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Abstract

The Diffusion Network(DN) is a stochastic recurrent network which has been
shown capable of modeling the distributions of continuous-valued, continuous-
time paths. However, the dynamics of the DN are governed by stochastic differ-
ential equations, making the DN unfavourable for simulation in a digital computer.
This paper presents the implementation of the DN in analogue Very Large Scale
Integration, enabling the DN to be simulated in real time. Moreover, the log-
domain representation is applied to the DN, allowing the supply voltage and thus
the power consumption to be reduced without limiting the dynamic ranges for dif-
fusion processes. A VLSI chip containing a DN with two stochastic units has been
designed and fabricated. The design of component circuits will be described, so
will the simulation of the full system be presented. The simulation results demon-
strate that the DN in VLSI is able to regenerate various types of continuous paths
in real-time.

1 Introduction

In many implantable biomedical microsystems [1, 2], an embedded system capable of recognis-
ing high-dimensional, time-varying signals have been demanded. For example, recognising multi-
channel neural activity on-line is important for implantable brain-machine interfaces to avoid trans-
mitting all data wirelessly, or to control prosthetic devices and to deliver bio-feedbacks in real-
time [3].

The Diffusion Network (DN) proposed by Movellan is a stochastic recurrent network whose stochas-
tic dynamics can be trained to model the probability distributions of continuous-time paths by the
Monte-Carlo Expectation-Maximisation (EM) algorithm [4, 5]. As stochasticity is useful for gener-
alising the natural variability in data [6, 7], the DN is further shown suitable for recognising noisy,
continuous-time biomedical data [8]. However, the stochastic dynamics of the DN is defined by a
set of continuous-time, stochastic differential equations (SDEs). The speed of simulating stochas-
tic differential equations in a digital computer is inherently limited by the serial processing and
numerical iterations of the computer. Translating the DN into analogue circuits is thus of great in-
terests for simulating the DN in real time by exploiting the natural, differential current-voltage (I-V)
relationship of capacitors [9].

This paper presents the implementation of the DN in analogue Very Large Scale Integration (VLSI).
To minimise the power consumption, the power supply voltage is only 1.5V, and most transistors are
operated in subthreshold regions. As the reduced supply voltage limits directly the dynamic range
available for voltages across capacitors, the log-domain representation proposed in [10] is applied
to the DN, allowing diffusion processes to be simulated in a limited voltage ranges. After a brief
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introduction to the DN, the following sections will derive the log-domain representation of the DN
and describe its corresponding implementation in analogue VLSI.
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Figure 1: The architecture of
a Diffusion Network with one
visible and two hidden units
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Figure 2: The block diagram of a DN unit in VLSI

2 The Diffusion Network

As shown in Fig. 1, the DN comprises n continuous-time, continuous-valued stochastic units with
fully recurrent connections. The state of the jth unit at time t, xj(t), is governed by

dxj(t)
dt

= µj

(
xj(t)

)
+ σ · dB(t)

dt
(1)

where µj(t) is a deterministic drift term given in (2), σ a constant, and dB(t) the Brownian motion.
The Brownian motion introduces the stochasticity, enriching greatly the representational capability
of the DN [5].

µj

(
xj(t)

)
= κj ·

[
−ρjxj(t) + ξj +

n∑
i=1

ωij · ϕ
(
xi(t)

)]
(2)

ωij defines the connection weight from unit i to unit j. κ−1
j and ρ−1

j represent the input capacitance
and transmembrane resistance, respectively, of the jth unit. ξj is the input bias, and ϕ is the sigmoid
function given as

ϕ(xj ; a) = −1 +
2

1 + e−axj
= tanh

(a

2
xj

)
(3)

where a adapts the slope of the sigmoid function. As shown in Fig. 1, the DN contains both visi-
ble(white) and hidden(grey) stochastic units. The learning of the DN aims to regenerate at visible
units the probability distribution of a specific set of continuous paths. The number of visible units
thus equals the dimension of the data to be modeled, while the minimum number of hidden units
required for modeling data satisfactorily is identified by experimental trials. During training, visible
units are “clamped” to the dynamics of the training dataset, and the dynamics of hidden units are
Monte-Carlo sampled for estimating optimal parameters (ωij , κj , ρj , ξj) that maximise the expec-
tation of training data [5]. After training, all units are given initial values at t = 0 only to sample
the dynamics modeled by the DN. The similarity between the dynamics of visible units and those of
training data indicate how well the DN models the data.

2.1 Log-domain translation

To maximise the dynamic ranges for diffusion processes in VLSI, the stochastic state xj(t) is rep-
resented as a current and then logarithmically-compressed into a voltage VXj in VLSI [11]. The
logarithmic compression allows xj(t) to change over three decades within a limited voltage range
for VXj . The voltage representation VXj further facilitates the exploitation of the nature, differential
(I-V) relationship of a capacitor to simulate SDEs in real-time and in parallel.
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The logarithmic relationship between xj(t) and VXj can be realised by the exponential I-V char-
acteristics of a MOS transistor in subthreshold operation [12]. To keep xj(t) a non-negative value
(current) in VLSI, an offset xoff is added to xj(t), resulting in the following relationship between
xj(t) and VXj .

xj + xoff ≡ IS · eαVXj , dxj = αIS · eαVXj · dVXj (4)

where Is and α are process-dependent constants extractable from simulated I-V curves of transistors.
Substituting Eq. (4) into Eq. (1) then translates the diffusion process in Eq. (1) into the following
equation.

CXj ·
dVXj

dt
=

[
ξj +

n∑
i=1

ωijϕ(xi)
]
· e−αVXj +

σ

κj

dBj(t)
dt

· e−αVXj + ρjxoff · e−αVXj − ρjIS

(5)

where CXj equals α/κj . Fig. 2 illustrates the block diagram for implementing Eq. (5) in VLSI.
CXj is a capacitor and VXj the voltage across the capacitor. Each term on the right hand side of
Eq. (5) then corresponds to a current flowing into CXj . Let (VP − VN ) and IV AR represent the
differential input voltage and the input current of an EXP-element, respectively. Each EXP-element
in Fig. 2 produces an output current of Iout = IV AR · eα(VP−VN ). Therefore, the EXP-elements
implement the first three terms multiplied with e−αVXj in accordance with Eq. (5). The last term,
ρjIS , is a constant and is thus implemented by a constant current source. Finally, the sigmoid circuit
transforms xj into ϕ(xj) and the multipliers output a total current proportional to

∑n
i=1 ωij ·ϕ(xi).
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Figure 3: The stochastic dynamics (gray lines)
regenerated by the DN trained on the bifurcating
curves (black lines).
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Figure 4: The stochastic dynamics (gray lines)
regenerated by the DN trained on the sinusoidal
curve (the black line).
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Figure 5: The stochastic dynamics (gray lines) re-
generated by the DN trained on the QRS segments of
electrocardiograms (black lines).
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Figure 6: The stochastic dynamics (gray
lines) regenerated by the DN trained on the
handwritten ρ (the black line).

2.2 Adapting ρj instead of κj

The DN has been shown capable of modeling various distributions of continuous paths by adapting
wij , ξj , and κj in [5]. An adaptable κj corresponds to an adaptable CXj , but a tunable capacitor with
a wide linear range is not easy to implement in VLSI. As Eq. (2) indicates that ρj is complementary
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to κj in determining the “time constant” of the dynamics of the unit j, the possibility of adapting ρj

instead of κj is investigated by Matlab simulation.

With κj = 1, the DN was trained to model different data by adapting ωij , ξj , and ρj for 100 epochs.
A DN with one visible and one hidden units was proved capable of regenerating the dynamics of
bifurcating curves (Fig. 3), sinusoidal waves (Fig. 4), and electrocardiograms (Fig. 5). Moreover, a
DN with only two visible units was able to regenerate the handwritten ρ satisfactorily, as illustrated
in Fig. 6. The promising results supported the suggestion that adapting ρj instead of κj also allowed
the DN to model different data. As a variable ρj simply corresponded to a tunable current source
ρjIS in Fig. 2, the VLSI implementation was greatly simplified.

2.3 Parameter mappings

Table 1 summarises the parameter mappings between the numerical simulation and the VLSI im-
plementation. All variables except for VXj in Fig. 2 are represented as currents in VLSI. The unit
currents (Iunit) of xj , ωij , and ξj are defined as 10 nA to match the current scales of transistors
in subthreshold operation, as well as to reduce the power consumption. Moreover, extensive simu-
lations indicate that the dynamic ranges required for modeling various data are [−3, 5] for xj and
[−30, 30] for ωij . With xoff = 5 in Eq. (4), i.e. xoff = 50nA in VLSI, VXj ranges from 773
to 827 mV. While the diffusion process in Eq. (1) is iterated with ∆t = 0.05 in numerical simula-
tion, ∆t = 0.05 is set to be 5 µs in VLSI, corresponding to a reasonable sampling rate (200kHz)
at which most instruments can sample multiple channels(units) simultaneously. Finally, the unit
capacitance for 1/κj is calculated as Cunit = Iunit ·∆tunit/VXj,unit, equaling 1 pF and resulting
in CXj = α · Cunit = 30 pF.

Table 1: Parameter mappings between numerical simulation and VLSI implementation

parameter numeric circuit comment
xj -3∼5 -30∼50 nA Iunit = 10 nA

xoff 5 50 nA offset term in Eq. (4)
VXj 0.773∼0.827 773∼827 mV VXj,unit = 1 V
ω, ξ -30∼30 -300∼300 nA Iunit = 10 nA

ϕ(xj) -1∼1 -400∼400 nA activation function
CXj α/κj = 30 30 pF Cunit = 1 pF
∆t 0.05 5 µs tunit = 0.1 ms
ρ 0.5∼2 0.5∼2

3 Circuit implementation

A DN with two stochastic units have been designed with the CMOS 0.18 µm technology provided by
the Taiwan Semiconductor Manufacturing Company (TSMC). The following subsections introduce
the design of each component circuit.

3.1 The EXP element

Fig. 7(b) shows the schematics of the EXP element. With M1 and M2 operated in the subthreshold
region, the output current is given as

Iout = IB · exp
( 1

nUT
(VP − VN )

)
(6)

where UT denotes the thermal voltage and n the subthreshold slope factor. Comparing Eq. (6) with
Eq. (4) reveals that α = 1/nUT . As the drain current (Id) of a transistor in subthreshold operation
is exponentially proportional to its gate-to-source voltage (VGS) as Id ∝ eVGS/nUT , α = 1/nUT is
extracted to be 30 by plotting log(Id) versus VGS in SPICE.

Transistors M3-M5 form an active biasing circuit that sinks IB + Iout. By adjusting the gate voltage
of M3 through the negative feedback, Iout is allowed to change over several decades. In addition,

4



n actually depends on the gate voltage and introduces variability to α [13]. To prevent the variable
α from introducing simulation errors, all EXP elements of the DN unit are biased with a constant
IB = 100 nA. As shown by Fig. 7(a), Iout of each element is then re-scaled by the one-quadrant
current multiplier basing on translinear loops (Fig. 7(c)) [13] to produce I ′out = Iout × IV AR/IB ,
where IV AR represents the current input to each element in Fig. 2 (e.g.Σωϕ or ρxoff ).
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Figure 7: The circuit diagram of the EXP element.

3.2 Current multipliers

Four-quadrant multipliers basing on translinear loops [13] are employed to calculate Σωijϕ(xi) in
Eq. (5). Both ωij and ϕ(xi) are represented by differential currents as

ωij = Iω+ − Iω− , ϕ(xi) = Iϕ+ − Iϕ− (7)

Let the differential current (IZ+ − IZ−) represents the multiplier’s output and IU represent a unit
current. Eq. (8) indicates that the four-quadrant multiplication can be composed of four one-quadrant
multipliers in Fig. 7(c), as illustrated in Fig. 8.

IZ+ · IU − IZ− · IU = (Iω+ · Iϕ+ + Iω− · Iϕ−)− (Iω+ · Iϕ− + Iω− · Iϕ+) (8)

Fig. 9 shows the simulation result of the four-quadrant multiplier, exhibiting satisfactory linearity
over the dynamic ranges required in Table 1.
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Figure 8: The four-quadrant current multiplier

5



−200

−100

 0

 100

 200

−400  −200  0  200 400

(I
Z

+
−

I Z
−
)

in
nA

(Iω+ − Iω−) in nA

ϕi = −400nA
ϕi = −300nA
ϕi = −200nA
ϕi = −100nA

ϕi = 0
ϕi = 100nA
ϕi = 200nA
ϕi = 300nA
ϕi = 400nA

Figure 9: The simulation results of the four-
quadrant current multiplier

-500

-400

-300

-200

-100

 0

 100

 200

 300

 400

 500

-600 -400 -200  0  200  400  600

O
u

tp
u

t 
cu

rr
en

t 
in

 n
A

Input current in nA

gain=0.8
gain=1.0
gain=3.0
gain=5.0

Figure 10: The simulation result of the sigmoid
circuit with different Va

3.3 Sigmoid function ϕ(·)

Fig. 11 shows the block diagram for implementing the sigmoid function in Eq. (3). The current
IXi representing xi is firstly converted into a voltage Vi by the the operational amplifier(OPA)
with a voltage-controlled active resistor (VCR) proposed in [14]. Vi is then sent to an operational
transconductance amplifier(OTA) in subthreshold operation, producing an output current of

Is = IB tanh
( 1

2nUT
(Vi − Vref )

)
(9)

Since Vi − Vref = Ri · Ixi, with Ri representing the resistance of the VCR, the voltage Va adapts
Ri and thus the slope of the sigmoid function. Finally, the 2nd generation current conveyor (CCII)
in Fig. 12 [15] converts the current Is into a pair of differential currents (IOUTN , IOUTP ) ranging
between −400 nA and +400 nA. The differential currents are then duplicated for the inputs of
four-quadrant multipliers of all DN units.

CCIIOPA

VCR

Vref

Va

VrefVref

OTA

IXi

IOUTN

IOUTP

Figure 11: The block diagram of the sigmoid circuit.

3.4 Capacitor amplification
As CXi = 30 pF requires consider-
able chip area, CXi is implemented
by the circuit in Fig. 13, utilising the
Miller effect to amplify the capaci-
tance. Let A denote the gain of the
amplifier. The effective capacitance
between X and Y is (1 + A) · CX .
Fig. 13 also shows the schematics of
the amplifier whose gain is designed
to be 2. As a result, CX = 10 pF is
sufficient for providing an effective
CXi of 30 pF.
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Figure 13: The circuit diagram of the capacitor ampli-
fied by the Miller effect.

6



Vbiasn

Vbiasp

Isig

OPA

0.3V

0.3V

1.2V

1.2V

VY

IOUTN

IOUTP
VREF

VX

IP

IN

Figure 12: The circuit diagram of the single-to-differential current conveyor
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Figure 14: The chip layout and its specification.
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Figure 15: The sinusoidal dynamics regenerated
by the DN chip in post-layout simulation (10 tri-
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Figure 16: The electrocardiogram dynamics re-
generated by the DN chip in post-layout simu-
lation (10 trials).
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Figure 17: The bifurcating dynamics regenerated by
the DN chip in post-layout simulation (8 trials).

 10

 20

 30

 40

 50

 60

 70

 10  15  20  25  30  35  40  45  50  55

I X
2

in
µ

A

IX1 in µA

Figure 18: The handwritten ρ regenerated
by the DN chip in post-layout simulation
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4 The Diffusion Network in VLSI

Fig. 14 shows the chip layout of the log-domain implementation of the DN with two stochastic
units, so is the specification shown. The area of the core circuit and the capacitors are 0.306 mm2

and 0.384 mm2, respectively. The total power consumption is merely 345 µW, by the merit of low
supply voltage (1.5V) and subthreshold operation. The chip has been taped out for fabrication with
the CMOS 0.18 µm Technology by the TSMC. The post-layout simulations are shown in Fig. 15−18
and described as follows.

With one unit functioning as a visible unit and the other as a hidden unit, the parameters of the DN
was programmed to regenerate the one-dimensional paths in Sec. 2.2. The noise current σ

κ ·
dB
dt was

simulated by a piecewise-linear current source with random amplitudes in the SPICE. As shown
by Fig. 15-17, the visible unit was capable of regenerating the sinusoidal waves, the electrocardio-
grams, and the bifurcating curves with negligible differences from Fig. 3-5. Moreover, as both units
functioned as visible units, the DN was capable of regenerating the handwritten ρ as Fig. 18. These
promising results demonstrate the capability of the DN chip to model the distributions of different
continuous paths reliably and power-efficiently. After chip is fabricated in August, the chip will be
tested and the measurement results will be presented in the conference.

5 Conclusion

The log-domain representation of the Diffusion Network has been derived and translated into ana-
logue VLSI circuits. Based on well-defined parameter mappings, the DN chip is proved capable of
regenerating various types of continuous paths, and the log-domain representation allows the dif-
fusion processes to be simulated in real-time and within a limited dynamic range. In other words,
analogue VLSI circuits are proved useful for solving (simulating) multiple SDEs in real-time and in
a power-efficient manner. After verifying the chip functionality, a DN chip with a scalable number
of units will be further developed for recognising multi-channel, time-varying biomedical signals in
implantable microsystems.
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