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Abstract

This paper discusses the topic of dimensionality redudoork-means clustering. We prove that
any set ofn points ind dimensions (rows in a matrix € R**%) can be projected intbo= Q(k/c?)
dimensions, for any € (0,1/3), in O(nd[s?k/log(d)]) time, such that with constant probability
the optimalk-partition of the point set is preserved within a factoRof . The projection is done
by post-multiplyingA with ad x ¢ random matrixR having entriest1/+/t or —1/+/t with equal
probability. A numerical implementation of our techniquelaxperiments on a large face images
dataset verify the speed and the accuracy of our theoregisalts.

1 Introduction

The k-means clustering algorithrin [16] was recently recognizedree of the top ten data mining tools of the last fifty
years[[20]. In parallel, random projections (RP) or the albed Johnson-Lindenstrauss type embeddings [12] became
popular and found applications in both theoretical compsiteence([2] and data analytids [4]. This paper focuses on
the application of the random projection method (see Seid) to thek-means clustering problem (see Definition
). Formally, assuming as input a setropoints ind dimensions, our goal is to randomly project the points ihto
dimensions, withi < d, and then apply &-means clustering algorithm (see Definitidn 2) on the ptej@points. Of
course, one should be able to compute the projection fakbufitdistorting significantly the “clusters” of the origina
point set. Our algorithm (see Algorithoh 1) satisfies bothditons by computing the embedding in time linear in the
size of the input and by distorting the “clusters” of the databy a factor of at mogt+ ¢, for somes € (0,1/3) (see
Theorenf ). We believe that the high dimensionality of madkata will render our algorithm useful and attractive in
many practical applications][9].

Dimensionality reduction encompasses the union of twaerhffit approachegeature selectionwhich embeds the
points into a low-dimensional space by selecting actuakdisions of the data, aridature extractionwhich finds an
embedding by constructing new artificial features that Bmeexample, linear combinations of the original features.
Let A be ann x d matrix containingn d-dimensional points4 ;) denotes the-th point of the set), and let be
the number of clusters (see also Secfiod 2.2 for more nadatid/e slightly abuse notation by also denoting 4y
the n-point set formed by the rows od. We say that an embeddinfy: A — R? with f(Au) = Ag) for all

1 € [n] and somel < d, preserves the clustering structureAfwithin a factor¢, for some¢ > 1, if finding an
optimal clustering inA and plugging it back tad is only a factor of¢ worse than finding the optimal clustering
directly in A. Clustering optimality and approximability are formallygsented in Definitiorls| 1 ahd 2, respectively.
Prior efforts on designing provably accurate dimensidapaéiduction methods fde-means clustering includéi) the
Singular Value Decomposition (SVD), where one finds an erdimegwith imageA = U, %, € R™** such that the
clustering structure is preserved within a factor of t@i);random projections, where one projects the input points int
t = Q(log(n)/e?) dimensions such that with constant probability the cluistestructure is preserved within a factor
of 1 + ¢ (see Section 21 3jii) SVD-based feature selection, where one can use the SVD to finf(k log(k /<) /?)
actual features, i.e. an embedding with imalge R™*¢ containing (rescaled) columns fras such that with constant
probability the clustering structure is preserved withiiaetor of2 + . These results are summarized in Tdble 1. A
head-to-head comparison of our algorithm with existingiltssallows us to claim the following improvements)



Year Ref. Description Dimensions Time Accuracy
1999 [§] SVD - feature extractior] k O(ndmin{n,d}) 2

- Folklore | RP -feature extraction| Q(log(n)/c?) O(nd[e~?log(n)/log(d)]) 1+e¢
2009 B SVD - feature selection| Q(klog(k/e)/e?) O(ndmin{n, d}) 2+¢
2010 | This paper| RP - feature extraction Q(k/e?) O(nd[e%k/log(d)]) 2+¢

Table 1:Dimension reduction methods férmeans. In the RP methods the construction is done with rargign matrices and
the mailman algorithm (see Sectidns]|2.3 3.1, respégtive

reduce the running time by a factor ofin{n, d}[? log(d)/k], while losing only a factor of in the approximation
accuracy and a factor df/e? in the dimension of the embeddingi) reduce the dimension of the embedding and
the running time by a factor dbg(n)/k while losing a factor of one in the approximation accurgay), reduce the
dimension of the embedding by a factorlof;(k/<) and the running time by a factor efin{n, d}[e?log(d)/k],
respectively. Finally, we should point out that other teghes, for example the Laplacian scores| [10] or the Fisher
scores([7], are very popular in applications (see also gsrea the topic[[8, 13]). However, they lack a theoretical
worst case analysis of the form we describe in this work.

2 Preliminaries

We start by formally defining the-means clustering problem using matrix notation. Latehis $ection, we precisely
describe the approximability framework adopted in thmeans clustering literature and fix the notation.

Definition 1. [THE K-MEANS CLUSTERING PROBLEM
Given a set of: points ind dimensions (rows in an x d matrix A) and a positive integet denoting the number of
clusters, find the: x k& indicator matrix X,,: such that

Xope = arg min [ A - XX T Al (1)

HereX’ denotes the set of all x k indicator matricesy. The functionalF (4, X) = |4 — XXTAHi is the so-called
k-means objective function. An x k indicator matrix has exactly one non-zero element per rokickvdenotes
cluster membership. Equivalently, for al= 1,... , nandj = 1,..., k, thei-th point belongs to thg-th cluster if
and only if X;; = 1/, /z;, wherez; denotes the number of points in the corresponding clustete thatX " X = I,
wherel}, is thek x k identity matrix.

2.1 Approximation Algorithms for k-means clustering

Finding X,,; is an NP-hard problem even fér = 2 [3], thus research has focused on developing approximation
algorithms fork-means clustering. The following definition captures ttafework of such efforts.

Definition 2. [K-MEANS APPROXIMATION ALGORITHM]
An algorithm is a “y-approximation” for thek-means clustering problemy (> 1) if it takes inputsA and k, and
returns an indicator matrixX’, that satisfies with probability at lea$t— ¢.,,
T 2 . T 2
HA_X'YX’Y AHFSVQEII}(HA_XX AHF' @)
In the abovey,, € [0, 1) is the failure probability of the,-approximationk-means algorithm.

For our discussion, we fix thg-approximation algorithm to be the one presentedin [14]ctviguarantees = 1 +¢’
for anye’ € (0, 1] with running timeO 2/ dn).

2.2 Notation

Given ann x d matrix A and an integek with & < min{n, d}, let U, € R™** (resp. V}, € R¥**) be the matrix
of the topk left (resp. right) singular vectors of, and letZ;, € R*** be a diagonal matrix containing the top



k singular values ofd in non-increasing order. If we lgt be the rank of4, thenA,_;, is equal toA — Ay, with

A = UkEkaT. By A(;) we denote thé-th row of A. For an index taking values in the sdftl,...,n} we write

i € [n]. We denote, in non-increasing order, the non-negativeusaingyalues ofA by o;(A) with i € [p]. || A/ and

| A||, denote the Frobenius and the spectral norm of a matrbespectivelyAt denotes the pseudo-inversefi.e.
the uniqued x n matrix satisfyingA = AATA, ATAAT = AT, (AAT)T = AAT, and(ATA)T = ATA. Note also
that||AT||, = 1(AT) = 1/0,(A) and | A, = 1(A) = 1/0,(AT). A useful property of matrix norms is that for
any two matrice€’ andT’ of appropriate dimension$CT'||- < ||C|| ||T'||,; this is a stronger version of the standard
submultiplicavity property. We calP a projector matrix if it is square and> = P. We useE [Y] and VarY] to take
the expectation and the variance of a random varigbéadP (e) to take the probability of an eveat We abbreviate
“independent identically distributed” to “i.i.d.” and “#i probability” to “w.p.”. Finally, all logarithms are baseo.

2.3 Random Projections

A classical result of Johnson and Lindenstrauss stateatlyat-point set ind dimensions - rows in a matriA € R"*¢

- can be linearly projected into= Q(log(n)/c?) dimensions while preserving pairwise distances withinciofaof
14 using a random orthonormal matrix |12]. Subsequent rebesanaplified the proof of the above result by showing
that such a projection can be generated usidga random Gaussian matrik, i.e., a matrix whose entries are i.i.d.
Gaussian random variables with zero mean and variapgé [L1]. More precisely, the following inequality holds
with high probability over the randomness Bf

(1 =9 |[Aw = Apll, < |[AnR = AR, < (1 +¢) [Aw — Ap) |, - ®)

Notice that such an embedding= AR preserves the metric structure of the point-set, so it alesgrves, within a
factor of 1 + ¢, the optimal value of thé&-means objective function od. Achlioptas proved that even a (rescaled)
random sign matrix suffices in order to get the same guaraateabove [1], an approach that we adopt here (see step
two in Algorithm[d). Moreover, in this paper we will heavilxgloit the structure of such a random matrix, and obtain,
as an added bonus, savings on the computation of the pijecti

3 A random-projection-type k-means algorithm

Algorithm[ takes as inputs the matrikc R”*<, the number of clusters, an error parameterc (0,1/3), and some
~-approximatiork-means algorithm. It returns an indicator matkix determining &-partition of the rows ofA.

Input: n x d matrix A (n points,d features), number of clusteks error parameter € (0,1/3), and
~-approximatiork-means algorithm.
Output: Indicator matrixX 5y determining &-partition on the rows ofd.

1. Sett = Q(k/e?), i.e. sett = t, > ck/<? for a sufficiently large constamt
2. Compute a randomh x ¢ matrix R as follows. For all € [d], j € [t]

R +1/Vt,w.p. 112
Y —1/VE wp. 1/2
3. Compute the product = AR.
4. Run they-approximation algorithm orl to obtainX; Return the indicator matrix(

Algorithm 1 : A random projection algorithm fat-means clustering.

3.1 Running time analysis

Algorithm [T reduces the dimensions df by post-multiplying it with a random sign matri. Interestingly, any
“random projection matrix’R that respects the properties of Lemimha 2 with Q(k/e?) can be used in this step. K
is constructed as in Algorithfd 1, one can employ the so-gatiailman algorithm for matrix multiplication [15] and



compute the product R in O(nd[e~2k/1og(d)]) time. Indeed, the mailman algorithm computes (after pregssing
M) a matrix-vector product of ang-dimensional vector (row ofl) with and x log(d) sign matrix inO(d) time.
By partitioning the columns of oud x ¢ matrix R into [t/log(d)] blocks, the claim follows. Notice that when
k = O(log(d)), then we get an - almost - linear time complexitynd/c?). The latter assumption is reasonable in our
setting since the need for dimension reductioh4means clustering arises usually in high-dimensional flatged).
Other choices of? would give the same approximation results; the time comfyléx compute the embedding would
be different though. A matrix where each entry is a randomsSian variable with zero mean and variange/t
would imply anO(knd/e?) time complexity (naive multiplication). In our experimerih Sectio b we experiment
with the matrix R described in Algorithni]l and employ MatLab’s matrix-matBkAS implementation to proceed
in the third step of the algorithm. We also experimented waithovel MatLab/C implementation of the mailman
algorithm but, in the general case, we were not able to oftpaMatLab’s built-in routines (see sectibnb.2).

Finally, note that anyy-approximation algorithm may be used in the last step of Atgm[I. Using, for example,
the algorithm of [14] withy = 1 +  would result in an algorithm that preserves the clusteriitfin a factor of

2 + ¢, for anye € (0,1/3), running in timeO(nd[~2k/ log(d)] + 2(k/9°" kn/<2). In practice though, the Lloyd
algorithm [16,/17] is very popular and although it does nan#cd worst case theoretical analysis, it empirically
does well. We thus employ the Lloyd algorithm for our expeimal evaluation of our algorithm in Sectibh 5. Note

that, after using the proposed dimensionality reductiothiod; the cost of the Lloyd heuristic is oniy(nk?/c2) per
iteration. This should be compared to the cosb¢knd) per iteration if applied on the original high dimensionatala

4 Main Theorem

TheorentlL is our main quality-of-approximation result fdgérithm[l. Notice that ify = 1, i.e. if the k-means
problem with inputsd andk is solved exactly, Algorithfil1 guarantees a distortion ahast2 + ¢, as advertised.

Theorem 1. Let then x d matrix A and the positive integét < min{n, d} be the inputs of thé-means clustering
problem. Let € (0,1/3) and assume access toyaapproximationk-means algorithm. Run Algorithimh 1 with inputs
A, k, €, and they-approximation algorithm in order to construct an indicatmatrix X ;. Then with probability at
least0.97 — 4.,

A= X5XT A2 < (L4 (L+e)7) | A = Xop XL, AllL. (4)

Proof of Theorem[1

The proof of Theorerll employs several results from [19]uditig Lemmat, 8 and Corollaryl1. We summarize
these results in Lemnia 2 below. Before employing CorollaryLemmat, and Lemmas from [19] we need to make
sure that the matrix® constructed in Algorithril]1 is consistent with Definitiorand Lemméb in [19]. Theoremi.1
of [I] immediately shows that the random sign matfiof Algorithm[ satisfies Definition and Lemméb in [19].

Lemma 2. Assume that the matrik is constructed by using Algorithih 1 with inputs & ande.

1. Singular Values Preservation: For alle [k] and w.p. at least.99,
I1—0;(V,/R)| <e.

2. Matrix Multiplication: For any two matrice$ € R"*¢ andT € R?**,

2
B[||lsT - SRRTT] < S ISIRITIR

3. Moments: For any’' € R"*4: E {HCRHQ = ||C||? and Var[||CR||¢] < 2]|C|1# /t.

The first statement above assunedseing sufficiently large (see stepof Algorithm[d). We continue with several
novel results of general interest.

'Reading the inputl x log d sign matrix require®(d log d) time. However, in our case we only consider multiplicaticithw
arandomsign matrix, therefore we can avoid the preprocessing sgegirectly computing a randornorrespondencenatrix as
discussed il [15, Preprocessing Section)].



Lemma 3. Under the same assumptions as in Leriina 2 and w.p. at(exst

| B - WTRT|, < s (5)

Proof. Let® = V, R; note thatb is ak x t matrix and theSV D of ® is ® = UsXoVy , wherelUs andSq arek x k
matrices, and’y is at x k matrix. By taking the SVD o(V,CTR)T and(V,' R)T we get

|07 R~ TR, = vass Ui —vasatd ], = Va(Sg! -~ Sa)UE ], = (25~ Sl
sinceVp andU, can be dropped without changing any unitarily invariantmotet ¥ = 2;1 —Yg;, Visak x k

diagonal matrix. Assuming that, for alle [k], o;(®) andr;(¥) denote the-th largest singular value @b and the
i-th diagonal element oF, respectively, it is

1 —0y(®)ogy1-:(P) .

Ti(¥) =
Ok+1—i
SinceV is a diagonal matrix,
1—0;(®P i(P
|], = max 75(¥) = max 7i(®)on+1-:(P)
1<i<k 1<i<k Ort1—i(P)

The first statement of Lemnid 2, our choiceeofe (0,1/3) and elementary calculations suffice to conclude the
proof. O

Lemma 4. Under the same assumptions as in Leriina 2 and fomaryl matrix C' w.p. at leas.99,

ICRlle < V(1 +2)[IC]e- (6)

Proof. Notice that there exists a sufficiently large constastich that > ck/c2. Then, settingZ = ||CR|2, using
the third statement of Lemnid 2, the fact that 1, and Chebyshev’s inequality we get

var(z] _ 2|Clle _ 2 _
2||Clle ~ te2||Clle ~ ck

The last inequality follows assumingsulfficiently large. Finally, taking square root on both sidmncludes the
proof. O

0.01.

P(12-E[Z]| 2 [Cl}) <

Lemma 5. Under the same assumptions as in Leriina 2 and w.p. at0exst

A= (AR)(V, RV + B, (7)
whereFE is ann x d matrix with | || < 4e [|[A — Ay ||

Proof. Since(AR)(V,IR)TVkT is ann x d matrix, let us writeE = A; — (AR)(V,IR)TV,I. Then, settingd =
Ay, + A,_i, and using the triangle inequality we get

18l < |4 - ARWTBVT| 4+ ARG R)VT

The first statement of Lemma 2 implies that révik R) = k thus(VkTR)(V,jR)Jr = Iy, wherel is thek x k identity
matrix. Replacingd;, = U, %V, and settiankTR)(VkTR)T = I;, we get that

HAk —AkR(VkTR)TVkTHF - HAk UV RV R VT H Ak — UV || = 0.

Ie

To bound the second term above, we digp, add and subtract the matrik,_, R(V,' R)"V,", and use the triangle
inequality and submultiplicativity:

IN

HAp,kR(VkTR)TVkTHF |4,k ROV R) | + HAP WRVTR) - H

A

|40 4 BRTV,

+ 14Rlle (VT R) —wfmlg



Now we will bound each term individually. A crucial obsereat for bounding the first term is that,_,V;, =
Up—12,— kV « Ve = 0 by orthogonality of the columns df;, andV,,_;. This term now can be bounded using the
second statement of Lemrh 2 with= A,_;, andT = V;. This statement, assumingsufficiently large, and an
application of Markov's inequality on the random vanaﬁlﬁp KRRV, — Ay ik Vi ||F give that w.p. at leat.99,

|Ap—k RR" Vi p < 0.5 [|Ap—plle-- (8)

The second two terms can be bounded using Lefima 3 and LEmm@ 4-0A,,_ .. Hence by applying a union bound
on LemmdB, Lemmd 4 and Ind (8), we get that w.p. at [@&4t,

T
1Ele < [|4p-sRRTVi [ + 14, Rl [ (TR = (WTR)T]|

< 0.5¢ [ Apillp+ T+ &) 1 Apille - 3¢
< 0.5e | Ayl + 3.5e [|Ap—ille
= de- [ Apillp-
The last inequality holds thanks to our choicesaf (0,1/3). O

Proposition 6. A well-known property connects the SVD of a matrix &ndeans clustering. Recall Definitibh 1, and

notice thaththoptA is a matrix of rank at most. From the SVD optimality we immediately get that

2
4ol = 1A= AllF < [|A = XopeXgp Al - (©)
4.1 The proof of Eqn. (@) of Theorem[d

We start by manipulating the terfid — X XTAHi in Eqn. [4). Replacingd by A, + A,_;, and using the
Pythagorean theorem (the subspaces spanned by the conmpdnpen X XTA;C and A, XiX;Ap_k are
perpendicular) we get

|A-XXTAllE = (0= X5xXD A + |I0 - XX 4,7 (10)

I

02 02

We first bound the second term of EqR.](10). Sidce X5 XT is a projector matrix, it can be dropped without
increasing a unitarily invariant norm. Now Propositidn aoiras that

9% < HAp—k”F = HA XOPtXOptAH?:' (11)
We now bound the first term of Eqifi. {10):

0 < |- XXDARVR) V| + 1B, (12)

< ||(t—)gX;),ztR||FH(VkR)TH2 + B, (13)

< VAT = Xow X AR| | (ViR) *H + 1|Elle (14)

< VIV +e) (= XopX oy AHFl + de ||[(I = Xopt X ) Al (15)

< VA +2.58) [(T = Xope X o) Al - +\/—45H (I = Xopt X o)Al (16)

< VAL +6.5¢) [|(T = Xopt X ) Al - (17)

In Eqn. [12) we used Lemnha 5, the triangle inequality, anddbethat/ — XWXVT is a projector matrix and can be
dropped without increasing a unitarily invariant norm. lgr (I3) we used submultiplicativity (see Secfion 2.2) and
the fact that/,” can be dropped without changing the spectral norm. In Eg#). W replaced\5 by X,,: and the
factor /v appeared in the first term. To better understand this stejgenthat X5 gives ay-approximation to the
optimal k-means clustering of the matrit?, and any othern x k indicator matrix (for example, the matriX,,,;)
satisfies )

(I - XsX7) AR||. < min, [|(7 - XX AR} <~|(I — XopX],) AR|>.
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Figure 1: The results of our experiments after running Allpon 1 with &£ = 40 on the face images collection.

In Eqn. [I5) we used Lemnia 4 with = (I — X,,: X} .)A, Lemma8 and Propositidd 6. In EqA.116) we used the

opt

fact thaty > 1 and that for any € (0,1/3) itis (v1+¢)/(1 —¢) < 1+ 2.5¢. Taking squares in Eqri_{lL7) we get

62 < (1 +288) || (I = Xopt Xop) A2

opt

Finally, rescaling: accordingly and applying the union bound on Lenifha 5 and Difiri) concludes the proof.

5 Experiments

This section describes an empirical evaluation of Algeniffi on a face images collection. We implemented our
algorithm in MatLab and compared it against other promim#miensionality reduction techniques such as the Local
Linear Embedding (LLE) algorithm and the Laplacian scomsféature selection. We ran all the experiments on a
Mac machine with a dual core 2.26 Ghz processor and 4 GB of RAWM. empirical findings are very promising
indicating that our algorithm and implementation could leeyvuseful in real applications involving clustering of
large-scale data.

5.1 An application of Algorithm 1 on a face images collection

We experiment with a face images collection. We downloatiedrmages corresponding to the ORL database from
[27]. This collection containg00 face images of dimensiorigl x 64 corresponding td0 different people. These
images formi0 groups each one containing exactly different images of the same person. After vectorizing each
2-D image and putting it as a row vector in an appropriate imabne can construct &00 x 4096 image-by-pixel
matrix A. In this matrix, objects are the face images of the ORL ctithecwhile features are the pixel values of the
images. To apply the Lloyd’s heuristic oty we employ MatLab’s functiodmeans with the parameter determining
the maximum number of repetitions setting3th We also chose a deterministic initialization of the Llayderative
E-M procedure, i.e. whenever we calheans with inputs a matrixd € R*0%4 with d > 1, and the integek = 40,

we initialize the cluster centers with thest, 11-th,...,391-th rows of A, respectively. Note that this initialization
corresponds to picking images from the forty different gr@wof the available collection, since the images of every
group are stored sequentially i We evaluate the clustering outcome from two different pecsives. First, we
measure and report the objective functibrof the k-means clustering problem. In particular, we report a ndized
version of F, i.e. ' = F/||A||%. Second, we report the mis-classification accuracy of theteting result. We
denote this number b (0 < P < 1), whereP = 0.9, for example, implies tha10% of the objects were assigned
to the correct cluster after the application of the clusgalgorithm. In the sequel, we first perform experiments by
running Algorithn[1 with everything fixed but which denotes the dimensionality of the projected dateenT tior
four representative values 6f we compare Algorithrill with three other dimensionalityuetibn methods as well
with the approach of running the Lloyd’s heuristic on thegaral high dimensional data.

We run Algorithn{1 witht = 5, 10, ..., 300 andk = 40 on the matrixA described above. Figufe 1 depicts the results
of our experiments. A few interesting observations are iuhiate. First, the normalized objective functidhis a
piece-wise non-increasing function of the number of dinmwst. The decrease ift' is large in the first few choices



t=10 t=20 t=50 t=100
P F P F P F P F
SVD || 0.5900| 0.0262|| 0.6750| 0.0268|| 0.7650| 0.0269| 0.6500| 0.0324
LLE || 0.6500| 0.0245|| 0.7125| 0.0247|| 0.7725| 0.0258|| 0.6150| 0.0337
LS 0.3400| 0.0380|| 0.3875| 0.0362|| 0.4575| 0.0319|| 0.4850| 0.0278
HD 0.6255| 0.0220]| 0.6255| 0.0220|| 0.6255| 0.0220|| 0.6255| 0.0220
RP 0.4225| 0.0283|| 0.4800| 0.0255|| 0.6425| 0.0234|| 0.6575| 0.0219

Table 2: Numerics from our experiments with five differenthwoels.

of t; then, increasing the number of dimensions the projected data decreadésy a smaller value. The increase
of t seems to become irrelevant after arowrd 90 dimensions. Second, the mis-classification #atis a piece-wise
non-decreasing function @f The increase of seems to become irrelevant again after arourd 90 dimensions.
Another interesting observation of these two plots is that iis-classification rate is not directly relevant to the
objective functionF'. Notice, for example, that the two have different behavionf¢ = 20 to ¢t = 25 dimensions.
Finally, we report the running tim€ of the algorithm which includes only the clustering steptibthat the increase
in the running time is - almost - linear with the increase .offhe non-linearities in the plot are due to the fact that
the number of iterations that are necessary to guaranteeigence of the Lloyd’s method are different for different
values oft. This observation indicates that small valueg oésult to significant computational savings, especially
whenn is large. Compare, for example, the one second running tiraeis needed to solve themeans problem
whent = 275 against thel0 seconds that are necessary to solve the problem on the higdndional data. To our
benefit, in this case, the multiplicatiofiz takes only0.1 seconds resulting to a total running timelof seconds
which corresponds to an almasi% speedup of the overall procedure.

We now compare our algorithm against other dimensionadiuction techniques. In particular, in this paragraph
we present head-to-head comparisons for the following fiethods: (i) SVD: the Singular Value Decomposition
(or Principal Components Analysis) dimensionality reduttpproach - we use MatLabsds function; (ii) LLE:
the famous Local Linear Embedding algorithm [of][18] - we use MatLab code from [23] with the parametkr
determining the number of neighbors setting equabidiii) LS: the Laplacian score feature selection methodidf [

- we use the MatLab code from[22] with the default paramBtév3 HD: we run thek-means algorithm on the High
Dimensional data; and (vi) RP: the random projection metlvecproposed in this work - we use our own MatLab
implementation. The results of our experimentsit = 40 andt = 10, 20, 50, 100 are shown in Tablel2. In terms of
computational complexity, for example= 50, the time (in seconds) needed for all five methods (only theedision
reduction step) arésyp = 5.9, T = 4.4, Trs = 0.32, Typ = 0, andTrp = 0.03. Notice that our algorithm
is much faster than the other approaches while achievingenpr= 10, 20), slightly worse { = 50) or slightly better

(t = 100) approximation accuracy results.

5.2 A note on the mailman algorithm for matrix-matrix and mat rix-vector multiplication

In this section, we compare three different implementatioithe third step of Algorithral1. As we already discussed
in Section 3.1, the mailman algorithm is asymptoticallytdaghan naively multiplying the two matrice$ and R.

In this section we want to understand whether this asynmpbahavior of the mailman algorithm is indeed achieved
in a practical implementation. We compare three differgaraaches for the implementation of the third step of
our algorithm: the first is MatLab’s functiorimes(A, R) (MM1); the second exploits the fact that we do not need to
explicitly store the whole matriX, and that the computation can be performed on the fly (colbgrnelumn) (MM2);

the last is the mailman algorithin [15] (see Secfion 3.1 forexdetails). We implemented the last two algorithms in
C using MatLab’s MEX technology. We observed that wherns a vector(n = 1), then the mailman algorithm
is indeed faster than (MM1) and (MM2) as it is also observethennumerical experiments df [15]. Moreover, it's
worth-noting that (MM2) is also superior compared to (MMDn the other hand, our best implementation of the
mailman algorithm for matrix-matrix operations is infarito both (MM1) and (MM2) for anyl0 < n < 10, 000.
Based on these findings, we chose to use (MM1) for our expetihevaluations.

Acknowledgments: Christos Boutsidis was supported by NSF CCF 0916415 and an@elis Foundation Fellow-
ship; Petros Drineas was partially supported by an NSF CAREE&ard and NSF CCF 0916415.

2In particular, we ruriV = constructW (A); Scores = LaplacianScore(A, W);
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