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Abstract

Cardiovascular disease is the leading cause of death globally, resulting in 17 mil-
lion deaths each year. Despite the availability of various treatment options, ex-
isting techniques based upon conventional medical knowledge often fail to iden-
tify patients who might have benefited from more aggressive therapy. In this pa-
per, we describe and evaluate a novel unsupervised machine learning approach
for cardiac risk stratification. The key idea of our approach is to avoid special-
ized medical knowledge, and assess patient risk using symbolic mismatch, a new
metric to assess similarity in long-term time-series activity. We hypothesize that
high risk patients can be identified using symbolic mismatch, as individuals in
a population with unusual long-term physiological activity. We describe related
approaches that build on these ideas to provide improved medical decision mak-
ing for patients who have recently suffered coronary attacks. We first describe
how to compute the symbolic mismatch between pairs of long term electrocardio-
graphic (ECG) signals. This algorithm maps the original signals into a symbolic
domain, and provides a quantitative assessment of the difference between these
symbolic representations of the original signals. We then show how this measure
can be used with each of a one-class SVM, a nearest neighbor classifier, and hier-
archical clustering to improve risk stratification. We evaluated our methods on a
population of 686 cardiac patients with available long-term electrocardiographic
data. In a univariate analysis, all of the methods provided a statistically significant
association with the occurrence of a major adverse cardiac event in the next 90
days. In a multivariate analysis that incorporated the most widely used clinical
risk variables, the nearest neighbor and hierarchical clustering approaches were
able to statistically significantly distinguish patients with a roughly two-fold risk
of suffering a major adverse cardiac event in the next 90 days.

1 Introduction

In medicine, as in many other disciplines, decisions are often based upon a comparative analysis.
Patients are given treatments that worked in the past on apparently similar conditions. When given
simple data (e.g., demographics, comorbidities, and laboratory values) such comparisons are rela-
tively straightforward. For more complex data, such as continuous long-term signals recorded during
physiological monitoring, they are harder. Comparing such time-series is made challenging by three
factors: the need to efficiently compare very long signals across a large number of patients, the need
to deal with patient-specific differences, and the lack of a priori knowledge associating signals with
long-term medical outcomes.

In this paper, we exploit three different ideas to address these problems.



e We address the problems related to scale by abstracting the raw signal into a sequence of
symbols,

e We address the problems related to patient-specific differences by using a novel technique,
symbolic mismatch, that allows us to compare sequences of symbols drawn from distinct
alphabets. Symbolic mismatch compares long-term time-series by quantifying differences
between the morphology and frequency of prototypical functional units, and

e We address the problems related to lack of a priori knowledge using three different meth-
ods, each of which exploits the observation that high risk patients typically constitute a
small minority in a population.

In the remainder of this paper, we present our work in the context of risk stratification for cardio-
vascular disease. Cardiovascular disease is the leading cause of death globally and causes roughly
17 million deaths each year [3]. Despite improvements in survival rates, in the United States, one
in four men and one in three women still die within a year of a recognized first heart attack [4].
This risk of death can be substantially lowered with an appropriate choice of treatment (e.g., drugs
to lower cholesterol and blood pressure; operations such as coronary artery bypass graft; and med-
ical devices such as implantable cardioverter defibrillators) [3]. However, matching patients with
treatments that are appropriate for their risk has proven to be challenging [5,6].

That existing techniques based upon conventional medical knowledge have proven inadequate for
risk stratification leads us to explore methods with few a priori assumptions. We focus, in particular,
on identifying patients at elevated risk of major adverse cardiac events (death, myocardial infarction
and severe recurrent ischemia) following coronary attacks. This work uses long-term ECG signals
recorded during patient admission for ACS. These signals are routinely collected, potentially allow-
ing for the work presented here to be deployed easily without imposing additional needs on patients,
caregivers, or the healthcare infrastructure.

Fortunately, only a minority of cardiac patients experience serious subsequent adverse cardiovascu-
lar events. For example, cardiac mortality over a 90 day period following acute coronary syndrome
(ACS) was reported to be 1.79% for the SYMPHONY trial involving 14,970 patients [1] and 1.71%
for the DISPERSE2 trial with 990 patients [2]. The rate of myocardial infarction (MI) over the
same period for the two trials was 5.11% for the SYMPHONY trial and 3.54% for the DISPERSE2
trial. Our hypothesis is that these patients can be discovered as anomalies in the population, i.e.,
their physiological activity over long periods of time is dissimilar to the majority of the patients in
the population. In contrast to algorithms that require labeled training data, we propose identifying
these patients using unsupervised approaches based on three machine learning methods previously
reported in the literature: one-class support vector machines (SVMs), nearest neighbor analysis, and
hierarchical clustering.

The main contributions of our work are: (1) we describe a novel unsupervised approach to cardio-
vascular risk stratification that is complementary to existing clinical approaches, (2) we explore the
idea of similarity-based clinical risk stratification where patients are categorized in terms of their
similarities rather than specific features based on prior knowledge, (3) we develop the hypothesis
that patients at future risk of adverse outcomes can be detected using an unsupervised approach as
outliers in a population, (4) we present symbolic mismatch, as a way to efficiently compare very long
time-series without first reducing them to a set of features or requiring symbol registration across
patients, and (5) we present a rigorous evaluation of unsupervised similarity-based risk stratification
using long-term data from nearly 700 patients with detailed admissions and follow-up data.

2 Symbolic Mismatch
We start by describing the process through which symbolic mismatch is measured on ECG signals.

2.1 Symbolization

As a first step, the ECG signal z,,, for each patient m = 1,...,n is symbolized using the technique
proposed by [7]. To segment the ECG signal into beats, we use two open-source QRS detection
algorithms [8,9]. QRS complexes are marked at locations where both algorithms agree. A variant
of dynamic time-warping (DTW) [7] is then used to quantify differences in morphology between



beats. Using this information, beats with distinct morphologies are partitioned into groups, with
each group assigned a unique label or symbol. This is done using a Max-Min iterative clustering
algorithm that starts by choosing the first observation as the first centroid, c;, and initializes the set
S of centroids to {c; }. During the i-th iteration, ¢; is chosen such that it maximizes the minimum
difference between ¢; and observations in S:

P = i C s 1
¢ = argmaxmin (z,9) (1)
where C(z,y) is the DTW difference between x and y. The set S is incremented at the end of each
iteration such that S = S U ¢;.

The number of clusters discovered by Max-Min clustering is chosen by iterating until the maximized
minimum difference falls below a threshold . At this point, the set .S comprises the centroids for
the clustering process, and the final assignment of beats to clusters proceeds by matching each beat
to its nearest centroid. Each set of beats assigned to a centroid constitutes a unique cluster. The final
number of clusters, -y, obtained using this process depends on the separability of the underlying data.

The overall effect of the DTW-based partitioning of beats is to transform the original raw ECG
signal into a sequence of symbols, i.e., into a sequence of labels corresponding to the different beat
morphology classes that occur in the signal. Our approach differs from the methods typically used
to annotate ECG signals in two ways. First, we avoid using specialized knowledge to partition
beats into known clinical classes. There is a set of generally accepted labels that cardiologists
use to differentiate distinct kinds of heart beats. However, in many cases, finer distinctions than
provided by these labels can be clinically relevant [7]. Our use of beat clustering rather than beat
classification allows us to infer characteristic morphology classes that capture these finer-grained
distinctions. Second, our approach does not involve extracting features (e.g., the length of the beat
or the amplitude of the P wave) from individual beats. Instead, our clustering algorithm compares
the entire raw morphology of pairs of beats. This approach is potentially advantageous, because it
does not assume a priori knowledge about what aspects of a beat are most relevant. It can also be
extended to other time-series data (e.g., blood pressure and respiration waveforms).

2.2 Measuring Mismatch in Symbolic Representations

Denoting the set of symbol centroids for patient p as .S}, and the set of frequencies with which these
symbols occur in the electrocardiogram as I}, (for patient g an analogous representation is adopted),
we define the symbolic mismatch between the long-term ECG time-series for patients p and g as:

Ypg = Z Z C(pi, ;) Fplpil Fyla;] (2)
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where C(p;, g;) corresponds to the DTW cost of aligning the centroids of symbol classes p; and g;.

Intuitively, the symbolic mismatch between patients p and ¢ corresponds to an estimate of the ex-
pected difference in morphology between any two randomly chosen beats from these patients. The
symbolic mismatch computation achieves this by weighting the difference between the centroids for
every pair of symbols for the patients by the frequencies with which these symbols occur.

An important feature of symbolic mismatch is that it avoids the need to set up a correspondence
between the symbols of patients p and ¢. In contrast to cluster matching techniques [10,11] to
compare data for two patients by first making an assignment from symbols in one patient to the
other, symbolic mismatch does not require any cross-patient registration of symbols. Instead, it
performs weighted morphologic comparisons between all symbol centroids for patients p and g. As
a result, the symbolization process does not need to be restricted to well-defined labels and is able
to use a richer set of patient-specific symbols that capture fine-grained activity over long periods.

2.3 Spectrum Clipping and Adaptation for Kernel-based Methods

The formulation for symbolic mismatch in Equation 2 gives rise to a symmetric dissimilarity ma-
trix. For methods that are unable to work directly from dissimilarities, this can be transformed into a
similarity matrix using a generalized radial basis function. For both the dissimilarity and similarity
case, however, symbolic mismatch can produce a matrix that is indefinite. This can be problematic



when using symbolic mismatch with kernel-based algorithms since the optimization problems be-
come non-convex and the underlying theory is invalidated. In particular, kernel-based classification
methods require Mercer’s condition to be satisfied by a positive semi-definite kernel matrix [12].
This creates the need to transform the symbolic mismatch matrix before it can be used as a kernel in
these methods.

We use spectrum clipping to generalize the use of symbolic mismatch for classification. This ap-
proach has been shown both theoretically and empirically to offer advantages over other strategies
(e.g., spectrum flipping, spectrum shifting, spectrum squaring, and the use of indefinite kernels)
[13]. The symmetric mismatch matrix W has an eigenvalue decomposition:

U =UTAU 3)
where U is an orthogonal matrix and A is a diagonal matrix of real eigenvalues:
A =diag(M1, ...y An) 4)

Spectrum clipping makes W positive semi-definite by clipping all negative eigenvalues to zero. The
modified positive semi-definite symbolic mismatch matrix is then given by:

Vetip = UT ActipU )
where:
Aciip = diag(maxz(A1,0), ..., maz(Ay,0)) (6)
Using W, as a kernel matrix is then equivalent to using (A.i,)'/?u; as the i-th training sample.

Though we introduce spectrum clipping mainly for the purpose of broadening the applicability of
symbolic mismatch to kernel-based methods, this approach offers additional advantages. When the
negative eigenvalues of the similarity matrix are caused by noise, one can view spectrum clipping as
a denoising step [14]. The results of our experiments, presented later in this paper, support the view
of spectrum clipping being useful in a broader context.

3 Risk Stratification Using Symbolic Mismatch

We now sketch three different approaches using symbolic mismatch to identify high risk patients in a
population. The following two sections contain an empirical evaluation of each. The first approach
uses a one-class SVM and a symbolic mismatch similarity matrix obtained using a generalized
radial basis transformation. The other two approaches, nearest neighbor analysis and hierarchical
clustering, use the symbolic mismatch dissimilarity matrix. In each case, the symbolic mismatch
matrix is processed using spectrum clipping.

3.1 Classification Approach

SVMs can applied to anomaly detection in a one-class setting [15] . This is done by mapping the
data into the feature space corresponding to the kernel and separating instances from the origin with
the maximum margin. To separate data from the origin, the following quadratic program is solved:
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where v reflects the tradeoff between incorporating outliers and minimizing the support region.

For a new instance, the label is determined by evaluating which side of the hyperplane the instance
falls on in the feature space. The resulting predicted label in terms of the Lagrange multipliers «;
and the spectrum clipped symbolic mismatch similarity matrix W ;;;, is then:

95 = sgn(>_ a;Weip(i, j) — p) ©)



We apply this approach to train a one-class SVM on all patients. Patients outside the enclosing
boundary are labeled anomalies. The parameter v can be varied to control the size of this group.

3.2 Nearest Neighbor Approach

Our second approach is based on the concept of nearest neighbor analysis. The assumption underly-
ing this approach is that normal data instances occur in dense neighborhoods, while anomalies occur
far from their closest neighbors.

We use an approach similar to [16]. The anomaly score of each patient’s long-term time-series is
computed as the sum of its distances from the time-series for its k-nearest neighbors, as measured
by symbolic mismatch. Patients with anomaly scores exceeding a threshold 6 are labeled anomalies.

3.3 Clustering Approach

Our third approach is based on hierarchical clustering. We place each patient in a separate cluster,
and then proceed in each iteration to merge the two clusters that are most similar to each other. The
distance between two clusters is defined as the average of the pairwise symbolic mismatch of the
patients in each cluster. The clustering process terminates when it enters the region of diminishing
returns (i.e., at the ’knee’ of the curve corresponding to the distance of clusters merged together at
each iteration). At this point, all patients outside the largest cluster are labeled as anomalies.

4 Evaluation Methodology

We evaluated our work on patients enrolled in the DISPERSE?2 trial [2]. Patients in the study were
admitted to a hospital with non-ST-elevation ACS. Three lead continuous ECG monitoring (LifeCard
CF / Pathfinder, DelMar Reynolds / Spacelabs, Issaqua WA) was performed for a median duration
of four days at a sampling rate of 128 Hz. The endpoints of cardiovascular death, myocardial
infarction and severe recurrent ischemia were adjudicated by a blinded Clinical Events Committee
for a median follow-up period of 60 days. The maximum follow-up was 90 days. Data from 686
patients was available after removal of noise-corrupted signals. During the follow-up there were
14 cardiovascular deaths, 28 myocardial infarctions, and 13 cases of severe recurrent ischemia. We
define a major adverse cardiac event to be any of these three adverse events.

We studied the effectiveness of combining symbolic mismatch with each of classification, near-
est neighbor analysis and clustering in identifying a high risk group of patients. Consistent with
other clinical studies to evaluate methods for risk stratification in the setting of ACS [17], we clas-
sified patients in the highest quartile as the high risk group. For the classification approach, this
corresponded to choosing v such that the group of patients lying outside the enclosing boundary
constituted roughly 25% of the population. For the nearest neighbor approach we investigated all
odd values of & from 3 to 9, and patients with anomaly scores in the top 25% of the population were
classified as being at high risk. For the clustering approach, the varying sizes of the clusters merged
together at each step made it difficult to select a high risk quartile. Instead, patients lying outside
the largest cluster were categorized as being at risk. In the tests reported later in this paper, this
group contained roughly 23% the patients in the population. We used the LIBSVM implementation
for our one-class SVM. Both the nearest neighbor and clustering approaches were carried out using
MATLAB implementations.

We employed Kaplan-Meier survival analysis to compare the rates for major adverse cardiac events
between patients declared to be at high and low risk. Hazard ratios (HR) and 95% confidence in-
terval (CI) were estimated using a Cox proportional hazards regression model. The predictions of
each approach were studied in univariate models, and also in multivariate models that additionally
included other clinical risk variables (age>65 years, gender, smoking history, hypertension, dia-
betes mellitus, hyperlipidemia, history of chronic obstructive pulmonary disorder (COPD), history
of coronary heart disease (CHD), previous MI, previous angina, ST depression on admission, index
diagnosis of MI) as well as ECG risk metrics proposed in the past (heart rate variability (HRV), heart
rate turbulence (HRT), and deceleration capacity (DC)) [18].



Method HR P Value 95% CI
One-Class SVM 1.38  0.033 1.04-1.89
3-Nearest Neighbor 1.91 0.031 1.06-3.44
5-Nearest Neighbor 2.10 0.013 1.17-3.76
7-Nearest Neighbor 2.28 0.005 1.28-4.07
9-Nearest Neighbor 2.07 0.015 1.15-3.71
Hierarchical Clustering | 2.04  0.017 1.13-3.68

Table 1: Univariate association of risk predictions from different approaches using symbolic mis-
match with major adverse cardiac events over a 90 day period following ACS.

Clinical Variable HR P Value 95% CI
Age>65 years 1.82  0.041 1.02-3.24
Female Gender 0.69 0.261 0.37-1.31
Current Smoker 1.05 0.866 0.59-1.87

Hypertension 144 0257  0.77-2.68

Diabetes Mellitus 1.95 0.072  0.94-4.04
Hyperlipidemia 1.00  0.994  0.55-1.82

History of COPD 1.05 0.933 0.37-2.92

History of CHD .10 0.994  0.37-2.92

Previous MI 1.17 0.630  0.62-2.22

Previous angina 094 0.842  0.53-1.68

ST depression>0.5mm | 1.13 0.675 0.64-2.01
Index diagnosis of MI | 1.42  0.134  0.90-2.26
Heart Rate Variability | 1.56  0.128  0.88-2.77
Heart Rate Turbulence | 1.64 0.013 1.11-2.42
Deceleration Capacity | 1.77 0.002 1.23-2.54

Table 2: Univariate association of existing clinical and ECG risk variables with major adverse car-
diac events over a 90 day period following ACS.

5 Results

5.1 Univariate Results

Results of univariate analysis for all three unsupervised symbolic mismatch-based approaches are
presented in Table 1. The predictions from all methods showed a statistically significant (i.e., p <
0.05) association with major adverse cardiac events following ACS. The results in Table 1 can
be interpreted as roughly a doubled rate of adverse outcomes per unit time in patients identified as
being at high risk by the nearest neighbor and clustering approaches. For the classification approach,
patients identified as being at high risk had a nearly 40% increased risk.

For comparison, we also include the univariate association of the other clinical and ECG risk vari-
ables in our study (Table 2). Both the nearest neighbor and clustering approaches had a higher hazard
ratio in this patient population than any of the other variables studied. Of the clinical risk variables,
only age was found to be significantly associated on univariate analysis with major cardiac events
after ACS. Diabetes (p=0.072) was marginally outside the 5% level of significance. Of the ECG risk
variables, both HRT and DC showed a univariate association with major adverse cardiac events in
this population. These results are consistent with the clinical literature on these risk metrics.

5.2 Multivariate Results

We measured the correlation between the predictions of the unsupervised symbolic mismatch-based
approaches and both the clinical and ECG risk variables. All of the unsupervised approaches had
low correlation with both sets of variables (R < 0.2). This suggests that the results of these novel
approaches can be usefully combined with results of existing approaches.

On multivariate analysis, both the nearest neighbor approach and the clustering approach were inde-
pendent predictors of adverse outcomes (Table 3). In our study, the nearest neighbor approach (for
k > 3) had the highest hazard ratio on both univariate and multivariate analysis. Both the nearest
neighbor and clustering approaches predicted patients with an approximately two-fold increased risk
of adverse outcomes. This increased risk did not change much even after adjusting for other clinical
and ECG risk variables.



Method Adjusted HR P Value  95% CI
One-Class SVM 1.32 0.074  0.97-1.79
3-Nearest Neighbor 1.88 0.042 1.02-3.46
5-Nearest Neighbor 2.07 0.018 1.13-3.79
7-Nearest Neighbor 2.25 0.008 1.23-4.11
9-Nearest Neighbor 2.04 0.021 1.11-3.73
Hierarchical Clustering 1.86 0.042 1.02-3.46

Table 3: Multivariate association of high risk predictions from different approaches using symbolic
mismatch with major adverse cardiac events over a 90 day period following ACS. Multivariate
results adjusted for variables in Table 2.

Method HR PValue 95% CI
One-Class SVM 1.36  0.038 1.01-1.79
3-Nearest Neighbor 1.74  0.069  0.96-3.16
5-Nearest Neighbor 1.57 0.142 0.86-2.88
7-Nearest Neighbor 1.73 0.071 0.95-3.14
9-Nearest Neighbor 1.89 0.034 1.05-3.41
Hierarchical Clustering | 1.19  0.563 0.67-2.12

Table 4: Univariate association of high risk predictions without the use of spectrum clipping. None
of the approaches showed a statistically significant association with the study endpoint in any of the
multivariate models including other clinical risk variables when spectrum clipping was not used.

5.3 Effect of Spectrum Clipping

We also investigated the effect of spectrum clipping on the performance of our different risk strat-
ification approaches. Table 4 presents the associations when spectrum clipping was not used. For
all three methods, performance was worse without the use of spectrum clipping, although the effect
was small for the one-class SVM case.

6 Related Work

Most previous work on comparing signals in terms of their raw samples (e.g., metrics such as
dynamic time warping, longest common subsequence, edit distance with real penalty, sequence
weighted alignment, spatial assembling distance, threshold queries) [19] focuses on relatively short
time-series. This is due to the runtime of these methods (quadratic for many methods) and the need
to reason in terms of the frequency and dynamics of higher-level signal constructs (as opposed to
individual samples) when studying systems over long periods.

Most prior research on comparing long-term time-series focuses instead on extracting specific fea-
tures from long-term signals and quantifying the differences between these features. In the context
of cardiovascular disease, long-term ECG is often reduced to features (e.g., mean heart rate or heart
rate variability) and compared in terms of these features. These approaches, unlike our symbolic
mismatch based approaches, draw upon significant a priori knowledge. Our belief was that for
applications like risk stratifying patients for major cardiac events, focusing on a set of specialized
features leads to important information being potentially missed. In our work, we focus instead
on developing an approach that avoids use of significant a priori knowledge by comparing the raw
morphology of long-term time-series. We propose doing this in a computationally efficient and
systematic way through symbolization. While this use of symbolization represents a lossy compres-
sion of the original signal, the underlying DTW-based process of quantifying differences between
long-term time-series remains grounded in the comparison of raw morphology.

Symbolization maps the comparison of long-term time-series into the domain of sequence compar-
ison. There is an extensive body of prior work focusing on the comparison of sequential or string
data. Algorithms based on measuring the edit distance between strings are widely used in disci-
plines such as computational biology, but are typically restricted to comparisons of short sequences
because of their computational complexity. Research on the use of profile hidden Markov models
[20,21] to optimize recognition of binary labeled sequences is more closely related to our work. This
work focuses on learning the parameters of a hidden Markov model that can represent approxima-
tions of sequences and can be used to score other sequences. Such approaches require large amounts
of data or good priors to train the hidden Markov models. Computing forward and backward prob-



abilities from the Baum-Welch algorithm is also very computationally intensive. Other research in
this area focuses on mismatch tree-based kernels [22], which use the mismatch tree data structure
[23] to quantify the difference between two sequences based on the approximate occurrence of fixed
length subsequences within them. Similar to this approach is work on using a “bag of motifs” rep-
resentation [24], which provides a more flexible representation than fixed length subsequences but
usually requires prior knowledge of motifs in the data [24].

In contrast to these efforts, we use a simple computationally efficient approach to compare sym-
bolic sequences without prior knowledge. Most importantly, our approach helps address the situ-
ation where symbolizing long-term time-series in a patient-specific manner leads to the symbolic
sequences from different alphabets [25]. In this case, hidden Markov models, mismatch trees or a
“bag of motifs” approach trained on one patient cannot be easily used to score the sequences for
other patients. Instead, any comparative approach must maintain a hard or soft registration of sym-
bols across individuals. Symbolic mismatch complements existing work on sequence comparison
by using a measure that quantifies differences across patients while retaining information on how
the symbols for these patients differ.

Finally, we distinguish our work from earlier method for ECG-based risk stratification. These meth-
ods typically calculate a particular pre-defined feature from the raw ECG signal, and to use it to rank
patients along a risk continuum. Our approach, focusing on detecting patients with high symbolic
mismatch relative to other patients in the population, is orthogonal to the use of specialized high risk
features along two important dimensions. First, it does not require the presence of significant prior
knowledge. For the cardiovascular care, we only assume that ECG signals from patients who are
at high risk differ from those of the rest of the population. There are no specific assumptions about
the nature of these differences. Second, the ability to partition patients into groups with similar
ECG characteristics and potentially common risk profiles potentially allows for a more fine-grained
understanding of a how a patient’s future health may evolve over time. Matching patients to past
cases with similar ECG signals could lead to more accurate assignments of risk scores for particular
events such as death and recurring heart attacks.

7 Discussion

In this paper, we described a novel unsupervised learning approach to cardiovascular risk stratifica-
tion that is complementary to existing clinical approaches.

We proposed using symbolic mismatch to quantify differences in long-term physiological time-
series. Our approach uses a symbolic transformation to measure changes in the morphology and
frequency of prototypical functional units observed over long periods in two signals. Symbolic
mismatch avoids feature extraction and deals with inter-patient differences in a parameter-less way.
We also explored the hypothesis that high risk patients in a population can be identified as individuals
with anomalous long-term signals. We developed multiple comparative approaches to detect such
patients, and evaluated these methods in a real-world application of risk stratification for major
adverse cardiac events following ACS.

Our results suggest that symbolic mismatch-based comparative approaches may have clinical utility
in identifying high risk patients, and can provide information that is complementary to existing
clinical risk variables. In particular, we note that the hazard ratios we report are typically considered
clinically meaningful. In a different study of 118 variables in 15,000 post-ACS patients with 90 day
follow-up similar to our population, [1] did not find any variables with a hazard ratio greater than
2.00. We observed a similar result in our patient population, where all of the existing clinical and
ECG risk variables had a hazard ratio less than 2.00. In contrast to this, our nearest neighbor-based
approach achieved a hazard ratio of 2.28, even after being adjusted for existing risk measures.

Our study has limitations. While our decision to compare the morphology and frequency of pro-
totypical functional units leads to a measure that is computationally efficient on large volumes of
data, this process does not capture information related to the dynamics of these prototypical units.
We also observe that all three of the comparative approaches investigated in our study focus only on
identifying patients who are anomalies. While we believe that symbolic mismatch may have further
use in supervised learning, this hypothesis needs to be evaluated more fully in future work.
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