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Abstract

We develop a deterministic single-pass algorithm for latent Dirichlet alloca-
tion (LDA) in order to process received documents one at a time and then
discard them in an excess text stream. Our algorithm does not need to store
old statistics for all data. The proposed algorithm is much faster than a batch
algorithm and is comparable to the batch algorithm in terms of perplexity in
experiments.

1 Introduction

Huge quantities of text data such as news articles and blog

posts arrives in a continuous stream. Online learning has at-

tracted a great deal of attention as a useful method for h&unning time
dling this growing quantity of streaming data because it pro- A
cesses data one at a time, whereas batch algorithms are SREM-LDA
feasible in these settings because they need all the data at
the same time. This paper focus on online learning for La- iREM-LDA
tent Dirichlet allocation (LDA) (Blei et al., 2003), which is a
widely used probabilistic model for text data. CVB-LDA

Online learning for LDA has been already developed (Banerl—ong VB-LDA

jee and Basu, 2007; Alsumait et al., 2008; Canini et al., 2009; large small
Yao et al., 2009). Existing studies were based on sampling
methods such as the incremental Gibbs sampler and particle
filter. Sampling methods seem to be inappropriate for stream-
ing data because sampling methods have to represent a psijre 1: Overview of the relation-

terior by using a lot of samples, which basically needs MUCflins among inferences.

time. Moreover, sampling algorlthms often need a resampllng

step in which a sampling method is applied to old data. Storing old data or old samples adversely
affects the good properties of online algorithms. Particle filters also need to parallel process-

ing. A parallel algorithm needs more memory than a single-process algorithm, which is not useful
for a large quantity of data, especially in the case of a large vocabulary. For example, LDA needs to
store the number of words observed in a topic. If the number of topifs ilse vocabulary size is

V andm, so the required memory size¥m T = V).

Memory usage

We propose two deterministic online algorithms; an incremental algorithms and a single-pass al-
gorithm. Our incremental algorithm is an incremental variant of the reverse EM (REM) algorithm
(Minka, 2001). The incremental algorithm updates parameters by replacing old sufficient statistics
with new one for each datum. Our single-pass algorithm is based on an incremental algorithm, but it
does not need to store old statistics for all data. In our single-pass algorithm, we propose a sequential
update method for the Dirichlet parameters. Asuncion et al. (2009); Wallach et al. (2009) indicated
the importance of estimating the parameters of the Dirichlet distribution, which is the distribution
over the topic distributions of documents. Moreover, we can deal with the growing vocabulary size.
In real life, the total vocabulary size is unknown, i.e., increasing as a document is observed.



In summary, Fig.1 shows the relationships among inferences. VB-LDA is the variational inference
for LDA, which is a batch inference; CVB-LDA is the collapsed variational inference for LDA (Teh
etal., 2007); IREM-LDA is our incremental algorithm; and SREM-LDA is our single-pass algorithm
for LDA.

Sections.2 briefly explains inference algorithms for LDA. Section 3 describes the proposed algo-
rithm for online learning. Section 4 presents the experimental results.

2 Overview of Latent Dirichlet Allocation

This section overviews LDA where documents are represented as random mixtures over latent topics
and each topic is characterized by a distribution over words. First, we will define the notations, and
then, describe the formulation of LDA! is the number of topicsM is the number of documents.

V is the vocabulary sizeN; is the number of words in documept w; ; denotes the-th word in
documeny. z; ; denotes the latent topic of wotd}; ;. Multi(-) is a multinomial distributionDir ()

is a Dirichlet distribution§; denotes &-dimensional probability vector that is the parameters of the
multinomial distribution, and represents the topic distribution of documegt, is a multinomial
parameter &/ -dimensional probability wherg; , specifies the probability of generating wowd

given topict. « is theT-dimensional parameter vector of the Dirichlet distribution oef;j =
L,--,M).

LDA assumes the following generative process. For each df'ttepicst, draw3, ~ Dir(8|\) «
[1,8),". For each of thel/ documentsj, draw®; ~ Dir(0|a) where Dir(8]a) o [ 05"

t
For each of theV; wordsw; ; in documentj, draw topicz; ; ~ Multi(z|0;) and draw wordu, ; ~
p(w|z;:, B) wherep(w = v|z =t,8) = Bi0.

That is to say, the complete-data likelihood of a documents given by
N;

p(wj, zj,0;|a, B) = p(0;]|) Hp(wj,ﬂzm B)p(z;10;). 1)

2.1 \Variational Bayes Inference for LDA

The VB inference for LDA(Blei et al., 2003) introduces a factorized variational postgoQ, 3)
overz = {z;,;}, 0 ={0;} andB = {3,} given by

q(2,0,8) = H Q(Zj,i|¢j,i) H Q(ejh’j) HQ(/@t“J’t)a (2)

where¢g and~ are variational parameters; ; ; specifies the probability that the topic of waug ;.
is topict, andy; andp, are the parameters of the Dirichlet distributions dgandg3;, respectively,

|.e.,q(0j")/j) o< Ha;?:]gt_l andq(ﬁt|ut) x H/Bél:;,w—l )
t v

The log-likelihood of documents is lower bounded introducijig, 8) by
p(w;, z;,0;|a, A
Flat=0.8) = [ Y az.0.8) 10 1170207010 AL BT)

0.5 d6,ds3. ©)

The parameters are updated as

exp W (4itw; ;)
exp W (X, He,0)
wheren;; , = > . ¢;.:+I(w;; = v) andl(-) is an indicator function.

N
Pjit X exp W(vj))s Vi = + Z Bjists Htw = A+ Z Njtw,  (4)
i=1 J

We can estimatex with the fixed point iteration (Minka, 2000; Asuncion et al., 2009) by introducing
the gamma prio6 (o |ag, bo), i-€.,ar ~ G(atlag, bo)(t =1,...,T), as

ag — 1+ 3 {W (0" + njy) — U(af")}ap
bo + 325 (P(N; +af!?) = ¥(ag'!))

new __
Qg

®)



Algorithm 1 Algorithm 2

VB inference for LDA CVB inference for LDA
1: for iterationit =1,--- ,L do 1: for iterationit =1,--- , L do
2. forj=1,---,Mdo 2. forj=1,---,Mdo
3: fori=1,---,N;do 3: fori=1,-.--,N;do
4: Update¢;,; (t = 1,--- ,T)by 4 Updateg; ; + by Eq. (7)
Eq. (4) 5 Updatern; ; replacinggs'¢, with
5: end for e,
6: ggdate%t (t=1,---,T)byEq. 4 Update n, ., , replacing ¢3¢,
with grew. v
7: end for 7: end for ~
8: Updateu by Eq. (4) 8 endfor
9:  Updatea by Eq. (5) 9:  Updatea by Eq. (5)
10: end for 10: end for

whereag = ), oy, andag andb, are the parameters for the gamma distribution.
Algorithm 1 has the VB inference scheme of LDA.

2.2 Collapsed Variational Bayes Inference for LDA

Teh et al. (2007) proposed CVB-LDA inspired by collapsed Gibbs sampling and found that the con-
vergence of CVB-LDA is experimentally faster than that of VB-LDA, and CVB-LDA outperformed
VB-LDA in terms of perplexity. The CVB-LDA only introduced a variational posterj¢z) where

it marginalized ou® andg3 over the priors. The CVB inference optimizes the following lower bound
given by

Fevela Z > q(2)log W (6)

j=1 =z
The derivation of the update equation fd@e) is slightly complicated and involves approximations
to compute intractable summations. Although Teh et al. (2007) made use of a second-order Taylor
expansion as an approximation, Asuncion et al. (2009) shows the usefulness of an approximation
using only zero-order information. An update using only zero-order information is given by
A+n

tw7,
VA+>, ;j/

where “-j,i” denotes subtracting; ; .. Algorithm 2 provides the CVB inference scheme for LDA.

N
Bjit X (o +n;7"), nje = Z%‘,m, Nty = Z bjiil(wji =v), (7)
i=1 Jrt

3 Deterministic Online Algorithm for LDA

The purpose of this study is to process text data such as news articles and blog posts arriving in
a continuous stream by using LDA. We propose a learning algorithm for LDA that can be applied
to these semi-infinite and time-series text streams. For these situations, we want to process text
one at a time and then discard them. We repeat iterations only for each word within a document.
That is, we update parameters from an arriving document and discard the document aftér doing
iterations. Therefore, we do not need to store statistics about discarded documents. First, we derived
an incremental algorithm for LDA, and then we extended the incremental algorithm to a single-pass
algorithm.

3.1 Incremental Learning

(Neal and Hinton, 1998) provided a framework of incremental learning for the EM algorithm. In
general unsupervised-learning, we estimate sufficient statistifts each data, compute whole



sufficient statisticsr(= ), s;) from all data, and update parameters by usingin incremental
learning, for each data we estimates;, computer () from s; , and update parameters frarf). It

is easy to extend an existing batch algorithm to the incremental learning if whole sufficient statistics
or parameters updates are constructed by simply summarizing all data statistics. The incremental
algorithm processes datdy subtracting olds?'? and adding new?*”, i.e.,c(") = —s2ld 4 snew,

The incremental algorithm needs to store old statisfti¢4’} for all data. While batch algorithms

update parameters sweeping through all data, the incremental algorithm updates parameters for each
data one at a time, which results in more parameter updates than batch algorithms. Therefore, the
incremental algorithm sometimes converge faster than batch algorithms.

3.2 Incremental Learning for LDA

Our motivation for devising the incremental algorithm for LDA was to compare CVB-LDA and
VB-LDA. Statistics{n,,} and{n,.} are updated after each word is updated in CVB-LDA. This
update schedule is similar to that of the incremental algorithm. This incremental property seems to
be the reason CVB-LDA converges faster than VB-LDA. Moreover, since CVB-LDA optimizes a
tighterlower-bound from VB-LDA, CVB-LDA can find better optima. Below, let us consider the
incremental algorithm for LDA. We start by optimizing the lower-bound different form VB-LDA by
using the reverse EM (REM) algorithm (Minka, 2001) as follows:

Ny T v
s /HZH (60;.6B8e.0)" 1 =) (8] ) db; —/HZ (0,45, )p(0]0)db;,
1=1t=1v=1 15>
(8)
T ejvt/BtﬂUji Pjist
> HH<¢H) p(0;]00)db;, .

i=1t=1

NJ T ¢1t
/8th ’ D bt
= : ||9 7t (6 10
(¢Jlt> / |a) ( )

i=1t=1

Equation (9) is derived from Jensen’s inequality as followsy >~ f(z) = log)_, q(x)f(’”; >
Y. q(@) log L8 =log [T, (£9)9) whereY", g(x) = 1, and so5_, f(x) > [T, (L&),
Therefore, the lower bound for the log-likelihood is given by

Z(bj,ztlogﬁtw”-i-z (N%ZaiatﬂratJrZ%”)). (11)

Jriyt t

The maximum ofF [¢(z)] with respect tay(z; ; = t) = ¢, and@ is given by
Bt X Bt exp{ V(o + Z Gjit)}s Bro X A+ Z Njt s (12)
i J

The updates ofv are the same as Eq.(5). Note that we use the maximum a posteriori estiamtion for
3, however, we do not use— 1 to avoid\ — 1 + Zj n; .+, taking a negative value.

The lower boundi'[q(z)} introduces only;(z) like CVB-LDA. Equation (12) incrementally updates
the topic distribution of a document for each word as in CVB-LDA because we do nothpgéul
Eq.(12) due to marginalizing out &;. Equation (12) is a fixed point update, whereas CVB-LDA
can be interpreted as a coordinate ascent algorithiamd3 are updated from the entire document.
That is, when we compare this algorithm with VB-LDA, it looks like a hybrid variant of a batch
updates forx and3, and incremental updates for,

Here, we consider an incremental updateddp be analogous to CVBLDA, in which is updated

for each word. Note that in the LDA setup, each independent identically distributed data point is
a document not a word. Therefore, we incrementally estinfater each document by swapping
statisticsn; ¢, = Z,fvf ¢j.i,:l(w;; = v) which is the number of word generated from topitin
documentj. Algorithm 3 shows our incremental algorithm for LDA. This algorithm incrementally
optimizes the lower bound in Eq.(11).



Algorithm 3 Algorithm 4

Incremental algorithm for LDA Single-pass algorithm for LDA

1: for iterationit =1,--- ,L do 1. forj=1,---,M do

2. forj=1,---,Mdo 2: for iterationit =1,--- ,ldo
3: fori=1,---,N;do 3: fori=1,...,N; do

4: Updateg, ; ; by Eq. (12) 4: Updateg; ; + by Eq. (13).
5: end for 5: endfor

6 Replacen;’ltdv with n7¢% forv € 6 Updateﬁ@ by Eq.(13).

{w;. )Y, in Bof Eq. (12). 7: Updatea ) by Eq.(17).
7:  end for 8 endfor
9: end for 10:  Updateq ) andb by Eq.(17).
11: end for

3.3 Single-Pass Algorithm for LDA

Our single-pass algorithm for LDA was inspired by the Bayesian formulation, which internally
includes a sequential update. The posterior distribution with the contribution from the data point
x is separated out so thatd|{z;} N ,) o« p(zx|0)p(0]{x;};"), whered denotes a parameter.

This indicates that we can use a posterior given an observed datum as a prior for the next datum..
We use parameters learned from observed data as prior parameters for the next data. For example,

Biv in EQ. (12) is represented a& , < {\ + Z;.W’l nj+w}t + Naree. Here, we can interpret

{A+ 25.”_1 Nt} @s prior parametekﬁfff’l) for the M-th document.

Our single-pass algorithm sequentially sets a prior for each arrived document. By using this sequen-
tial setting of prior parameters, we present a single-pass algorithm for LDA as shown in Algorithm

4. First, we update parameters frgjxth arrived document given prior parametéﬁéf 1)} for {
iterations

Gjie 0B, exp{U(af” + 3¢50}, B o AT + Z $jidlwj; =v),  (13)

Where)\g?v) =A andaﬁj )is explained below. Then, we set prior parameters by using statistics from
the document for the next document as follows, and finally discard the document.

N;
MY =AY 43 ¢ al(wy = ). (14)

Since the updates are repeated within a document, we need to store stgfisticsfor each word
in a document, but not for all words in all documents.

In the CVB and iREM algorithms, the Dirichlet parameter, uses batch updates, i.ex,is up-

dated by using the entire document once in one iteration. We need an online-update algorithm for
a to process a streaming text. However, unlike param@ter the update otx in Eq.(5) is not
constructed by simply summarizing sufficient statistics of data and a prior. Therefore, we derive a
single-pass update for the Dirichlet parametaunsing the following interpretation.

We consider Eq.(5) to be the expectationa@foyer posterioiG (o |ay, B) given document® and
a

prior G(a|ao, bo), i-€,07" = B[] (o(a, 5y = —— Where
M B M
Zzt :a0+2aj,t, b:bo+zbj, (15)
jt = {‘I’( ) — ( PN}t by = U(N; + af?) — U(ag'?). (16)



We regardu; ; andb; as statistics for each document, which indicates that the parameters that we

actually update are, andb in Eq.(5). These updates are simple summarizatiorns pandb; and

prior parameters, andby. Therefore, we have an update tmﬁﬁ) after observing documeritgiven

by

~(j) 1
B(
V(e

Oégj) _ E[at] , dz(tj) — &ij*U + ajt, B(J) — E(j_l) + bj; (17)

G(alal?, bWy T

j)
aj0 = {0 +n;,) — U@l b = U(N; + o ) — (Y, (18)

wherea!”) = ao andb© = b,
&EJ_U andbU—1) are used as prior paramters for the ngxh documents.

3.4 Analysis

This section analyze the proposed updates for parametarsl 3 in the previous section.
We eventually update parameter§) and3") given documeng as

bj

L) 0 =1+ 350 aay +agy
t = - .
bo + > ba

bo+ 30 b+ b;

=af V(A —n2) + g b” ng = (19)

G A N e G- st s (Vi=Vic)A+njq,.
tv j—1 - Bt,'u (]' 773 ) + 77_7 ) 77]
Vid+ 220 nag. +nji. Mot Vi + ) e,

(20)

wheren, . = > n., andVj is the vocabulary size of total observed documehis(l, - - - , j). Our
single-pass algorithm sequentially sets a prior for each arrived document, and so we can select a prior
(a dimension of Dirichlet distribution) corresponding to observed vocabulary. In fact, this property

is useful for our problem because the vocabulary size is growing in the text stream. These updates
indicate that)$ andn@ interpolate the parameters estimated from old and new data. These updates
look like a stepwise algorithm (H.Robbins and S.Monro, 1951; Sato and Ishii, 2000), although a
stepsize algorithm interpolates sufficient statistics whereas our updates interpolate parameters. In
our updates, how we set the stepsize for parameter updates is equivalent to how we set the hyper-
parameters for priors. Therefore, we do not need to newly introduce a stepsize parameter.

In our update of3, the appearance rate of wowsdn topic ¢t in documentj, n; ;. /n;+ ., is added

to old parameteﬁt v ) with We|ghtn which gradually decreases as the document is observed.
The same relation holds fax. Therefore the influence of new data decreases as the number of
document observations increases as shown in Theorem 1. Moreover, Theorem 1 is an important
role in analyzing the convergence of parameter updates by using the super-martingale convergence
theorem (Bertsekas and Tsitsiklis, 1996; Brochu et al., 2004). This convergence analysis is our
future work.

Theorem 1. If e andv exist satisfying < e < §; < v for anyj,

S
= (21)
T+ Zd Sq
satisfies
J J

Note that); andnf are shown ag; given by Eq. (21). The proof is given in the supporting material.



4 Experiments

We carried out experiments on document modeling in terms of perplexity. We compared the infer-
ences for LDA in two sets of text data. The first was “Associated Press(AP)” where the number of
documents wad/ = 10,000 and the vocabulary size wds = 67,291. The second was “The Wall
Street Journal(WSJ)” wherk/ = 10,000 andV = 56,738. The ordering of document is time-
series. The comparison metric for document modeling was the “test set perplexity”. We randomly
split both data sets into a training set and a test set by assigtifigf the words in each document

to the test set. Stop words were eliminated in datasets.

We performed experiments on six inferences, PF, VB, CVBO0, CVB, iREM and sREM. PF denotes
the particle filter for LDA used in Canini et al. (2009). We sgtas50/T in PF. The number of
particles, denoted b, is 64. The number of words for resampling, denotedmyis 20. The effec-

tive sample size (ESS) threshold, which controls the number of resamplings, is set at 10. CVBO0 and
CVB are collapsed variational inference for LDA using zero-order and second-order information,
respectively. iREM represents the incremental reverse EM algorithm in Algofith@VBO0 and

CVB estimates the Dirichlet parametearover the topic distribution for all datasets, i.e., a batch
framework. We estimated: in iREM for all datasets like CVB to clarify the properties of iREM
compared with CVBL denotes the number of iterations for whole documents in Algorithaasd

2. SREM indicates a single-pass variants of iREM in Algorithind denotes the number of iterations
within a document in Algorithmd. SREM does not make iterations for whole documents.

Figure 2 demonstrates the results of experiments on the test set perplexity where lower values indi-
cates better performance. We ran experiments five times with different random initializations and
show the averagés PF and SREM calculate the test set perplexity after sweeping through all traing
set.

VB converges slower than CVB and iREM. Moreover, iREM outperforms CVB in the convergence
rate. Although CVBO outperforms other algorithms for the cases of low number of topics, the
convergence rate of CVBO depends on the number of topics. SREM does not outperform iREM in
terms of perplexities, however, the performance of SREM is close to that of IREM

As a results, we recommend sREM in a large number of documents or document streams. sREM
does not need to store old statistics for all documents unlike other algorithms. In addition, the
convergence of SREM depends on the length of a document, rather than the number of documents.
Since we process each document individually, we can control the number of iterations corresponding
to the length of each arrived document. Finally, we discuss the running time. The running time of
SREM isO(%) times shorter than that of VB, CVBO, CVB and iREM. The averaged running times

of PF(T=300,P=64,R=20) are 28.2 hours in AP and 31.2 hours in WSJ. Those of SREM(T=300,I=5)
are 1.2 hours in AP and 1.3 hours in WSJ.

5 Conclusions

We developed a deterministic online-learning algorithm for latent Dirichlet allocation (LDA). The
proposed algorithm can be applied to excess text data in a continuous stream because it processes re-
ceived documents one at a time and then discard them. The proposed algorithm was much faster than
a batch algorithm and was comparable to the batch algorithm in terms of perplexity in experiments.

We exclude the error bar with standard deviation because it is so small that it is hidden by the plot markers
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Figure 2: Results of experiments. Left line indicates the results in AP corpus. Right line indicates
the results in WSJ corpus. (a) and (b) compared test set perplexity with respect to the number of
topics. (c), (d), (e) and (f) compared test set perplexity with respect to the number of iterations
in topicT" = 100 andT = 300, respectively. (g) and (h) show the relationships between test set
perplexity and the number of iterations within a document, i.e.,
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