
Random Projections fork-means Clustering

Christos Boutsidis
Department of Computer Science

RPI

Anastasios Zouzias
Department of Computer Science

University of Toronto

Petros Drineas
Department of Computer Science

RPI

Abstract

This paper discusses the topic of dimensionality reductionfor k-means clustering. We prove that
any set ofn points ind dimensions (rows in a matrixA ∈ R

n×d) can be projected intot = Ω(k/ε2)
dimensions, for anyε ∈ (0, 1/3), in O(nd⌈ε−2k/ log(d)⌉) time, such that with constant probability
the optimalk-partition of the point set is preserved within a factor of2 + ε. The projection is done
by post-multiplyingA with a d × t random matrixR having entries+1/

√
t or −1/

√
t with equal

probability. A numerical implementation of our technique and experiments on a large face images
dataset verify the speed and the accuracy of our theoreticalresults.

1 Introduction

Thek-means clustering algorithm [16] was recently recognized as one of the top ten data mining tools of the last fifty
years [20]. In parallel, random projections (RP) or the so-called Johnson-Lindenstrauss type embeddings [12] became
popular and found applications in both theoretical computer science [2] and data analytics [4]. This paper focuses on
the application of the random projection method (see Section 2.3) to thek-means clustering problem (see Definition
1). Formally, assuming as input a set ofn points ind dimensions, our goal is to randomly project the points intod̃

dimensions, with̃d ≪ d, and then apply ak-means clustering algorithm (see Definition 2) on the projected points. Of
course, one should be able to compute the projection fast without distorting significantly the “clusters” of the original
point set. Our algorithm (see Algorithm 1) satisfies both conditions by computing the embedding in time linear in the
size of the input and by distorting the “clusters” of the dataset by a factor of at most2 + ε, for someε ∈ (0, 1/3) (see
Theorem 1). We believe that the high dimensionality of modern data will render our algorithm useful and attractive in
many practical applications [9].

Dimensionality reduction encompasses the union of two different approaches:feature selection, which embeds the
points into a low-dimensional space by selecting actual dimensions of the data, andfeature extraction, which finds an
embedding by constructing new artificial features that are,for example, linear combinations of the original features.
Let A be ann × d matrix containingn d-dimensional points (A(i) denotes thei-th point of the set), and letk be
the number of clusters (see also Section 2.2 for more notation). We slightly abuse notation by also denoting byA

the n-point set formed by the rows ofA. We say that an embeddingf : A → R
d̃ with f(A(i)) = Ã(i) for all

i ∈ [n] and somed̃ < d, preserves the clustering structure ofA within a factorφ, for someφ ≥ 1, if finding an
optimal clustering inÃ and plugging it back toA is only a factor ofφ worse than finding the optimal clustering
directly inA. Clustering optimality and approximability are formally presented in Definitions 1 and 2, respectively.
Prior efforts on designing provably accurate dimensionality reduction methods fork-means clustering include:(i) the
Singular Value Decomposition (SVD), where one finds an embedding with imageÃ = UkΣk ∈ R

n×k such that the
clustering structure is preserved within a factor of two;(ii) random projections, where one projects the input points into
t = Ω(log(n)/ε2) dimensions such that with constant probability the clustering structure is preserved within a factor
of 1+ε (see Section 2.3);(iii) SVD-based feature selection, where one can use the SVD to findc = Ω(k log(k/ε)/ε2)

actual features, i.e. an embedding with imageÃ ∈ R
n×c containing (rescaled) columns fromA, such that with constant

probability the clustering structure is preserved within afactor of2 + ε. These results are summarized in Table 1. A
head-to-head comparison of our algorithm with existing results allows us to claim the following improvements:(i)

1

Year Ref. Description Dimensions Time Accuracy
1999 [6] SVD - feature extraction k O(ndmin{n, d}) 2

- Folklore RP - feature extraction Ω(log(n)/ε2) O(nd⌈ε−2 log(n)/ log(d)⌉) 1 + ε
2009 [5] SVD - feature selection Ω(k log(k/ε)/ε2) O(ndmin{n, d}) 2 + ε
2010 This paper RP - feature extraction Ω(k/ε2) O(nd⌈ε−2k/ log(d)⌉) 2 + ε

Table 1:Dimension reduction methods fork-means. In the RP methods the construction is done with random sign matrices and
the mailman algorithm (see Sections 2.3 and 3.1, respectively).

reduce the running time by a factor ofmin{n, d}⌈ε2 log(d)/k⌉, while losing only a factor ofε in the approximation
accuracy and a factor of1/ε2 in the dimension of the embedding;(ii) reduce the dimension of the embedding and
the running time by a factor oflog(n)/k while losing a factor of one in the approximation accuracy;(iii) reduce the
dimension of the embedding by a factor oflog(k/ε) and the running time by a factor ofmin{n, d}⌈ε2 log(d)/k⌉,
respectively. Finally, we should point out that other techniques, for example the Laplacian scores [10] or the Fisher
scores [7], are very popular in applications (see also surveys on the topic [8, 13]). However, they lack a theoretical
worst case analysis of the form we describe in this work.

2 Preliminaries

We start by formally defining thek-means clustering problem using matrix notation. Later in this section, we precisely
describe the approximability framework adopted in thek-means clustering literature and fix the notation.

Definition 1. [THE K-MEANS CLUSTERING PROBLEM]
Given a set ofn points ind dimensions (rows in ann× d matrixA) and a positive integerk denoting the number of
clusters, find then× k indicator matrixXopt such that

Xopt = arg min
X∈X

∥
∥A−XX⊤A

∥
∥
2

F
. (1)

HereX denotes the set of alln×k indicator matricesX . The functionalF (A,X) =
∥
∥A−XX⊤A

∥
∥
2

F
is the so-called

k-means objective function. Ann × k indicator matrix has exactly one non-zero element per row, which denotes
cluster membership. Equivalently, for alli = 1, . . . , n andj = 1, . . . , k, thei-th point belongs to thej-th cluster if
and only ifXij = 1/

√
zj , wherezj denotes the number of points in the corresponding cluster. Note thatX⊤X = Ik,

whereIk is thek × k identity matrix.

2.1 Approximation Algorithms for k-means clustering

FindingXopt is an NP-hard problem even fork = 2 [3], thus research has focused on developing approximation
algorithms fork-means clustering. The following definition captures the framework of such efforts.

Definition 2. [K-MEANS APPROXIMATION ALGORITHM]
An algorithm is a “γ-approximation” for thek-means clustering problem (γ ≥ 1) if it takes inputsA and k, and
returns an indicator matrixXγ that satisfies with probability at least1− δγ ,

∥
∥A−XγX

⊤
γ A

∥
∥
2

F
≤ γ min

X∈X

∥
∥A−XX⊤A

∥
∥
2

F
. (2)

In the above,δγ ∈ [0, 1) is the failure probability of theγ-approximationk-means algorithm.

For our discussion, we fix theγ-approximation algorithm to be the one presented in [14], which guaranteesγ = 1+ ε′

for anyε′ ∈ (0, 1] with running timeO(2(k/ε
′)O(1)

dn).

2.2 Notation

Given ann × d matrix A and an integerk with k < min{n, d}, let Uk ∈ R
n×k (resp. Vk ∈ R

d×k) be the matrix
of the topk left (resp. right) singular vectors ofA, and letΣk ∈ R

k×k be a diagonal matrix containing the top

2

k singular values ofA in non-increasing order. If we letρ be the rank ofA, thenAρ−k is equal toA − Ak, with
Ak = UkΣkV

⊤
k . By A(i) we denote thei-th row ofA. For an indexi taking values in the set{1, . . . , n} we write

i ∈ [n]. We denote, in non-increasing order, the non-negative singular values ofA by σi(A) with i ∈ [ρ]. ‖A‖F and
‖A‖2 denote the Frobenius and the spectral norm of a matrixA, respectively.A† denotes the pseudo-inverse ofA, i.e.
the uniqued × n matrix satisfyingA = AA†A, A†AA† = A†, (AA†)⊤ = AA†, and(A†A)⊤ = A†A. Note also
that

∥
∥A†

∥
∥
2
= σ1(A

†) = 1/σρ(A) and‖A‖2 = σ1(A) = 1/σρ(A
†). A useful property of matrix norms is that for

any two matricesC andT of appropriate dimensions,‖CT ‖F ≤ ‖C‖F ‖T ‖2; this is a stronger version of the standard
submultiplicavity property. We callP a projector matrix if it is square andP 2 = P . We useE [Y] and Var[Y] to take
the expectation and the variance of a random variableY andP (e) to take the probability of an evente. We abbreviate
“independent identically distributed” to “i.i.d.” and “with probability” to “w.p.”. Finally, all logarithms are basetwo.

2.3 Random Projections

A classical result of Johnson and Lindenstrauss states thatanyn-point set ind dimensions - rows in a matrixA ∈ R
n×d

- can be linearly projected intot = Ω(log(n)/ε2) dimensions while preserving pairwise distances within a factor of
1±ε using a random orthonormal matrix [12]. Subsequent research simplified the proof of the above result by showing
that such a projection can be generated using ad× t random Gaussian matrixR, i.e., a matrix whose entries are i.i.d.
Gaussian random variables with zero mean and variance1/

√
t [11]. More precisely, the following inequality holds

with high probability over the randomness ofR,

(1− ε)
∥
∥A(i) −A(j)

∥
∥
2
≤

∥
∥A(i)R−A(j)R

∥
∥
2
≤ (1 + ε)

∥
∥A(i) −A(j)

∥
∥
2
. (3)

Notice that such an embedding̃A = AR preserves the metric structure of the point-set, so it also preserves, within a
factor of1 + ε, the optimal value of thek-means objective function ofA. Achlioptas proved that even a (rescaled)
random sign matrix suffices in order to get the same guarantees as above [1], an approach that we adopt here (see step
two in Algorithm 1). Moreover, in this paper we will heavily exploit the structure of such a random matrix, and obtain,
as an added bonus, savings on the computation of the projection.

3 A random-projection-type k-means algorithm
Algorithm 1 takes as inputs the matrixA ∈ R

n×d, the number of clustersk, an error parameterε ∈ (0, 1/3), and some
γ-approximationk-means algorithm. It returns an indicator matrixXγ̃ determining ak-partition of the rows ofA.

Input: n× d matrixA (n points,d features), number of clustersk, error parameterε ∈ (0, 1/3), and
γ-approximationk-means algorithm.
Output: Indicator matrixXγ̃ determining ak-partition on the rows ofA.

1. Sett = Ω(k/ε2), i.e. sett = to ≥ ck/ε2 for a sufficiently large constantc.
2. Compute a randomd× t matrixR as follows. For alli ∈ [d], j ∈ [t]

Rij =

{
+1/

√
t,w.p. 1/2,

−1/
√
t,w.p. 1/2.

3. Compute the product̃A = AR.
4. Run theγ-approximation algorithm oñA to obtainXγ̃ ; Return the indicator matrixXγ̃

Algorithm 1 : A random projection algorithm fork-means clustering.

3.1 Running time analysis

Algorithm 1 reduces the dimensions ofA by post-multiplying it with a random sign matrixR. Interestingly, any
“random projection matrix”R that respects the properties of Lemma 2 witht = Ω(k/ε2) can be used in this step. IfR
is constructed as in Algorithm 1, one can employ the so-called mailman algorithm for matrix multiplication [15] and

3

compute the productAR in O(nd⌈ε−2k/ log(d)⌉) time. Indeed, the mailman algorithm computes (after preprocessing
1) a matrix-vector product of anyd-dimensional vector (row ofA) with an d × log(d) sign matrix inO(d) time.
By partitioning the columns of ourd × t matrix R into ⌈t/ log(d)⌉ blocks, the claim follows. Notice that when
k = O(log(d)), then we get an - almost - linear time complexityO(nd/ε2). The latter assumption is reasonable in our
setting since the need for dimension reduction ink-means clustering arises usually in high-dimensional data(larged).
Other choices ofR would give the same approximation results; the time complexity to compute the embedding would
be different though. A matrix where each entry is a random Gaussian variable with zero mean and variance1/

√
t

would imply anO(knd/ε2) time complexity (naive multiplication). In our experiments in Section 5 we experiment
with the matrixR described in Algorithm 1 and employ MatLab’s matrix-matrixBLAS implementation to proceed
in the third step of the algorithm. We also experimented witha novel MatLab/C implementation of the mailman
algorithm but, in the general case, we were not able to outperform MatLab’s built-in routines (see section 5.2).

Finally, note that anyγ-approximation algorithm may be used in the last step of Algorithm 1. Using, for example,
the algorithm of [14] withγ = 1 + ε would result in an algorithm that preserves the clustering within a factor of
2 + ε, for anyε ∈ (0, 1/3), running in timeO(nd⌈ε−2k/ log(d)⌉ + 2(k/ε)

O(1)

kn/ε2). In practice though, the Lloyd
algorithm [16, 17] is very popular and although it does not admit a worst case theoretical analysis, it empirically
does well. We thus employ the Lloyd algorithm for our experimental evaluation of our algorithm in Section 5. Note
that, after using the proposed dimensionality reduction method, the cost of the Lloyd heuristic is onlyO(nk2/ε2) per
iteration. This should be compared to the cost ofO(knd) per iteration if applied on the original high dimensional data.

4 Main Theorem

Theorem 1 is our main quality-of-approximation result for Algorithm 1. Notice that ifγ = 1, i.e. if thek-means
problem with inputsÃ andk is solved exactly, Algorithm 1 guarantees a distortion of atmost2 + ε, as advertised.

Theorem 1. Let then × d matrixA and the positive integerk < min{n, d} be the inputs of thek-means clustering
problem. Letε ∈ (0, 1/3) and assume access to aγ-approximationk-means algorithm. Run Algorithm 1 with inputs
A, k, ε, and theγ-approximation algorithm in order to construct an indicator matrix Xγ̃ . Then with probability at
least0.97− δγ ,

∥
∥A−Xγ̃X

⊤
γ̃ A

∥
∥
2

F
≤ (1 + (1 + ε)γ)

∥
∥A−XoptX

⊤
optA

∥
∥
2

F
. (4)

Proof of Theorem 1

The proof of Theorem 1 employs several results from [19] including Lemma6, 8 and Corollary11. We summarize
these results in Lemma 2 below. Before employing Corollary11, Lemma6, and Lemma8 from [19] we need to make
sure that the matrixR constructed in Algorithm 1 is consistent with Definition1 and Lemma5 in [19]. Theorem1.1
of [1] immediately shows that the random sign matrixR of Algorithm 1 satisfies Definition1 and Lemma5 in [19].

Lemma 2. Assume that the matrixR is constructed by using Algorithm 1 with inputsA, k andε.

1. Singular Values Preservation: For alli ∈ [k] and w.p. at least0.99,

|1− σi(V
⊤
k R)| ≤ ε.

2. Matrix Multiplication: For any two matricesS ∈ R
n×d andT ∈ R

d×k,

E

[∥
∥ST − SRR⊤T

∥
∥
2

F

]

≤ 2

t
‖S‖2F ‖T ‖

2
F .

3. Moments: For anyC ∈ R
n×d: E

[

‖CR‖2F
]

= ‖C‖2F and Var[‖CR‖F] ≤ 2 ‖C‖4F /t.

The first statement above assumesc being sufficiently large (see step1 of Algorithm 1). We continue with several
novel results of general interest.

1Reading the inputd × log d sign matrix requiresO(d log d) time. However, in our case we only consider multiplication with
a randomsign matrix, therefore we can avoid the preprocessing step by directly computing a randomcorrespondencematrix as
discussed in [15, Preprocessing Section].

4

Lemma 3. Under the same assumptions as in Lemma 2 and w.p. at least0.99,
∥
∥
∥(V ⊤

k R)
† − (V ⊤

k R)⊤
∥
∥
∥
2
≤ 3ε. (5)

Proof. LetΦ = V ⊤
k R; note thatΦ is ak× t matrix and theSV D of Φ isΦ = UΦΣΦV

⊤
Φ , whereUΦ andΣΦ arek×k

matrices, andVΦ is at× k matrix. By taking the SVD of(V ⊤
k R)

†
and(V ⊤

k R)⊤ we get
∥
∥
∥(V ⊤

k R)
† − (V ⊤

k R)⊤
∥
∥
∥
2
=

∥
∥VΦΣ

−1
Φ U⊤

Φ − VΦΣΦU
⊤
Φ

∥
∥
2
=

∥
∥VΦ(Σ

−1
Φ − ΣΦ)U

⊤
Φ

∥
∥
2
=

∥
∥Σ−1

Φ − ΣΦ

∥
∥
2
,

sinceVΦ andU⊤
Φ can be dropped without changing any unitarily invariant norm. LetΨ = Σ−1

Φ − ΣΦ; Ψ is ak × k
diagonal matrix. Assuming that, for alli ∈ [k], σi(Φ) andτi(Ψ) denote thei-th largest singular value ofΦ and the
i-th diagonal element ofΨ, respectively, it is

τi(Ψ) =
1− σi(Φ)σk+1−i(Φ)

σk+1−i
.

SinceΨ is a diagonal matrix,

‖Ψ‖2 = max
1≤i≤k

τi(Ψ) = max
1≤i≤k

1− σi(Φ)σk+1−i(Φ)

σk+1−i(Φ)
.

The first statement of Lemma 2, our choice ofε ∈ (0, 1/3) and elementary calculations suffice to conclude the
proof.

Lemma 4. Under the same assumptions as in Lemma 2 and for anyn× d matrixC w.p. at least0.99,

‖CR‖F ≤
√

(1 + ε) ‖C‖F . (6)

Proof. Notice that there exists a sufficiently large constantc such thatt ≥ ck/ε2. Then, settingZ = ‖CR‖2F, using
the third statement of Lemma 2, the fact thatk ≥ 1, and Chebyshev’s inequality we get

P

(

|Z − E [Z] | ≥ ε ‖C‖2F
)

≤ Var [Z]

ε2 ‖C‖4F
≤ 2 ‖C‖4F

tε2 ‖C‖4F
≤ 2

ck
≤ 0.01.

The last inequality follows assumingc sufficiently large. Finally, taking square root on both sides concludes the
proof.

Lemma 5. Under the same assumptions as in Lemma 2 and w.p. at least0.97,

Ak = (AR)(V ⊤
k R)

†
V ⊤
k + E, (7)

whereE is ann× d matrix with‖E‖F ≤ 4ε ‖A−Ak‖F.

Proof. Since(AR)(V ⊤
k R)

†
V ⊤
k is ann × d matrix, let us writeE = Ak − (AR)(V ⊤

k R)
†
V ⊤
k . Then, settingA =

Ak +Aρ−k, and using the triangle inequality we get

‖E‖F ≤
∥
∥
∥Ak −AkR(V ⊤

k R)
†
V ⊤
k

∥
∥
∥

F
+

∥
∥
∥Aρ−kR(V ⊤

k R)
†
V ⊤
k

∥
∥
∥

F
.

The first statement of Lemma 2 implies that rank(V ⊤
k R) = k thus(V ⊤

k R)(V ⊤
k R)

†
= Ik, whereIk is thek×k identity

matrix. ReplacingAk = UkΣkV
⊤
k and setting(V ⊤

k R)(V ⊤
k R)

†
= Ik we get that

∥
∥
∥Ak −AkR(V ⊤

k R)
†
V ⊤
k

∥
∥
∥

F
=

∥
∥
∥Ak − UkΣkV

⊤
k R(V ⊤

k R)
†
V ⊤
k

∥
∥
∥

F
=

∥
∥Ak − UkΣkV

⊤
k

∥
∥

F
= 0.

To bound the second term above, we dropV ⊤
k , add and subtract the matrixAρ−kR(V ⊤

k R)⊤V ⊤
k , and use the triangle

inequality and submultiplicativity:
∥
∥
∥Aρ−kR(V ⊤

k R)
†
V ⊤
k

∥
∥
∥

F
≤

∥
∥Aρ−kR(V ⊤

k R)⊤
∥
∥

F
+

∥
∥
∥Aρ−kR((V ⊤

k R)
† − (V ⊤

k R)⊤)
∥
∥
∥

F

≤
∥
∥Aρ−kRR⊤Vk

∥
∥

F
+ ‖Aρ−kR‖F

∥
∥
∥(V ⊤

k R)
† − (V ⊤

k R)⊤
∥
∥
∥
2
.

5

Now we will bound each term individually. A crucial observation for bounding the first term is thatAρ−kVk =
Uρ−kΣρ−kV

⊤
ρ−kVk = 0 by orthogonality of the columns ofVk andVρ−k. This term now can be bounded using the

second statement of Lemma 2 withS = Aρ−k andT = Vk. This statement, assumingc sufficiently large, and an
application of Markov’s inequality on the random variable

∥
∥Aρ−kRR⊤Vk −Aρ−kVk

∥
∥

F
give that w.p. at least0.99,

∥
∥Aρ−kRR⊤Vk

∥
∥

F
≤ 0.5ε ‖Aρ−k‖F . (8)

The second two terms can be bounded using Lemma 3 and Lemma 4 onC = Aρ−k. Hence by applying a union bound
on Lemma 3, Lemma 4 and Inq. (8), we get that w.p. at least0.97,

‖E‖F ≤
∥
∥Aρ−kRR⊤Vk

∥
∥

F
+ ‖Aρ−kR‖F

∥
∥
∥(V ⊤

k R)
† − (V ⊤

k R)⊤
∥
∥
∥
2

≤ 0.5ε ‖Aρ−k‖F +
√

(1 + ε) ‖Aρ−k‖F · 3ε
≤ 0.5ε ‖Aρ−k‖F + 3.5ε ‖Aρ−k‖F

= 4ε · ‖Aρ−k‖F .

The last inequality holds thanks to our choice ofε ∈ (0, 1/3).

Proposition 6. A well-known property connects the SVD of a matrix andk-means clustering. Recall Definition 1, and
notice thatXoptX

⊤
optA is a matrix of rank at mostk. From the SVD optimality we immediately get that

‖Aρ−k‖2F = ‖A−Ak‖2F ≤
∥
∥A−XoptX

⊤
optA

∥
∥
2

F
. (9)

4.1 The proof of Eqn.(4) of Theorem 1

We start by manipulating the term
∥
∥A−Xγ̃X

⊤
γ̃ A

∥
∥
2

F
in Eqn. (4). ReplacingA by Ak + Aρ−k, and using the

Pythagorean theorem (the subspaces spanned by the components Ak − Xγ̃X
⊤
γ̃ Ak andAρ−k − Xγ̃X

⊤
γ̃ Aρ−k are

perpendicular) we get
∥
∥A−Xγ̃X

⊤
γ̃ A

∥
∥
2

F
=

∥
∥(I −Xγ̃X

⊤
γ̃)Ak

∥
∥
2

F
︸ ︷︷ ︸

θ2
1

+
∥
∥(I −Xγ̃X

⊤
γ̃)Aρ−k

∥
∥
2

F
︸ ︷︷ ︸

θ2
2

. (10)

We first bound the second term of Eqn. (10). SinceI − Xγ̃X
⊤
γ̃ is a projector matrix, it can be dropped without

increasing a unitarily invariant norm. Now Proposition 6 implies that

θ22 ≤ ‖Aρ−k‖2F ≤
∥
∥A−XoptX

⊤
optA

∥
∥
2

F
. (11)

We now bound the first term of Eqn. (10):

θ1 ≤
∥
∥
∥(I −Xγ̃X

⊤
γ̃)AR(VkR)

†
V ⊤
k

∥
∥
∥

F
+ ‖E‖F (12)

≤
∥
∥(I −Xγ̃X

⊤
γ̃)AR

∥
∥

F

∥
∥
∥(VkR)†

∥
∥
∥
2
+ ‖E‖F (13)

≤ √
γ
∥
∥(I −XoptX

⊤
opt)AR

∥
∥

F

∥
∥
∥(VkR)

†
∥
∥
∥
2
+ ‖E‖F (14)

≤ √
γ
√

(1 + ε)
∥
∥(I −XoptX

⊤
opt)A

∥
∥

F

1

1− ε
+ 4ε

∥
∥(I −XoptX

⊤
opt)A

∥
∥

F
(15)

≤ √
γ(1 + 2.5ε)

∥
∥(I −XoptX

⊤
opt)A

∥
∥

F
+
√
γ 4ε

∥
∥(I −XoptX

⊤
opt)A

∥
∥

F
(16)

≤ √
γ(1 + 6.5ε)

∥
∥(I −XoptX

⊤
opt)A

∥
∥

F
(17)

In Eqn. (12) we used Lemma 5, the triangle inequality, and thefact thatI − X̃γX̃
⊤
γ is a projector matrix and can be

dropped without increasing a unitarily invariant norm. In Eqn. (13) we used submultiplicativity (see Section 2.2) and
the fact thatV ⊤

k can be dropped without changing the spectral norm. In Eqn. (14) we replacedXγ̃ by Xopt and the
factor

√
γ appeared in the first term. To better understand this step, notice thatXγ̃ gives aγ-approximation to the

optimalk-means clustering of the matrixAR, and any othern × k indicator matrix (for example, the matrixXopt)
satisfies

∥
∥
(
I −Xγ̃X

⊤
γ̃

)
AR

∥
∥
2

F
≤ γ min

X∈X

∥
∥(I −XX⊤)AR

∥
∥
2

F
≤ γ

∥
∥
(
I −XoptX

⊤
opt

)
AR

∥
∥
2

F
.

6

0 50 100 150 200 250 300
0.02

0.022

0.024

0.026

0.028

0.03

0.032

0.034

0.036
F vs. t

number of dimensions t

no
rm

al
iz

ed
 o

bj
ec

tiv
e

fu
nc

tio
n

va
lu

e
F

0 50 100 150 200 250 300
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7
P vs. t

number of dimensions t

M
is

−
cl

as
si

fic
at

io
n

ra
te

 P

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
T vs. t

number of dimensions t

T
im

e
of

 k
−

m
ea

ns
 p

ro
ce

du
re

 in
 s

ec
on

ds
 T

Figure 1: The results of our experiments after running Algorithm 1 withk = 40 on the face images collection.

In Eqn. (15) we used Lemma 4 withC = (I − XoptX
⊤
opt)A, Lemma 3 and Proposition 6. In Eqn. (16) we used the

fact thatγ ≥ 1 and that for anyε ∈ (0, 1/3) it is (
√
1 + ε)/(1− ε) ≤ 1 + 2.5ε. Taking squares in Eqn. (17) we get

θ21 ≤ γ(1 + 28ε)
∥
∥(I −XoptX

⊤
opt)A

∥
∥
2

F
.

Finally, rescalingε accordingly and applying the union bound on Lemma 5 and Definition 2 concludes the proof.

5 Experiments

This section describes an empirical evaluation of Algorithm 1 on a face images collection. We implemented our
algorithm in MatLab and compared it against other prominentdimensionality reduction techniques such as the Local
Linear Embedding (LLE) algorithm and the Laplacian scores for feature selection. We ran all the experiments on a
Mac machine with a dual core 2.26 Ghz processor and 4 GB of RAM.Our empirical findings are very promising
indicating that our algorithm and implementation could be very useful in real applications involving clustering of
large-scale data.

5.1 An application of Algorithm 1 on a face images collection

We experiment with a face images collection. We downloaded the images corresponding to the ORL database from
[21]. This collection contains400 face images of dimensions64 × 64 corresponding to40 different people. These
images form40 groups each one containing exactly10 different images of the same person. After vectorizing each
2-D image and putting it as a row vector in an appropriate matrix, one can construct a400 × 4096 image-by-pixel
matrixA. In this matrix, objects are the face images of the ORL collection while features are the pixel values of the
images. To apply the Lloyd’s heuristic onA, we employ MatLab’s functionkmeans with the parameter determining
the maximum number of repetitions setting to30. We also chose a deterministic initialization of the Lloyd’s iterative
E-M procedure, i.e. whenever we callkmeans with inputs a matrixÃ ∈ R400×d̃, with d̃ ≥ 1, and the integerk = 40,
we initialize the cluster centers with the1-st, 11-th,...,391-th rows of Ã, respectively. Note that this initialization
corresponds to picking images from the forty different groups of the available collection, since the images of every
group are stored sequentially inA. We evaluate the clustering outcome from two different perspectives. First, we
measure and report the objective functionF of thek-means clustering problem. In particular, we report a normalized
version ofF , i.e. F̃ = F/||A||2F . Second, we report the mis-classification accuracy of the clustering result. We
denote this number byP (0 ≤ P ≤ 1), whereP = 0.9, for example, implies that90% of the objects were assigned
to the correct cluster after the application of the clustering algorithm. In the sequel, we first perform experiments by
running Algorithm 1 with everything fixed butt, which denotes the dimensionality of the projected data. Then, for
four representative values oft, we compare Algorithm 1 with three other dimensionality reduction methods as well
with the approach of running the Lloyd’s heuristic on the original high dimensional data.

We run Algorithm 1 witht = 5, 10, ..., 300 andk = 40 on the matrixA described above. Figure 1 depicts the results
of our experiments. A few interesting observations are immediate. First, the normalized objective functioñF is a
piece-wise non-increasing function of the number of dimensionst. The decrease iñF is large in the first few choices

7

SVD
LLE
LS
HD
RP

t = 10
P F

0.5900 0.0262
0.6500 0.0245
0.3400 0.0380
0.6255 0.0220
0.4225 0.0283

t = 20
P F

0.6750 0.0268
0.7125 0.0247
0.3875 0.0362
0.6255 0.0220
0.4800 0.0255

t = 50
P F

0.7650 0.0269
0.7725 0.0258
0.4575 0.0319
0.6255 0.0220
0.6425 0.0234

t = 100
P F

0.6500 0.0324
0.6150 0.0337
0.4850 0.0278
0.6255 0.0220
0.6575 0.0219

Table 2: Numerics from our experiments with five different methods.

of t; then, increasing the number of dimensionst of the projected data decreasesF̃ by a smaller value. The increase
of t seems to become irrelevant after aroundt = 90 dimensions. Second, the mis-classification rateP is a piece-wise
non-decreasing function oft. The increase oft seems to become irrelevant again after aroundt = 90 dimensions.
Another interesting observation of these two plots is that the mis-classification rate is not directly relevant to the
objective functionF . Notice, for example, that the two have different behavior from t = 20 to t = 25 dimensions.
Finally, we report the running timeT of the algorithm which includes only the clustering step. Notice that the increase
in the running time is - almost - linear with the increase oft. The non-linearities in the plot are due to the fact that
the number of iterations that are necessary to guarantee convergence of the Lloyd’s method are different for different
values oft. This observation indicates that small values oft result to significant computational savings, especially
whenn is large. Compare, for example, the one second running time that is needed to solve thek-means problem
whent = 275 against the10 seconds that are necessary to solve the problem on the high dimensional data. To our
benefit, in this case, the multiplicationAR takes only0.1 seconds resulting to a total running time of1.1 seconds
which corresponds to an almost90% speedup of the overall procedure.

We now compare our algorithm against other dimensionality reduction techniques. In particular, in this paragraph
we present head-to-head comparisons for the following five methods: (i) SVD: the Singular Value Decomposition
(or Principal Components Analysis) dimensionality reduction approach - we use MatLab’ssvds function; (ii) LLE:
the famous Local Linear Embedding algorithm of [18] - we use the MatLab code from [23] with the parameterK
determining the number of neighbors setting equal to40; (iii) LS: the Laplacian score feature selection method of [10]
- we use the MatLab code from [22] with the default parameters2; (v) HD: we run thek-means algorithm on the High
Dimensional data; and (vi) RP: the random projection methodwe proposed in this work - we use our own MatLab
implementation. The results of our experiments onA, k = 40 andt = 10, 20, 50, 100are shown in Table 2. In terms of
computational complexity, for examplet = 50, the time (in seconds) needed for all five methods (only the dimension
reduction step) areTSVD = 5.9, TLLE = 4.4, TLS = 0.32, THD = 0, andTRP = 0.03. Notice that our algorithm
is much faster than the other approaches while achieving worse (t = 10, 20), slightly worse (t = 50) or slightly better
(t = 100) approximation accuracy results.

5.2 A note on the mailman algorithm for matrix-matrix and mat rix-vector multiplication
In this section, we compare three different implementations of the third step of Algorithm 1. As we already discussed
in Section 3.1, the mailman algorithm is asymptotically faster than naively multiplying the two matricesA andR.
In this section we want to understand whether this asymptotic behavior of the mailman algorithm is indeed achieved
in a practical implementation. We compare three different approaches for the implementation of the third step of
our algorithm: the first is MatLab’s functiontimes(A,R) (MM1); the second exploits the fact that we do not need to
explicitly store the whole matrixR, and that the computation can be performed on the fly (column-by-column) (MM2);
the last is the mailman algorithm [15] (see Section 3.1 for more details). We implemented the last two algorithms in
C using MatLab’s MEX technology. We observed that whenA is a vector(n = 1), then the mailman algorithm
is indeed faster than (MM1) and (MM2) as it is also observed inthe numerical experiments of [15]. Moreover, it’s
worth-noting that (MM2) is also superior compared to (MM1).On the other hand, our best implementation of the
mailman algorithm for matrix-matrix operations is inferior to both (MM1) and (MM2) for any10 ≤ n ≤ 10, 000.
Based on these findings, we chose to use (MM1) for our experimental evaluations.

Acknowledgments: Christos Boutsidis was supported by NSF CCF 0916415 and a Gerondelis Foundation Fellow-
ship; Petros Drineas was partially supported by an NSF CAREER Award and NSF CCF 0916415.

2In particular, we runW = constructW (A); Scores = LaplacianScore(A,W);

8

References

[1] D. Achlioptas. Database-friendly random projections:Johnson-Lindenstrauss with binary coins.Journal of
Computer and System Science, 66(4):671–687, 2003.

[2] N. Ailon and B. Chazelle. Approximate nearest neighborsand the fast Johnson-Lindenstrauss transform. In
ACM Symposium on Theory of Computing (STOC), pages 557–563, 2006.

[3] D. Aloise, A. Deshpande, P. Hansen, and P. Popat. NP-hardness of Euclidean sum-of-squares clustering.Machine
Learning, 75(2):245–248, 2009.

[4] E. Bingham and H. Mannila. Random projection in dimensionality reduction: applications to image and text
data. InACM SIGKDD international conference on Knowledge discovery and data mining (KDD), pages 245–
250, 2001.

[5] C. Boutsidis, M. W. Mahoney, and P. Drineas. Unsupervised feature selection for thek-means clustering problem.
In Advances in Neural Information Processing Systems (NIPS), 2009.

[6] P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay. Clustering in large graphs and matrices. InACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 291–299, 1999.

[7] D. Foley and J. Sammon. An optimal set of discriminant vectors.IEEE Transactions on Computers, C-24(3):281–
289, March 1975.

[8] I. Guyon and A. Elisseeff. An introduction to variable and feature selection.Journal of Machine Learning
Research, 3:1157–1182, 2003.

[9] I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror. Result analysis of the NIPS 2003 feature selection challenge. In
Advances in Neural Information Processing Systems (NIPS), pages 545–552. 2005.

[10] X. He, D. Cai, and P. Niyogi. Laplacian score for featureselection. InAdvances in Neural Information Processing
Systems (NIPS) 18, pages 507–514. 2006.

[11] P. Indyk and R. Motwani Approximate nearest neighbors:towards removing the curse of dimensionality. In
ACM Symposium on Theory of Computing (STOC), pages 604–613, 1998.

[12] W. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space.Contemporary mathe-
matics, 26(189-206):1–1, 1984.

[13] E. Kokiopoulou, J. Chen and Y. Saad. Trace optimizationand eigenproblems in dimension reduction methods.
Numerical Linear Algebra with Applications, to appear.

[14] A. Kumar, Y. Sabharwal, and S. Sen. A simple linear time (1+ε)-approximationalgorithm for k-means clustering
in any dimensions. InIEEE Symposium on Foundations of Computer Science (FOCS), pages 454–462, 2004.

[15] E. Liberty and S. Zucker. The Mailman algorithm: A note on matrix-vector multiplication.Information Process-
ing Letters, 109(3):179–182, 2009.

[16] S. Lloyd. Least squares quantization in PCM.IEEE Transactions on Information Theory, 28(2):129–137, 1982.

[17] R. Ostrovsky, Y. Rabani, L. J. Schulman, and C. Swamy. The effectiveness of Lloyd-type methods for the
k-means problem. InIEEE Symposium on Foundations of Computer Science (FOCS), pages 165–176, 2006.

[18] S. Roweis, and L. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290:5500,
pages 2323-2326, 2000.

[19] T. Sarlos. Improved approximation algorithms for large matrices via random projections. InIEEE Symposium
on Foundations of Computer Science (FOCS), pages 329–337, 2006.

[20] X. Wu et al. Top 10 algorithms in data mining.Knowledge and Information Systems, 14(1):1–37, 2008.

[21] http://www.cs.uiuc.edu/ ˜ dengcai2/Data/FaceData.html

[22] http://www.cs.uiuc.edu/ ˜ dengcai2/Data/data.html

[23] http://www.cs.nyu.edu/ ˜ roweis/lle/

9

http://www.cs.uiuc.edu/~dengcai2/Data/FaceData.html
http://www.cs.uiuc.edu/~dengcai2/Data/data.html
http://www.cs.nyu.edu/~roweis/lle/

