physiological process
underlying STD is the depletion of available resources whignals are transmitted from a pre-
synaptic neuron to the post-synaptic one.

Is STD simply a by-product of the biophysical process of aésignaling? Experimental and theo-
retical studies have suggested that this is unlikely to bectise. Instead, STD can play very active
roles in neural computation. For instance, it was found 8D can achieve gain control in reg-
ulating neural responses to external inputs, realizingéiebaw [2, 3]. Another example is that
STD enables a network to generate transient synchronizadgtion firing, appealing for detecting
subtle changes in the environment [4, 5]. The STD of a neusaiso thought to play a role in
estimating the information of the pre-synaptic membrarntemital from the spikes it receives [6].
From the computational point of view, the time scale of STBides between fast neural signaling



(in the order of milliseconds) and slow learning (in the eraeminutes or above), which is the time
order of many important temporal operations occurring indaily life, such as working memory.
Thus, STD may serve as a substrate for neural systems to ulateipemporal information in the
relevant time scales.

In this study, we will further explore the potential role of 3 in neural information processing,
an issue of fundamental importance but has not been adégjiratestigated so far. We will use

continuous attractor neural networks (CANNS) as workinglale. CANNs are a type of recurrent
networks which hold a continuous family of localized actstates [7]. Neutral stability is a key
advantage of CANNs, which enables neural systems to updateony states or to track time-
varying stimuli smoothly. CANNSs have been successfullyligito describe the retaining of short-
term memory, and the encoding of continuous features, ssitheaorientation, the head direction
and the spatial location of objects, in neural systems [80R, CANNSs are also shown to provide a
framework for implementing population decoding efficigriil 1].

We analyze the dynamics of a CANN with STD included, and firat ipart from the static bump
states, the network can also hold moving bump solutionss fihding agrees with the results re-
ported in the literature [12, 13]. In particular, we find thdth STD, the network can have slow-
decaying plateau states, that is, the network being stiedi® an active state by a transient input
will decay to silence very slowly in the time order of STD rattthan that of neural signaling. This is
a very interesting property. It implies that STD can provédaechanism for neural systems to gen-
erate short-term memory and shut off activities naturalg also find that STD retains the neutral
stability of the CANN, and enhances the tracking perforneasfdhe network to external inputs.

2 TheModd

Let us consider a one-dimensional continuous stimulescoded by an ensemble of neurons. For
example, the stimulus may represent the moving directlmnprientation or a general continuous
feature of objects extracted by the neural system.

Letu(z, t) be the synaptic input at timeto the neurons whose preferred stimulus.ighe range of
the possible values of the stimulusid./2 < = < L/2andu(z, t) is periodic, i.e.u(z+L) = u(z).
The dynamics is particularly convenient to analyze in thatlthat the interaction rangeis much
less than the stimulus rande so that we can effectively take € (—oo, 00). The dynamics of
u(zx, t) is determined by the external inpli. (z, t), the network input from other neurons, and its
own relaxation. It is given by

Ts au((;, H_ ext (2,t) + p/ dz' J(z, 2" p(a' t)r(x' t) — u(z, t), (1)

— 00

wherery is the synaptical transmission delay, which is typicallyhie order of 2 to 5 msJ(z, 2")

is the base neural interaction frarhto x. r(z, t) is the firing rate of neurons. It increases with the
synaptic input, but saturates in the presence of a globaiitgetlependent inhibition. A solvable
model that captures these features is givem(y t) = u(x,t)?/[1 + kp [ da'u(a’,)%], where

p is the neural density, aridis a positive constant controlling the strength of globailiition. The
global inhibition can be generated by shunting inhibitiaA][

The key character of CANNs is the translational invariantéheir neural interactions. In our
solvable model, we choose Gaussian interactions with eer@ngamely,J (z, 2') = Jo exp[—(x —

2')?/2a?]/(av/27), whereJ, is a constant.

The STD coefficienp(z, t) in Eq. (1) takes into account the pre-synaptic STD. It hasithgimum
value of 1, and decreases with the firing rate of the neuron1[@p Its dynamics is given by
Op(x,t
ra PB4 1) — o (e 1), @
wherery is the time constant for synaptic depression, and the paesufi€ontrols the depression
effect due to neural firing.

The network dynamics is governed by two time scales. The tomstants of STD is typically in
the range of hundreds to thousands of milliseconds, mugeiahan that of neural signaling, i.e.,
T4 > Ts. The interplay between the fast and slow dynamics causestirk to exhibit interesting
dynamical behaviors.
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Figure 1: The neural response profile tracks the

change of position of the external stimulus fronFigure 2: The profile ofu(z,t) at t/7 =
zo = 0tol.5att = 0. Parametersa = 0.5, 0,1,2,---,10 during the tracking process in
k=10.958=0,a=0.5. Fig. 1.

2.1 Dynamicsof CANN without Dynamical Synapses

It is instructive to first consider the network dynamics whendynamical synapses are included.
This is done by setting = 0 in Eq. (2), so thap(x,t) = 1 for all t. In this case, the network can
support a continuous family of stationary states when thbajlinhibition is not too strong.

Specifically, the steady state solution to Eq. (1) is

~ r—z 2 ~ r—z 2

a(x|z) = ug exp [—%} ,  T(x]z) =rgexp [—%] , 3)
whereug = [1 + (1 — k/k.)/?]Jo/(4aky/T), ro = [L + (1 — k/ke)'/?]/(2akpv/27) andk, =
pJ3/(8av/27). These stationary states are translationally invariamrenthemselves and have the
Gaussian shape with a free parametegpresenting the position of the Gaussian bumps. They exist
for 0 < k < k., k. is thus the critical inhibition strength.

Fung et al [17] considered the perturbations of the Gausgates. They found various distortion
modes, each characterized by an eigenvalue represestiaggtof evolution in time. A key property
they found is that the translational mode has a zero eigeayahd all other distortion modes have
negative eigenvalues fdr < k.. This implies that the Gaussian bumps are able to track @sang
in the position of the external stimuli by continuously $ini§ the position of the bumps, with other
distortion modes affecting the tracking process only intthasients.

An example of the tracking process is shown in Figs. 1 and Znadn external stimulus with a
Gaussian profile is initially centered at= 0, pinning the center of a Gaussian neuronal response
at the same position. At time= 0, the stimulus shifts its center from= 0 to = = 1.5 abruptly.

The bump moves towards the new stimulus position, and catgpevith the stimulus change after

a time duration. which is referred to as the reaction time.

3 Dynamicsof CANN with Synaptic Depression

For clarity, we will first summarize the main results obtaima the network dynamics due to STD,
and then present the theoretical analysis in Sec. 4.

3.1 ThePhaseDiagram

In the presence of STD, CANNSs exhibit new interesting dyrwaitbehaviors. Apart from the static
bump state, the network also supports moving bump statesoffstruct a phase diagram mapping
these behaviors, we first consider how the global inhibiticand the synaptic depressighnscale

with other parameters. In the steady state solution of Ejj.u¢land pJou3 should have the same
dimension; so aré—p(x, t) andr;Suo in EQ. (2). Hence we introduce the dimensionless parameters
k = k/k.andp = 7,8/ (p*J2). The phase diagram obtained by numerical solutions to ttveanke
dynamics is shown in Fig. 3.
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We first note that the synaptic depression and the globabitidm plays the same role in reducing
the amplitude of the bump states. This can be seen from thdysttate solution of(x, t), which

reads ( Nu(a')?
pJ(x — " )u(z
= [ do’ . 4
u(x) / t 1+ kpfdz”u(:r”)z + Tafu(x’)? “)
The third term in the denominator of the integrand arisee)f@®TD, and plays the role of a local
inhibition that is strongest where the neurons are most@dtience we see that the silent state with
u(zx,t) = 0 is the only stable state when eithieor 3 is large.

When STD is weak, the network behaves similarly with CANNshauit STD, that is, the static
bump state is present up tonear 1. However, whef increases, a state with the bump sponta-
neously moving at a constant velocity comes into existergch moving states have been pre-
dicted in CANNSs [12, 13], and can be associated with tragalisave behaviors widely observed in
the neocortex [18]. At an intermediate rangeffboth the static and moving states coexist, and

the final state of the network depends on the initial conditi&/hen increases further, only the
moving state is present.

3.2 ThePlateau Behavior

The network dynamics displays a very interesting behavithé parameter regime when the static
bump solution just loses its stability. In this regime, atiagfly activated network state decays very
slowly to silence, in the time order af;. Hence, although the bump state eventually decays to the
silent state, it goes through a plateau region of a slowhagieg amplitude, as shown in Fig. 4.
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3.3 Enhanced Tracking Performance

The responses of CANNs with STD to an abrupt change of stisnaita illustrated in Fig. 5. Com-
pared with networks without STD, we find that the bump shdtthe new position faster. The extent

of improvement in the presence of STD is quantified in Fig. 6wiver, wherp is too strong, the
bump tends to overshoot the target before eventually appnogit.
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4 Analysis

Despite the apparently complex behaviors of CANNs with SWB will show in this section that a
Gaussian approximation can reproduce the behaviors ailitifgcthe interpretation of the results.
Details are explained in Supplementary Information. Weeolss that the profile of the bump re-
mains effectively Gaussian in the presence of synapticedspyn. On the other hand, there is a
considerable distortion of the profile of the synaptic depi@n, when STD is strong. Yet, to the
lowest order approximation, let us approximate the profifhe synaptic depression to be a Gaus-
sian as well, which is valid when STD is weak, as shown in F{g).Hence, fon < L, we propose
the following ansatz

we.t) = w2 ©
p(z,t) = 1—po(t)exp [—@%QZ)Q]- (6)

When these expressions are substituted into the dynangoatiens (1) and (2), other functions
f(x) of z appear. To maintain consistency with the Gaussian appatiom these functions will be
approximated by their projections onto the Gaussian fonstiln Eq. (1), we approximate

da’ , w#} _@=2)?
) ~ e 4a2 e 4a2 . 7
o) | [ S pw) ™

Similarly, in Eq. (2), we approximatg(z) by its projection ontexp [—(z — 2)?/(2a?)].

4.1 The Solution of the Static Bumps

Without loss of generality, we let = 0. Substituting Eg. (5) and (6) into Egs. (1) and (2), and
letting@(t) = pJouo(t), we get

du(t) u(t)? 4 .

Ts dt B \/5(14'%@(15)2/8) [1 \/;po(t)‘| (t), (8)
do) __Fuep [T
“Ta T T+ km(n/s ll \/;’0(“] Po(t). ©)

By considering the steady state solutiorticdindp, and their stability against fluctuations@fand
po, We find that stable solutions exist when

po(l = 4/ Tpo)’ ll L ]
4(1 = \/2/3po) Ta(1—\/2/3po) |’

5

(10)

B <



whenpy is the steady state solution of Egs. (1) and (2). The bounafahyis region is shown as a
dashed line in Fig. 3. Unfortunately, this line is not easifyserved in numerical solutions since the
static bump is unstable against fluctuations that are asyrimméth respect to its central position.
Although the bump is stable against symmetric fluctuatiasgmmetric fluctuations can displace
its position and eventually convert it to a moving bump.

4.2 The Solution of the Moving Bumps

As shown in Fig. 7(b), the profile of a moving bump is chardetat by a lag of the synaptic
depression behind the moving bump. This is because newrndgd be less active in locations of
low values ofp(z, t), causing the bump to move away from locations of strong symdppression.

In turn, the region of synaptic depression tends to folloe lump. However, if the time scale
of synaptic depression is large, the recovery of the syoaapressed region is slowed down, and
cannot catch up with the bump motion. Thus, the bump startdngspontaneously.

To incorporate asymmetry into the moving state, we proplosédliowing ansatz:

ey — sy |-t "
ety = 1-mien [~ e[S (22 g

Projecting the terms in Eq. (1) to the basis functioasp [—(z — vt)?/(4a?)] and
exp [—(x—vt)Q/(élaz)] (x — vt)/a, and those in Eq. (2) texp [—(x—vt)Q/(QaQ)] and
exp [—(x — vt)?/(2a%)] (z — vt)/a, we obtain four equations far, po, p andvr,/a. Real so-
lutions exist only if

pu’ Td 2

————>A|—=—-B+ ——-B)] —-C , (13)
1+ ku?/8 Ts

whereA = 7\/7/4, B = (7/4)[(5/2)/7/6 — 1], andC = (343/36)(1 — /6/7). As shown in Fig.

3, the boundary of this region effectively coincides with titumerical solution of the line separating

the static and moving phases.

Note that when, /7, increases, the static phase shrinks. This is because theergof the synaptic
depressed region is slowed down, making it harder to catehitipochanges in the bump motion.
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An alternative approach that arrives at Eq. (13) is to carsille instability of the static bump,
which is obtained by setting andp; to zero in Egs. (11) and (12). Considering the instability of
the static bump against the asymmetric fluctuations iandwvt, we again arrive at Eq. (13). This
shows that as soon as the moving bump comes into existerestatic bump becomes unstable.
This also implies that in the entire region that the statid mroving bumps coexist, the static bump
is unstable to asymmetric fluctuations. It is stable (or npyeeisely, metastable) when it is static,
but once it is pushed to one side, it will continue to move gltdrat direction. We may call this
behaviormetastatic. As we shall see, this metastatic behavior is also the caleeenhanced
tracking performance.

4.3 The Plateau Behavior

To illustrate the plateau behavior, we select a point in tlaegimally unstable regime of the silent
phase, that is, in the vicinity of the static phase. As shawFRig. 8, the nullclines of. andpg



(du/dt = 0 anddpy/dt = 0 respectively) do not have any intersections as they do irstiic
phase where the bump state exists. Yet, they are still closegh to create a region with very slow
dynamics near the apex of thenullcline at(w, po) = [(8/%)Y/2, \/7/4(1 — Vk)]. Then, in Fig. 8,
we plot the trajectories of the dynamics starting from défe initial conditions. For verification, we
also solve the full equations (1) and (2), and plot a flow diagwith the axes beinmax, u(x,t)
andl — min, p(z,t). The resultant flow diagram has a satisfactory agreemehtrigt. 8.

The most interesting family of trajectories is represeritgd and C in Fig. 8. Due to the much
faster dynamics of;, trajectories starting from a wide range of initial conalits converge rapidly,

in a time of the order,, to a common trajectory in the close neighborhood ofithmulicline. Along

this common trajectory; is effectively the steady state solution of Eq. (8) at thésintaneous value

of po(t), which evolves with the much longer time scalergf This gives rise to the plateau region
of @ which can survive for a duration of the ordgr The plateau ends after the trajectory has passed
the slow region near the apex of th@enulicline. This dynamics is in clear contrast with trajast

D, in which the bump height decays to zero in a time of the order

Trajectory A represents another family of trajectoriesihgvather similar behaviors, although the
lifetimes of their plateaus are not so long. These trajéesostart from more depleted initial con-
ditions, and hence do not have chances to get close @-thdlcline. Nevertheless, they converge
rapidly, in a time of order, to the bandz ~ (8/k)'/2, where the dynamics af is slow. The
trajectories then rely mainly on the dynamicspgfto carry them out of this slow region, and hence
plateaus of lifetimes of the ordey are created.

Bumps can sustain here.
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Figure 8: Trajectories of network dynamics start-
ing from various initial conditions gtt, 5) = (0.95,  Figure 9: Contours of plateau lifetimes in the
0.0085) (point P in Fig. 3). Solid linaz-nulicline. space ofc and3. The lines are the two top-

Dashed linepo-nulicline. Symbols are data pointsyost phase boundaries in Fig. 3. In the initial
spaced at time intervals a@f-. condition.a. = 0.5.

Following similar arguments, the plateau behavior alsstexn the stable region of the static states.
This happens when the initial condition of the network liegside the basin of attraction of the
static states, but it is still in the vicinity of the basin balary.

When one goes deeper into the silent phase, the region ofdsloamics between the andpo-
nullclines broadens. Hence plateau lifetimes are longesst the phase boundary between the bump
and silent states, and become shorter when one goes degptbreisilent phase. This is confirmed
by the contours of plateau lifetimes in the phase diagramvehio Fig. 9 obtained by numerical
solution. The initial condition is uniformly set by introding an external stimulug®**(z|zy) =

aug exp[—x2/(4a?)] to the right hand side of Eq. (1), wheteis the stimulus strength. After the
network has reached a steady state, the stimulus is removed @ leaving the network to relax.

4.4 The Tracking Behavior

To study the tracking behavior, we add the external stimuli®(x|z) =
aug exp [—(z — 20)?/(4a?)] to the right hand side of Eq. (11), wherg is the position of
the stimulus abruptly changed@at= 0. With this additional term, we solve the modified version
of Egs. (11) and (12), and the solution reproduces the auigkt features due to the presence of
synaptic depression, namely, the faster response at Weakd the overshooting at strongér
As remarked previously, this is due to the metastatic bemafithe bumps, which enhances their
reaction to move from the static state when a small push itexke



However, when describing the overshooting of the trackirogess, the quantitative agreement be-
tween the numerical solution and the ansatz in Egs. (11) &Ryi¢ not satisfactory. We have
made improvement by developing a higher order perturbatiatysis using basis functions of the
guantum harmonic oscillator [17]. As shown in Fig. 5, the mjitative agreement is much more
satisfactory.

5 Conclusions and Discussions

In this work, we have investigated the impact of STD on theatgits of a CANN, and found
that the network can support both static and moving bumpaticStumps exist only when the
synaptic depression is sufficiently weak. A consequence/odstic depression is that it places
static bumps in the metastatic state, so that its resportdatwging stimuli is speeded up, enhancing
its tracking performance. We conjecture that moving burapestmay be associated with traveling
wave behaviors widely observed in the neurocortex.

A finding in our work with possibly very important biologicahplications is that STD endows the
network with slow-decaying behaviors. When the networlnigally stimulated to an active state
by an external input, it will decay to silence very slowlyeaafthe input is removed. The duration
of the plateau is of the time scale of STD rather than neugalading, and it provides a way for the
network to hold the stimulus information for up to hundreéimiliseconds, if the network operates
in the parameter regime that the bumps are marginally ulestahis property is, on the other hand,
extremely difficult to be implemented in attractor networkithout STD. In a CANN without STD,
an active state of the network decays to silence exponbrigat or persists forever, depending on
the initial activity level of the network. Indeed, how to shuff the activity of a CANN has been a
challenging issue that received wide attention in thecaétieuroscience, with solutions suggesting
that a strong external input either in the form of inhibitienexcitation must be applied (see, e.g.,
[19]). Here, we show that STD provides a mechanism for cipdiown network activities naturally
and in the desirable duration.

We have also analyzed the dynamics of CANNs with STD using @s&an approximation of the
bump. It describes the phase diagram of the static and mqlhiages, the plateau behavior, and
provides insights on the metastatic nature of the bumpstandlation with the enhanced tracking
performance. In most cases, approximating p(x, t) by a Gaussian profile is already sufficient to
produce qualitatively satisfactory results. Howeverhieigorder perturbation analysis is required to
yield more accurate descriptions of results such as thesbweting in the tracking process (Fig. 5).

Besides STD, there are other forms of STP that may be relévaeializing short-term memory.
Mongillo et al. [20] have recently proposed a very intemggtidea for achieving working memory
in the prefrontal cortex by utilizing the effect of shortitefacilitation (STF). Compared with STD,
STF has the opposite effect in modifying the neuronal cotimeaveights. The underlying bio-
physics of STF is the increased level of residual calciumtduseural firing, which increases the
releasing probability of neural transmitters. Mongilloagt[20] showed that STF provides a way
for the network to encode the information of external inguotthe facilitated connection weights,
and it has the advantage of not having to recruit persistentah firing and hence is economically
efficient. This STF-based memory mechanism is, howevernhaoessarily contradictory to the
STD-based one we propose here. They may be present in diffaydical areas for different com-
putational purposes. STD and STF have been observed to Hiaremwt effects in different cortical
areas. One location is the sensory cortex where CANN modelsften applicable. Here, the effects
of STD tends to be stronger than that of STF. Different from 8T F-based mechanism, our work
suggests that the STD-based one exhibits the prolongedlrfeing, which has been observed in
some cortical areas. In terms of information transmisspralonged neural firing is preferable in
the early information pathways, so that the stimulus infation can be conveyed to higher cortical
areas through neuronal interactions. Hence, it seemshadirain may use a strategy of weight-
ing the effects of STD and STF differentially for carryingtaifferent computational tasks. It is
our goal in future work to explore the joint impact of STD an@iFson the dynamics of neuronal
networks.

This work is partially supported by the Research Grants CibohHong Kong (grant nos. HKUST
603607 and 604008).
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