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Abstract

Communication between a speaker and hearer will be mostestffizhen both
parties make accurate inferences about the other. We stfigheince and com-
munication in a television game called Password, wherekgpganust convey
secret words to hearers by providing one-word clues. Oukingrhypothesis is
that human communication is relatively efficient, and we game show data to
examine three predictions. First, we predict that speakedshearers are both
considerateand that both take the other’s perspective into accountor8k we
predict that speakers and hearerseakbrated and that both make accurate as-
sumptions about the strategy used by the other. Finally, nedigt that speakers
and hearers areollaborative and that they tend to share the cognitive burden of
communication equally. We find evidence in support of alethpredictions, and
demonstrate in addition that efficient communication tetodsreak down when
speakers and hearers are placed under time pressure.

1 Introduction

Communication and inference are intimately linked. Suppdsr example, that Joan states that
some of her pets are dogs. Under normal circumstances, arheiirinfer that not all of Joan’s
pets are dogs on the grounds that Joan would have expressadf lifferently if all of her pets
were dogs [1]. Inferences like these have been widely stuldjelinguists and psychologists [2,
3, 4, 5] and are often encountered in everyday settings. ©mpelling explanation is presented
by Levinson [4], who points out that speaking (i.e. phonaetiticulation) is substantially slower
than thinking (i.e. inference). As a result, communicatihbe maximally efficient if a speaker’s
utterance leaves inferential gaps that will be bridged yttbarer. Inference, however, is not only
the responsibility of the hearer. For communication to ba&imally efficient, a speaker must take
the hearer’s perspective into account (“if | say X, will shéer Y?"). The hearer should therefore
allow for inferences on the part of the speaker (“did shekthivat saying X would lead me to infer
Y?") Considerations of this sort rapidly lead to a game-tb&o regress, and achieving efficient
communication under these circumstances begins to loelalikery challenging problem.

Here we study a simple communication game that allows usgmexinferences made by speakers
and hearers. Inference becomes especially importanttingetvhere speakers are prevented from
directly expressing the concepts they have in mind, and eviiéerances are constrained to be short.
The television showPasswordis organized around a game that satisfies both constrainttid
game, a speaker is supplied with a single, secret word (teewmad) and must communicate this
word to a hearer by choosing a single one-word clue. For el@niphe password is “mend”, then
the speaker might choose “sew” as the clue, and the hearat gugss “stitch” in response. Figure 1
shows several examples drawn from the show—note that conication is successful in the first
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Figure 1: Three rounds from the television game show Pasbw@&iven each password, the top row
plots the forward §;: password— clue) and backwardY,: password— clue) strengths for several
potential clues. The clue chosen by the speaker is circledenGhis clue, the bottom row plots
the forward {{;: clue — guess) and backwardi,: clue < guess) strengths for several potential
guesses. The guess chosen by the hearer is circled and #veopdsgs indicated by an arrow. The
first two columns represent two normal rounds, and the finklnop is a lightning round where
speakers and hearers are placed under time pressure. Ydoggan each plot show words that are
associated with the password (top row) or clue (bottom rovihe University of Southern Florida
word association database. Labels for these words arediediwhere space permits.

example but not in the remaining two. The clues and guessesrgted by speakers and hearers
are obviously much simpler than most real-world linguistiterances, but studying a setting this
simple allows us to develop and evaluate formal models ofraanication. Our analyses therefore
contribute to a growing body of work that uses formal methtodsxplore the efficiency of human
communication [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16].

At first sight the optimal strategies for speaker and heamy seem obvious: the speaker should
generate the clue that is associated most strongly with dakevpord, and the hearer should guess
the word that is associated most strongly with the clue. Nwtgvever, that word associations are
asymmetric. Given a pair of words such as “shovel” and “sndhé forward association (shovel
snow) may be strong but the backward association (skevaiow) may be weak. The third example
in Figure 1 shows a case where communication fails becaesepbaker chooses a clue with a
strong forward association but a weak backward associatdthough the data include examples
like the case just described, we hypothesize that speakdrsemrers are bottonsideratein other
words, that both parties attempt to take the other’s petigdato account. We test this hypothesis
by exploring whether speakers and hearers tend to take laadlagsociations into account when
generating their clues and guesses.

Our second hypothesis is that speaker and hearecaditrated in other words, that both make
accurate assumptions about the strategy used by the o#tkémgThe other person’s perspective into
account is a good start, but is no guarantee of calibratiapp8se, for example, that the speaker
attempts to make the hearer’s task as easy as possible, asides only backward associations
when choosing his clue. This strategy will work best if thaie considers only forward associates
of the clue, but suppose that the hearer considers only lEd@ssociations, on the theory that the
speaker probably generated his clue by choosing a forwaatide. In this case, both parties are
considerate but not calibrated, and communication is ehfito prove successful.



Our third hypothesis is that speakers and hearersadi&borative in other words, that they settle on
strategies that tend to share the cognitive burden of coration. In operationalizing this hypoth-
esis we assume that forward associates are easier for geggda@erate than backward associates.
A pair of strategies can be calibrated but not cooperativeekample, the speaker and hearer will
be calibrated if both agree that the speaker will considérfonward associates, and the hearer will
consider only backward associates. This policy, howesdikély to demand more effort from the
hearer than the speaker, and we propose that speakers aadshveidl satisfy the principle of least
collaborative effort [17, 18] by choosing a calibrated p#istrategies where each person weights
forward and backward associates equally.

To evaluate our hypotheses we use word association dataatgzanthe choices made by game

show contestants. We first present evidence that speakefseaners are considerate and take both
forward and backward associations into account. We theeldgsimple models of the speaker and

hearer, and use these models to explore the extent to whiaksps and hearers weight forward

and backward associations. Our results suggest that sgeake hearers are both calibrated and
collaborative under normal conditions, but that calilmatand collaboration tend to break down

under time pressure.

2 Game show and word association data

We collected data from the Password game show hosted by Aliedden on CBS. Previous re-
searchers have used game show data to explore severalsagpl@giman decision-making [19], but
to our knowledge the game of Password has not been previstigljed. In each game round, a
single English word (the password) is shown to speakers orctunpeting teams. With each team
taking turns, the speaker gives a one-word clue to the haatkthe hearer makes a one-word guess
in return. The team that performs best proceeds tdigjining rounds where the same game is
played under time pressure. Our data set includes passvapelsker-generated clues and hearer-
generated guesses for 100 normal and 100 lightning roumaisied from the show episodes during
1962-1967. Each round includes a single password and m@dtgntultiple clues and guesses from
both teams. For all our our analyses, we use only the first-gluess pair in each round.

The responses of speakers and hearers are likely to depamiflyten word associations, and we
can therefore use word association data to model both spgeakd hearers. We used the word
association database from the University of South Florig¢faR) for all of our analyses [20]. These
data were collected using a free association task, whetieipants were given a cue word and asked
to generate a single associate of the cue. More @686 participants contributed to the database,
and each generated associateslfi-120 English words. To allow for weak associates that were
not generated by these participants, we added a count ofiie toltserved frequency for each cue-
target pair in the database. The forward strerfgth— w;) is defined as the proportion af; trials
wherew; was generated as an associate. The backward stréngiht w;) is proportional to the
forward strengti{fw; — w;) but is normalized with respect to all forward strengths;to

) o (wi = wi)
(w1<_ J) Zk(wk%wi)' (1)

Note that this normalization ensures that both forward amckivard strengths can be treated as
probabilities. The correlation between forward strengtid backward strengths is positive but low
(r = 0.32), suggesting that our game show analyses may be able toatiffate the influence of
forward and backward associations.

The USF database includes associates for a $gtiofwords, and we used this set as the lexicon for
all of our analyses. Some of the rounds in our game show deltadie@ passwords, clues or guesses
that do not appear in this lexicon, and we removed these mueaving 68 password-clue and 68
clue-guess pairs in the normal rounds and 86 password-eling @nd 80 clue-guess pairs in the
lightning rounds. The USF database also includes the frexyuef each word in a standard corpus
of written English [21], and we use these frequencies in ost finalysis.
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Figure 2: (a) Analyses of the speaker and hearer datagnd H ) from the normal rounds. (i)
Ranks of the human responses normalized with respect tohalt words in the lexicon. Ranks are
shown along three dimensions: forward strength backward strengthbf and combined forward
and backward strengths. The dark square shows the meararahihe horizontal lines within the
box show the median and interquartile range. The plus sysrareloutliers. (i) Ranks of the human
responses along the forward and backward dimensions.“NiéXched rank” analysis exploring
whether human responses tend to be better along one of thensglioms than alternatives that are
matched along the other dimension. The four bars on therediach subplot show normalized
counts based on comparisons with matches along ttimension, and the four bars on the right are
based on matches along thdimension. For example, grouph includes human responses that are
better along thé dimension compared to matches along fthe@imension, and groupsb andWb
include cases where human responses are equal to or wonghdéfamatches. Group'f includes
cases where the human response is top ranked alongdimeension. Group8 f, Ef, W f andCb

are defined similarly. (b) Analyses of the lightning rounds.

3 Speakers and hearers are considerate

A speaker should find it easy to generate clues that are stoowgrd associates of a password, and a
hearer should likewise find it easy to generate guessesrthatrang forward associates of a clue. A

consideratespeaker, however, may attempt to generate strong backasodiates, which will make

it easier for the hearer to successfully guess the passWardlarly, a hearer who considers the task

faced by the speaker should also take backward associatestount. This section describes some
initial analyses that explore whether clues and guesseshaped by backward associations.

Figure 2a.i compares forward and backward strengths ascpoesi of the responses chosen by
speakers and hearers. A dimension is a successful preilitterwords chosen by contestants tend
to have low ranks along this dimension with respect tathiés words in the lexicon (rank 1 is the top
rank). We handle ties using fractional ranking, which mehasit is sensible to compare mean ranks
along each dimension. In Figure 2&; andS;, represent forward (password clue) and backward
(password— clue) strengths for the speaker, aHd and H, represent forward (clues guess) and

4



backward (clue— guess) strengths for the hearer. In addition to forward arukward strengths,
we also considered word frequency as a predictor. Acrossrmmimal S and H ) and lightning
(Sr andHp) rounds, the ranks along the forward and backward dimessiom substantially better
than ranks along the frequency dimensipn< 0.01 in pairwise t-tests), and we therefore focus on
forward and backward strengths for the rest of our analyses.

For data setSy the mean ranks suggest that forward and backward strengpieaato predict
choices about equally well. The third dimensis§p + S, is created by combining dimensioSs
andsS,. Word w; dominatesaws if it is superior along one dimension and no worse along themt
and the rank for each word along the combined dimension isthas the number of words that
dominate it. For data séty, the mean rank based on thg + S, dimension is lower than that for
S alone, suggesting that backward strengths make a preglimtintribution that goes beyond the
information present in the forward associations. Note, dx@x, that the difference between mean
ranks forS; andSy 4 S is not statistically significant.

For data sefiy, Figure 2a.i provides little evidence that backward stthagnake a contribution
that goes beyond the forward strengths. Figure 2a.ii plegank of each guess along the dimen-
sions of forward and backward strength. The correlatiowbeh the dimensions is relatively high,
suggesting that both dimensions tend to capture the infiompresent in the other. As a result, the
hearer data satf y may offer little opportunity to explore whether backwardldorward associa-
tions both contribute to people’s responses.

Figure 2a.iii shows the results of an analysis that explareee directly whether each dimension
makes a contribution that goes beyond the other. We compaeld “actual word” (i.e. each clue
or guess chosen by a contestant) to “matched words” that atehed in rank along one of the
dimensions. For example, if the backward dimension mattees the actual words should tend to
be better along the dimension than words that are matched alongjtidémension. The first group
of bars in Figure 2a.iii shows the proportion of actual wait are better®8b), equivalent £b) or
worse (V) along the backward dimension than matches along the fdrdiarension. The3b bar

is higher than the others, suggesting that the backwardrdiioe does indeed make a contribution
that goes beyond the forward dimension. Note that a matclefisetl as a word that is ranked
the same as the actual word, or in cases where there are na treard that is ranked one step
better. The fourth bar({ f, for champion along the forward dimension) includes alkesashere a
word is ranked best along the forward dimension, which méfaaisno match can be found. Our
policy for identifying matches is conservative—all othleinigs being equal, actual words should be
equivalent £b) or worse {¥b) than the matched words, which means that the I&tgbar provides
strong evidence that the backward dimension is importanhindmial test confirms that th8b
bar is significantly greater than th&b bar (p < 0.05). The Bf bar for the speaker data is also
high, suggesting that the forward dimension makes a cattoib that goes beyond the backward
dimension. In other words, Figure 2a.iii suggests that loirtiensions influence the responses of
the speaker.

The results for the hearer datéy provide additional support for the idea that neither din@ms
predicts hearer guesses better than the other. Note, for@e&athat the second group of four bars
in Figure 2a.iii suggests that the forward dimension is metjztive once the backward dimension
is taken into accountH f is smaller thari¥/ f). This result is consistent with our previous finding
that forward and backward strengths are highly correlate¢te case of the hearer, and that neither
dimension makes a contribution after controlling for thieest

Our analyses so far suggest that forward and backward streibgth make independent contri-
butions to the choices made by speakers, but that the heatgeidd not allow us to discriminate
between these dimensions. Figure 2b shows similar andigst lightning rounds. The most no-
table change is that backward strengths appear to play a smualer role when speakers are placed
under time pressure. For example, Figure 2b.i suggestbaiciivard strengths are now worse than
forward strengths at predicting the clues chosen by spesaklative to the results for the normal
roundsSy, the Bb counts forSy, in Figure 2b.iii show a substantial drop3%% decrease) and the
Bf counts show an increase of similar scaj¢’. goodness-of-fit tests show that the distributions
of counts for both{ Bb, Eb, Wb, C f} and{Bf, Ef,W f,Cb} in the lightning rounds significantly
deviate from those in the normal roungs € 0.01). This result provides further evidence that
speakers tend to rely more heavily on forward associatiwans backward associations when placed
under time pressure.



Speaker distributiops (c|w) Hearer distribution gz (w|c)

So (w—c) Hy (c > w)
Sq (w + ¢) H, (c + w)
Sa 04(52) (w—c)+ 5(52)(10 —c) H, ozg) (c = w)+ ﬂg)(c — w)
Sh oz(Sn) (w—c)+ B(Sn) (w + ¢) H, oz(;) (c = w)+ ﬂg)(c +— w)

Table 1. Strategies for speaker and hearer. In each casesumaghat the speaker and hearer
sample words from distributions; (c|w) andp g (w|c) based on the expressions shown. At level O,
both speaker and hearer rely entirely on forward associatesat level 1, both parties rely entirely
on backward associates. For each party, the strategy atdésehe best choice assuming that the
other person uses a strategy at a level lower than

Our previous analyses found little evidence that forward backward strengths make separate
contributions in the case of the hearer, but the lightninth dd;, suggest that these dimensions
may indeed make separate contributions. Figure 2b.iii esiggthat time pressure affects these
dimensions differently: note thdb counts decrease Y% and B f counts increase b§4%. x>2
tests confirm that the distributions éBb, Eb, Wb, C f} and{Bf, Ef, W f, Cb} in the lightning
rounds significantly deviate from those in the normal roufpds. 0.01), suggesting that the hearer
(like the speaker) tends to rely on forward strengths ratthem backward strengths in the lightning
rounds.

Taken together, the full set of results in Figure 2 suggésisthe responses of speakers and hearers
are both shaped by backward associates—in other wordshditiatparties are considerate of the
other person’s situation. The evidence in the case of thakgpeés relatively strong and all of the
analyses we considered suggest that backward associptayna role. The evidence is weaker in
the case of the hearer, and only the comparison between hanadightning rounds suggests that
backward associations play some role.

4 Efficient communication: calibration and collaboration

Our analyses so far provide some initial evidence that sgrsadnd hearers are both influenced by
forward and backward associations. Given this result, we cansider a model that explores how
forward and backward associations are combined in gengratiesponse.

4.1 Speaker and hearer models

Since both kinds of associations appear to play a role, wioexp simple speaker model which
assumes that the cluechosen for the passwotdis sampled from a mixture distribution

ps(cw) = ag(w = ¢) + Bs(w + ¢) (2)

where(w — ¢) indicates the forward strength fromto ¢, (w < ¢) indicates the backward strength
from ¢ to w, andag and gg are mixture weights that sum to 1. The corresponding heaoeiein
assumes that guessgiven cluec is sampled from the mixture distribution

pr(wle) = ag(c = w) + Bu(c + w). 3)

Several possible mixture distributions for speaker anddreare shown in Table 1. For example,
the level O distributions assume that speaker and hearerdlgtentirely on forward associates, and
the level 1 distributions assume that both rely entirely ankivard associates. By fitting mixture
weights to the game show data we can explore the extent tdwsp&aker and hearer rely on forward
and backward associations.

The mixture models in Equations 2 and 3 can be derived by d@eguthat the hearer relies on
Bayesian inference. Using Bayes’ rule, the hearer digiohy  (w|c) can be expressed as

pr(wlc) o« ps(clw)p(w). (4)



To simplify our analysis we make three assumptions. Firstassume that the pripfw) in Equa-
tion 4 is uniform. Second, we assume that contestants areopéianal in many respects but that
they sample rather than maximize. In other words, we asshatehe hearer samples a guess
from the distributiorp i (w|c) in Equation 4, and that the speaker samples a clue from gbdistm
ps(clw) o« pg(w|c). Finally, we assume that the normalizing constant in Eguati is 1 for all
wordsw;. This assumption seems reasonable since for our smootheedatahe mean value of the
normalizing constant is 1 and the standard deviation is.@@4 final assumption simplifies matters
considerably since it implies thét; — w,;) = (w; + w;) for all pairsw; andw;.

Given these assumptions it is straightforward to show thatével O strategies in Table 1 are the
best responses to the level 1 strategies, and vice versaxgomle, if the speaker uses strateéfgy
and samples a cluefrom the distributionps(clw) = w — ¢, then Equation 4 suggests that the
hearer should sample a gues$rom the distributiornpy (clw) « (w — ¢) = (¢ + w). Similarly,

if the speaker uses the stratefjyand samples a cluefrom the distributiorps(c|w) = (w + ¢),
then Equation 4 suggests that the hearer should sample sugtiesn the distributionp g (c|w) o
(w+¢) = (c = w).

Suppose now that the hearer is uncertain about the strassgl/hy the speaker. A level 2 hearer
assumes that the speaker could use stratiggyr strategyS; and assigns prior probabilities 6f,{2)

and ag) to these speaker strategies. Sirée is the appropriate response $ and Hy is the
appropriate response £, the level 2 hearer should sample from the distribution

pr(wlc) = p(Si)pr(wlc,S1) + p(So)pu(wle, So)
= ag) (c = w)+ Bg) (¢ + w). (5)
More generally, suppose that a levelhearer assumes that the speaker uses a strategy from the
set{So, S1,.-.,Sn,-1}. Since the appropriate response to any one of these s&atisgh mixture

similar to Equation 5, it follows that stratedy,, is also a mixture of the distributiorisx — ¢) and

(w + ¢). A similar result holds for the speaker, and stratégyin Table 1 also takes the form of

a mixture distribution. Our Bayesian analysis thereforggasts that efficient speakers and hearers
can be characterized by the mixture models in Equations 3and

Some pairs of mixture models acalibratedin the sense that the hearer model is the best choice
given the speaker model and vice versa. Equation 4 implegsctilibration is achieved when the
forward weight for the speaker matches the backward weighthfe hearerd{s = 5g) and the
backward weight for the speaker matches the forward weighthie hearerfs = ag). If game
show contestants achieve efficient communication, theturaxveights fit to their responses should
come close to satisfying this calibration condition.

There are many sets of weights that satisfy the calibratwrdition. For example, calibration is
achieved if the speaker uses stratéfgyand the hearer uses strateffy. If generating backward
associates is more difficult than thinking about forwardagges, this solution seems unbalanced
since the hearer alone is required to think about backwatéses. Consistent with the principle
of least collaborative effort, we make a second predictiaat speaker and hearer will collaborate
and share the communicative burden equally. More preciselpredict that both parties will assign
the same weight to backward associates andihatill equal 5. Combining our two predictions,
we expect that the weights which best characterize humaomnsss will havers = 8s = ag =

Bm = 0.5.

4.2 Fitting forward and backward mixture weights to the data

To evaluate our predictions we assumed that the speakeeandrtare characterized by Equations 2
and 3 and identified the mixture weights that best fit the gdrowslata. Assuming that the game
rounds are independent, the log likelihood for the spealt id

M M
L=log [] P(c™w™) =) [aslog(w™ = ¢™) + Bslog(w™ « ¢™)] (6)
m=1 m=1
and a similar expression is used for the hearer data. We fiteightsa g andSg by maximizing the

log likelihood in Equation 6. Since this likelihood term isrvex and there is a single free parameter
(s +Bs = 1), the global optimum can be found by a simple line searchiheerangd) < ag < 1.
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Figure 3: (a) Fitted mixture weights for the speak8) &nd hearer /) models based on boot-
strapped normal (N) and lightning (L) rounds.andj are weights on the forward and backward
strengths. (b) Log-ratios ak and 5 weights estimated from bootstrapped normal and lightning
rounds. (c) Average response times for speakers choodieg elnd hearers choosing guesses in
normal and lightning rounds. Averages are computed ovep8Ads randomly sampled from the
game show.

We ran separate analyses for normal and lightning roundsramsimilar analyses for the hearer
data. 1000 estimates of each mixture weight were computed by bootsinggyame show rounds
while keeping tallies of normal and lightning rounds consta

Consistent with our predictions, the results in Figure 3ggsst that all four mixure weights for
the normal rounds are relatively close@®. Both speaker and hearer appear to weight forward
associates slightly more heavily than backward associbtg8.5 is within one standard deviation
of the bootstrapped estimates in all four cases. The liggtnbunds produce a different pattern
of results and suggest that the speaker now relies much neanglyr on forward than backward
associates. Figure 3b shows log ratios of the mixture wejgimnd indicates that these ratios lie close
to 0 (i.e.«a = p) in all cases except for the speaker in the lightning rouRdsther confidence tests
show that the percentage of bootstrapped ratios exceédind)0% for the speaker in the lightning
rounds, buB5% or lower in the three remaining cases. Consistent with oevipus analyses, this
result suggests that coordinating with the hearer reqsioese effort on the part of the speaker,
and that this coordination is likely to break down under tipnessure. The fitted mixture weights,
however, do not confirm the prediction that time pressureasdldifficult for the hearer to consider
backward associations. Figure 3c helps to explain why mexteeights for the speaker but not the
hearer may differ across normal and lightning rounds. Tlifergince in response times between
normal and lightning rounds is substantially greater fersheaker than the hearer, suggesting that
any differences between normal and lightning rounds aresrilagly to emerge for the speaker than
the hearer.

5 Conclusion

We studied how speakers and hearers communicate in a vepjesgontext. Our results suggest
that both parties take the other person’s perspective iotoumnt, that both parties make accurate
assumptions about the strategy used by the other, and thattden of communication is equally
divided between the two. All of these conclusions suppagtittea that human communication
is relatively efficient. Our results, however, suggest #féitient communication is not trivial to
achieve, and tends to break down when speakers are placedtimd pressure.

Although we worked with simple models of the speaker andéreante that neither model is in-
tended to capture psychological processing. Future stugdia explore how our models might be
implemented by psychologically plausible mechanisms.example, one possibility is that speak-
ers sample a small set of words with high forward strengtiesy thoose the word in this sample
with greatest backward strength. Different processingef®ohight be considered, but we believe
that any successful model of speaker or hearer will needdade some role for inferences about
the other person.
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