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Abstract

Remarkably easy implementation and guaranteed convergence has made the EM
algorithm one of the most used algorithms for mixture modeling. On the downside,
the E-step is linear in both the sample size and the number of mixture components,
making it impractical for large-scale data. Based on the variational EM framework,
we propose a fast alternative that uses component-specific data partitions to obtain
a sub-linear E-step in sample size, while the algorithm still maintains provable
convergence. Our approach builds on previous work, but is significantly faster and
scales much better in the number of mixture components. We demonstrate this
speedup by experiments on large-scale synthetic and real data.

1 Introduction

Probabilistic mixture modeling [7] has been widely used for density estimation and clustering
applications. The Expectation-Maximization (EM) algorithm [4, 11] is one of the most used methods
for this task for clear reasons — elegant formulation of an iterative procedure, ease of implementation,
and guaranteed monotone convergence for the objective. On the other hand, the EM algorithm also
has some acknowledged shortcomings. In particular, the E-step is linear in both the number of
data points and the number of mixture components, and therefore computationally impractical for
large-scale applications. Our work was motivated by a large-scale geo-spatial problem, demanding a
mixture model of a customer base (a huge number of data points) for competing businesses (a large
number mixture components), as the basis for site evaluation (where to locate a new store).

Several approximation schemes for EM have been proposed to address the scalability problem,
e.g. [2, 12,14, 10, 17, 16] , to mention a few. Besides [17, 16], none of these variants has both an
E-step that is truly sub-linear in sample size and also enjoys provable convergence for a well-defined
objective function. More details are discussed in Section 5. Our work is inspired by the “chunky
EM” algorithm in [17, 16], a smart application of the variational EM framework [11], where a lower
bound on the objective function increases at each iteration and convergence is guaranteed.

An E-step in standard EM calculates expected sufficient statistics under mixture-component member-
ship probabilities calculated for each individual data point given the most recent model estimate. The
variational EM framework alters the E-step to use sufficient statistics calculated under a variational
distribution instead. In chunky EM, the speedup is obtained by using a variational distribution with
shared (variational) membership probabilities for blocks of data (in an exhaustive partition for the
entire data into non-overlapping blocks of data). The chunky EM starts from a coarse partition of the
data and gradually refines the partition until convergence.

However, chunky EM does not scale well in the number of components, since all components
share the same partition. The individual components are different — in order to obtain membership
probabilities of appropriate quality, one component may need fine-grained blocks in one area of
the data space, while another component is perfectly fine with coarse blocks in that area. Chunky
EM expands the shared partition to match the needed granularity for the most demanding mixture
component in any area of the data space, which might unnecessarily increase the computational
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cost. Here, we derive a principled variation, called component-specific EM (CS-EM) that allows
component-specific partitions. We demonstrate a significant performance improvement over standard
and chunky EM for experiments on synthetic and mentioned customer-business data.

2 Background: Variational and Chunky EM

Variational EM. Given a set of i.i.d. data x £ {z1,--+ ,xN}, we are interested in estimating the
parameters 8 = {ny.x, 71.x } in the K-component mixture model with log-likelihood function
L(0) =3, log > p(@nlnr)m. (D

For this task, we consider a variational generalization [11] of standard EM [4], which maximizes
a lower bound of £(#) through the introduction of a variational distribution g. We assume that the
variational distribution factorizes in accordance with data points, i.e, ¢ = [[,, ¢», where each ¢, is an

arbitrary discrete distribution over mixture components k = 1, ..., K. We can lower bound £(6) by
multiplying each p(z,|nx )7k in (1) with gzgg and apply Jensen’s inequality to get

L(G) > En Zk dn (kj)[Ing(ngk)ﬂ-k - 10g Qn(k)] 2

= L(0) = 3, KL (gullp(-|zn, 0)) = F (0, q), 3)

where p(-|z,, 0) defines the posterior distribution of membership probabilities and KL(g||p) is the
Kullback-Leibler (KL) divergence between ¢ and p. The variational EM algorithm alternates the
following two steps, i.e. coordinate ascent on F (6, ¢), until convergence.

E-step: '™ = argmax, F(6',q), M-step: /7! = argmaxy F (0, ¢" ).

If ¢ is not restricted in any form, the E-step produces ¢‘*' = [], p(:|z,,6"), because the KL-
divergence is the only term in (3) depending on g. The variational EM is in this case equivalent to
the standard EM, and hence produces the maximum likelihood (ML) estimate. In the following, we
consider certain ways of restricting g to attain speedup over standard EM, implying that the minimum
KL-divergence between g¢,, and p(+|z,,, #) is not necessarily zero. Still the variational EM defines a
convergent algorithm, which instead optimizes a lower bound of the log-likelihood.

Chunky EM. The chunky EM algorithm [17, 16] falls into the framework of variational EM
algorithms. In chunky EM, the variational distribution ¢ = [],, ¢, is restricted according to a
partition into exhaustive and mutually exclusive blocks of the data. For a given partition, if data
points x; and x; are in the same block, then ¢; = ¢;. The intuition is that data points in the same
block are somewhat similar and can be treated in the same way, which leads to computational savings
in the E-step. If M is the number of blocks in a given partition, the E-step for chunky EM has cost
O(K M) whereas in standard EM the cost is O(K N). The speedup can be tremendous for M < N.

The speedup is gained by a trade-off between the tightness of the lower bound for the log-likelihood
and the restrictiveness of constraints. Chunky EM starts from a coarse partition and iteratively refines
it. This refinement process always produces a tighter bound, since restrictions on the variational
distribution are gradually relaxed. The chunky EM algorithm stops when refining any block in a
partition will not significantly increase the lower bound.

3 Component-specific EM

In chunky EM, all mixture components share the same data partition. However, for a particular
block of data, the variation in membership probabilities differs across components, resulting in
varying differences from the equality constrained variational probabilities. Roughly, the variation in
membership probabilities is greatest for components closer to a block of data, and, in particular, for
components far away the membership probabilities are all so small that the variation is insignificant.
This intuition suggests that we might gain a computational speedup, if we create component-specific
data partitions, where a component pays more attention to nearby data (fine-grained blocks) than data
far away (coarser blocks). Let M}, be the number of data blocks in the partition for component k. The
complexity for the E-step is then O(} ;. M},), compared to O(K M) in chunky EM. Our conjecture
is that we can lower bound the log-likelihood equally well with » , M, significantly smaller than
K M, resulting in a much faster E-step. Since our model maintains different partitions for different
mixture components, we call it the component-specific EM algorithm (CS-EM).



Figure 1: Trees 1-5 represent 5 mixture compo-
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Main Algorithm. Figure 2 (on p. 6) shows the main flow of CS-EM. Starting from a coarse partition
for each component (see Section 4.1 for examples), CS-EM runs variational EM to convergence
and then selectively refine the component-specific partitions. This process continues until further
refinements will not significantly improve the lower bound. Sections 3.1-3.5 provide a detailed
description of basic concepts in support of this brief outline for the main structure of the algorithm.

3.1 Marked Partition Trees

It is convenient to organize the data into a pre-computed partition tree, where a node in the tree
represents the union of the data represented by its children. Individual data points are not actually
stored in each node, but rather, the sufficient statistics necessary for our estimation operations
are pre-computed and stored here. (We discuss these statistics in Section 3.3.) Any hierarchical
decomposition of data that ensures some degree of similarity between data in a block is suitable for
constructing a partition tree. We exemplify our work by using KD-trees [9]. Creating a KD-tree and
storing the sufficient statistics in its nodes has cost O(N log N), where N is the number of data point.
We will in the following consider tree-consistent partitions, where each data block in a partition
corresponds to exactly one node for a cut (possibly across different levels) in the tree—see Figure 1.

Let us now define a marked partition tree (MPT), a simple encoding of all component-specific
partitions, as follows. Let By, be the data partition (a set of blocks) in the tree-consistent partition for
mixture component k. In Figure 1, for example, 3; is the partition into data blocks associated with
nodes {e, ¢, d}. In the shared data partition tree used to generate the component-specific partitions,
we mark the corresponding nodes for the data blocks in each By, by the component identifier k. Each
node v in the tree will in this way contain a (possibly empty) set of component marks, denoted by /C,,.
The MPT is now the subtree obtained by pruning all unmarked nodes without marked descendants
from the tree. Figure 1 shows an example of a MPT. This example is special in the sense that all
nodes in the MPT are marked. In general, a MPT may have unmarked nodes at any location above
the leaves. For example, in chunky EM, the component-specific partitions are the same for each
mixture component. In this case, only the leaves in the MPT are marked, with each leaf marked by all
mixture components. The following important property for a MPT holds since all component-specific
partitions are constructed with respect to the same data partition tree.

Property 1. Let T denote a MPT. The marked nodes on a path from leaf to root in T mark exactly
one data block from each of the K component-specific data partitions.

In the following, it becomes important to identify the data block in a component-specific partition,
which embeds the block defined by a leaf. Let £ denote the set of leaves in T, and let B, denote
a partition with data blocks B; € B according to these leaves. We let By,(;) denote the specific
By, € By, with the property that B; C By Property 1 ensures that By,(;) exists for all /, k.

Example: In Figure 1, the path a — e — g in turn marks the components &, = {3, 4}, K. = {1,2},
and KC; = {5} and we see that each component is marked exactly once on this path, as stated in
Property 1. ACCOl‘dil‘lgly, for the leaf a, (BS(a) = B4(a)) - (Bl(a) = BQ(Q)) - B5(a). O

3.2 The Variational Distribution

Our variational distribution ¢ assigns the same variational membership probability to mixture compo-
nent k for all data points in a component-specific block By € Bj. That is,

qn(k) = ¢p, forall z, € By, ()]

which we denote as the component-specific block constraint. Unlike chunky EM, we do not assume
that the data partition By, is the same across different mixture components. The extra flexibility
complicates the estimation of ¢ in the E-step. This is the central challenge of our algorithm.



To further drive intuition behind the E-step complication, let us make the sum-to-one constraint for the
variational distributions g, (-) explicit. Thatis, >, ¢, (k) = 1 for all data points n, which according
to the above block constraint and using Property 1 can be reformulated as the |£| constraints

> kB, = Lforalll € L. (5)

Notice that since ¢gp, can be associated with an internal node in 7 it may be the case that ¢p, W
represent the same ¢p, across different constraints in (5). In fact,

4B,y = 4B, foralll € {l € L|B; C By}, (6)

implying that the constraints in (5) are intertwined according to the nested structure given by 7. The
closer a data block By, is to the root of 7 the more constraints simultaneously involve the same ¢p, .

Example: Consider the MPT in Figure 1. Here, ¢B,,, = 4B, = 4Bs., = 4Bs,> and hence the
density for component 5 is the same across all four sum-to-one constraints. Similarly, ¢p, ,, = ¢B, -
so the density is the same for component 1 in the two constraints associated with leaves @ and b. O

3.3 Efficient Variational E-step

Accounting for the component-specific block constraint in (4), the lower bound, F (0, ¢), in Eq. (2)
can be expressed as a sum of local parts, F (6, gp, ), as follows

F(0,9) =312 p,en, | Brl 4, (9B, +1ogmy —loggn,) =31 > p, e, F(0,a5,), ()

where we have defined the block-specific geometric mean

98, = (logp(z|nk)) B, = > ,cp, logp(x|nk)/|Brl- (8)

We integrate the sum-to-one constraints in (5) into the lower bound in (7) by using the standard
principle of Lagrange duality (see, e.g., [1]). Accordingly, we construct the Lagrangian

F(0,q,\) = Zk ZBk F(0,q8,) + Zl Al(Zk 4By — 1),

where A 2 {\;,...,\p} are the Lagrange multipliers for the constraints in Eq. (5). Recall the
relationship between ¢, and gg, ,, in (6). By setting 0.7 (0, ¢, \)/0qp, = 0, we obtain

a5, (V) = exp (/1B X, M= 1) meexp (g5,) ©)

Solving the dual optimization problem A\* = arg miny F (6, ¢(\), ) now leads to the primal solution
given by ¢ = gp, (\*).!

For chunky EM, the E-step is straightforward, because By,(;) = B and therefore ;. ;5 By A=A

forall k =1,..., K. Substituting (9) into the sum-to-one constraints in (5) reveals that each \; can
be solved independently, leading to the following closed-form solution for ¢p,
N = 1Bl (L +1og 3o) mexp(9B,)) s a5y, = Tk exp(9B,q,)/ 2, (10)

where Z = >, 7 exp(gp,, ) is a normalizing constant.

CS-EM does not enjoy a similar simple optimization, because of the intertwined constraints, as
described in Section 3.2. Fortunately, we can still obtain a closed-form solution. Essentially, we use
the nesting structure of the constraints to reduce Lagrange multipliers from the solution one at a time
until only one is left, in which case the optimization is easily solved. We describe the basic approach
here and defer the technical details (and pseudo-code) to the supplement.

Consider a leaf node I € £ and recall that K; denotes the components with By,;) = B in their
partitions. The sum-to-one constraint in (5) that is associated with leaf [ can therefore be written as

ZkEKL 4B + Zkgm 4By = L.

Furthermore, for all £ € K; the gp, > as defined in (9), is a function of the same );. Accordingly,

U= Y her, Bray = XD (N /IBil = 1) Y pex, T exp(9B, ) )- (11)

"Notice that Eq. (9) implies that positivity constraints g, (k) > 0 are automatically satisfied during estimation.



Now, consider I’s leaf-node sibling, . For example, in Figure 1, node | = a and I’ = b. The two
leaves share the same path from their parent to the root in 7. Hence, using Property 1, it must be
the case that By,(;) = By for k ¢ K. The two sum-to-one constraints—one for each leaf—therefore
imply that g; = q;/. Using (11), it now follows that

A = | Bu|(A\/|Bil +10g Ypex, Tr exp(9B,y) — 108 Xpex,, T exp(98, ) £ F(N)-

Thus, we can replace Ay with f(\;) in all ¢p, expressions. Further analysis (detailed in the supple-
ment) shows how we more efficiently account for this parameter reduction and continue the process,
now considering the parent node a new “leaf” node once all children have been processed. When
reaching the root, every ¢p, expression on the path from [ only involves the single );, and the optimal
A can therefore be found analytically by solving the corresponding sum-to-one constraint in (5).
Following, all optimal ¢j;, are found by inserting A} into the reduced gp, expressions.

Finally, it is important to notice that gp, is the only data-dependent part in the above E-step solution.
It is therefore key to the computational efficiency of the CS-EM algorithm that g, can be calculated
from pre-computed statistics, which is in fact the case for the large class of exponential family
distributions. These are the statistics that are stored in the nodes of the MPT.

Example: Let p(x|ni) be an exponential family distribution

p(@(ne) = h(z) exp(ni T(x) — A(ne)), (12)

where 7y, is the natural parameter, h(x) is the reference function, T'(x) is the sufficient statistic, and
A(ny) is the normalizing constant. Then

g5, = (logh(x)) B, +ni (T(@)) 5, — Alm),

where (log h(x))p, and (T(x))p, are the statistics that we pre-compute for (8). In particular, if
p(z|nk) = Ny (ug, k), a Gaussian distribution, then

h(x)=1, T(z)=(z, zz”), ne = (m3; ", —5;"/2), A(m) = —3(dlog(2m)+log|Sk|+ui ™" ) ,
and the statistics {log h(z))p, = 0 and (T'(z)) 5, = ((x)s,, (xz1)p,) can be pre-computed. O
3.4 Efficient Variational M-step

In the variational M-step the model parameters 8 = {n;.x, 71.x } are updated by maximizing Eq. (7)
w.r.t. 6 under the constraint ) , 7, = 1. Hereby, the update is

Tk X D p ep, |Brlas,, Mk =argmaxy, > p s |Bklgs, 95, (13)
Thus, the M-step can be efficiently computed using the pre-computed sufficient statistics as well.

Example: If p(x|n;) has the exponential family form in Eq. (12), 7, is obtained by solving

Tk = argmaXy, (ZBkGBk 4By EmeBk T(ff))ﬁk - (ZBkEBk |Bk\q3k)A(77k)~
In particular, if p(z|nx) = Ny (uk, Xk ), then

e = (g, e, |Brlas () ,)/ (NTk) s Bk = (X p, s, |Brlas, (xa™) B, — ppf)/ (N7p) . O

3.5 Efficient Variational R-step

Given the current component-specific data partitions, as marked in the MPT T, a refining step (R-step)
selectively refines these partitions. Any refinement enlarges the family of variational distributions,
and therefore always tightens the optimal lower bound for the log-likelihood. We define a refinement
unit as the refinement of one data block in the current partition for one component in the model. The
efficiency of CS-EM is affected by the number of refinement units performed at each R-step. With
too few units we spend too much time on refining, and with too many units some of the refinements
may be far from optimal and therefore unnecessarily slow down the algorithm. We have empirically
found K refinement units at each R-step to be a good choice. This introduces K new free variational
parameters, which is similar to a refinement step in chunky EM. However, chunky EM refines the
same data block across all components, which is not the case in CS-EM.



Figure 2: The CS-EM algorithm. Figure 3: Variational R-step algorithm.
1: Initialization: build KD-tree, set initial MPT, set 1: Initialize priority queue () favoring high AF,, j
initial 6, run E-step to set g, set ¢, s=0, compute values.
Fi, Fs using (7). 2: for each marked node v in 7 do
2: repeat 3:  Compute g via E-step with constraints as in
3:  repeat (14).
4: Run variational E-step and M-step. 4: forallk € K, do
5: Sett <— t 4+ 1 and compute F; using (7). 5: Insert candidate (v, k) into @ according to
6: until (F; — Fi_1)/(F: — Fo) < 107 AFp k-
7:  Run variational R-step. 6: end for
8: Sets <+ s+ 1and Fs = F;. 7: end for
9: until (Fs — Fs_1)/(Fs — Fo) < 107*. 8: Select K top-ranked (v, k) in @ for refinement.

Ideally, an R-step should select the refinement units leading to optimal improvement for 7. Good
candidates can be found by performing a single E-step for each candidate and then select the units
that improve F the most. This demands the evaluation of an E-step for each of the ), M;, possible
refinement units. Exact evaluation for this many full E-steps is prohibitively expensive, and we
therefore instead approximate these refinement-guiding E-steps by a local computation scheme based
on the intuition that refining a block for a specific component mostly affects components with similar
local partition structures. The algorithm is described in Figure 3 with details as follows.

Consider moving all component-marks for v € T to its children ch(v), where each child u € ch(v)
receives a copy. Let 7 denote the altered MPT, and /., KC,, denote the set of marks at v,u € 7.
Hence, K, = 0 and K,, = K,, U K,,. To approximate the new variational distribution g, we fix the
value for each ¢p, . with k & IC,, and [ € L, to the value obtained for the distribution ¢ before the
refinement. In this case, the sum-to-one constraints for ¢ simplifies as

> kek, @By + R =1foralll € L, (14)
with By = 1 — >, ¢ qB,, being the fixed values. Notice that ) 3, ¢ ¢g,, = 0 for any leaf /
not under w, and that g5, ,, = ¢B,,, and g, = s, fork € K., and any leaf [ under u. The

constraints in (14) therefore reduces to the following |ch(v)| independent constraints
> kek, @By T Ru = 1forall u € ch(v).
Each gp, () k € K, now has a local closed form solution similar to (10)-with Z = > keic, 4By, (u)+Ru.

The improvement to F that is achieved by the refinement-guiding E-step for the refinement unit
refining data block v for component k is denoted AF, 1, and can be computed as

A]:U,k’ = Zuéch(v) -7:(07 (jBk(u)) - ‘7:(07 QBk(U))'

This improvement is computed for all possible refinement units and the K highest scoring units are
then selected in the R-step. Notice that this selective refinement step will most likely not refine the
same data block for all components and therefore creates component-specific partitions.

Example: In Figure 1, node e and its children {a, b} are marked K, = {1,2} and KC, = KC;, = {3, 4}.
For the two candidate refinement units associated with e, we have K, = fand K, = K, = {1, 2, 3,4}.
With g5,y held fixed, we will for each child u € {a, b} optimize g, ,,, k = 1,2, 3,4, and following
(e,1) and (e, 2) are inserted into the priority queue of candidates according to their AF,, j values. O

4 Experiments

In this section we provide a systematic evaluation of CS-EM, chunky EM, and standard EM on
synthetic data, as well as a comparison between CS-EM and chunky EM on the business-customer
data, mentioned in Section 1. (Standard EM is too slow to be included in the latter experiment.)

4.1 Experimental setup

For the synthetic experiments, we generated random training and test data sets from Gaussian mixture
models (GMMs) by varying one (in a single case two) of the following default settings: #data points
N =100, 000, #mixture components K = 40, #dimensions d = 2, and c—separation2 c=2.

2A GMM is c-separated [3], if for any i # j, (i, 5) 2 ||ts — p5]]?/ max(Amax (Z4), Amax (3;)) > dc?,
where Amax(X) denotes the maximum eigenvalue of X. We only require that Median [f (7, j)] > dc”.



The (proprietary) business-customer data was obtained through collaboration with PitneyBowes
Inc. and Yellowpages.com LLC. For the experiments on this data, N = 6.5 million and d = 2,
corresponding to the latitude and longitude for potential customers in Washington state. The basic
assumption is that potential customers act as rational consumers and frequent the somewhat closest
business locations to purchase a good or service. The locations for competing stores of a particular
type, in this way, correspond to fixed centers for components in a mixture model. (A less naive model
with the penetration level for a good or service and the relative attractiveness for stores, is the object
of related research, but is not important for the computational feasibility studied here.)

The synthetic experiments are initialized as follows. After constructing KD-tree, the first tree-level
containing at least K nodes ([log, K]) is used as the initial data partition for both chunky EM and
all components in CS-EM. For all algorithms (including standard EM), we randomly chose K data
blocks from the initial partition and initialized parameters for the individual mixture components
accordingly. Mixture weights are initialized with a uniform distribution. The experiments on the
business-customer data are initialized in the same way, except that the component centers are fixed
and the initial data blocks that cover these centers are used for initializing the remaining parameters.

For CS-EM we also considered an alternative initialization of data partitions, which better matches the
rationale behind component-specific partitions. It starts from the CS-EM initialization and recursively,
according to the KD-tree structure, merges two data blocks in a component-specific partition, if the
merge has little effect on that component.> We name this variant as CS-EM*.

4.2 Results

For the synthetic experiments, we compared the run-times for the competing algorithms to reach
a parameter estimate of same quality (and therefore similar clustering performance not counting
different local maxima), defined as follows. We recorded the log-likelihood for the test data at each
iteration of the EM algorithm, and before each S-step in chunky EM and the CS-EM. We ran all
algorithms to convergence at level 10™4, and the test log-likelihood for the algorithm with lowest
value was chosen as baseline.* We now recorded the run-time for each algorithm to reach this
baseline, and computed the EM-speedup factors for chunky EM, CS-EM, and CS-EM*, each defined
as the standard EM run-time divided by the run-time for the alternative algorithm. We repeated all
experiments with five different parameter initializations and report the averaged results.

Figure 4 shows the EM-speedups for the synthetic data. First of all, we see that both CS-EM and CS-
EM* are significantly faster than chunky EM in all experiments. In general, the ), M)}, variational
parameters needed for the CS-EM algorithms is far fewer than the K M parameters needed for
chunky EM in order to reach an estimate of same quality. For example, for the default experimental
setting, the ratio KM/ ", Mj, is 2.0 and 2.1 for, respectively, CS-EM and CS-EM*. We also see
that there is no significant difference in speedup between CS-EM and CS-EM*. This observation can
be explained by the fact that the resulting component-specific data partitions greatly refine the initial
partitions, and any computational speedup due to the smarter initial partition in CS-EM* is therefore
overwhelmed. Hence, a simple initial partition, as in CS-EM, is sufficient.

Finally, similar to results already reported for chunky EM in [17, 16], we see for all of chunky
EM, CS-EM, and CS-EM* that the number of data points and the amount of c-separation have a
positive effect on EM-speedup, while the number of dimensions and the number of components
have a negative effect. However, the last plot in Figure 4 reveals an important difference between
chunky EM and CS-EM: with a fixed ratio between number of data points and number of clusters, the
EM-speedup declines a lot for chunky EM, as the number of clusters and data points increases. This
observation is important for the business-customer data, where increasing the area of investigation
(from city to county to state to country) has this characteristic for the data.

In the second experiment on the business-customer data, standard EM is computationally too de-
manding. For example, for the “Nail salon” example in Figure 5, a single EM iteration takes about
5 hours. In contrast, CS-EM runs to convergence in 20 minutes. To compare run-times for chunky

3Let 1 and ¥ be the mean and variance parameter for an initial component, and i, f4;, and - denote the
sample mean for data in the considered parent, left and right child. We merge if | M D (1, p|X)/ M D (pp, 1|2) —
1] < 0.05 and |M D(pir, u|3) /M D(pap, p|X) — 1| < 0.05, where M D(+, -|X) is the Mahalanobis distance.

“For the default experimental setting, for example, the baseline is reached at 96% of the log-likelihood
improvement from initialization to standard EM convergence.



Figure 4: EM-speedup factors on synthetic data. Figure 5: A comparison of run-time and final number
of variational parameters for Chunky EM vs. CS-EM
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EM and CS-EM, we therefore slightly modified the way we ensure that the two algorithm reach a
parameter estimate of same quality. We use the lowest of the F values (on training data) obtained for
the two algorithms at convergence as the baseline, and record the time for each algorithm to reach
this baseline. Figure 5 shows the speedup (time ratio) and the reduction in number of variational
parameters (parameter ratio) for CS-EM compared to chunky EM, as evaluated on exemplary types
of businesses. Again, CS-EM is significantly faster than chunky EM and the speedup is achieved by a
better targeting of variational distribution through the component-specific partitions.

5 Related and Future Work

Related work. CS-EM combines the best from two major directions in the literature regarding
speedup of EM for mixture modeling. The first direction is based on powerful heuristic ideas, but
without provable convergence due to the lack of a well-defined objective function. The work in
[10] is a prominent example, where KD-tree partitions were first used for speeding up EM. As also
pointed out in [17, 16], the method will likely—but not provably—converge for fine-grained partitions.
In contrast, CS-EM is provable convergent—even for arbitrary rough partitions, if extreme speedup
is needed. The granularity of partitions in [10] is controlled by a user-specified threshold on the
minimum and maximum membership probabilities that are reachable within the boundaries of a node
in the KD-tree. In contrast, we have almost no tuning parameters. We instead let the data speak by
itself by having the final convergence determine the granularity of partitions. Finally, [10] “prunes” a
component (sets the membership probability to zero) for data far away from the component. It relates
to our component-specific partitions, but ours is more principled with convergence guarantees.

The second direction of speedup approaches are based on the variational EM framework [11]. In [11],
a “sparse” EM was presented, which at some iterations, only updates part of the parameters and
hence relates it to the pruning idea in [10]. [14] presents an “incremental” and a “lazy” EM, which
gain speedup by performing E-steps on varying subsets of the data rather than the entire data. All
three methods guarantee convergence. However, they need to periodically perform an E-step over the
entire data, and, in contrast to CS-EM, their E-step is therefore not truly sub-linear in sample size,
making them potentially unsuitable for large-scale applications. The chunky EM in [17, 16] is the
approach most similar to our CS-EM. Both are based on the variational EM framework and therefore
guarantees convergence, but CS-EM is faster and scales better in the number of clusters.

In addition, heuristic sub-sampling is common practice when faced with a large amount of data. One
could argue that chunky EM is an intelligent sub-sampling method, where 1) instead of sampled data
points it uses geometric averages for blocks of data in a given data partition, and 2) it automatically
chooses the “sampling size” by a learning curve method, where F is used to measure the utility
of increasing the granularity for the partition. Sub-sampling therefore has same computational
complexity as chunky EM, and our results therefore suggest that we should expect CS-EM to be
much faster than sub-sampling and scale better in the number of mixture components.

Finally, we exemplified our work by using KD-trees as the tree-consistent partition structure for
generating the component-specific partitions in CS-EM, which limited its effectiveness in high
dimensions. However, any hierarchical partition structure can be used, and the work in [8] therefore
suggest that changing to an anchor tree (a special kind of metric tree [15]) will also render CS-EM
effective in high dimensions, under the assumption of lower intrinsic dimensionality for the data.

Future Work. Future work will include parallelization of the algorithm and extensions to 1) non-
probabilistic clustering methods, e.g., k-means clustering [6, 13, 5] and 2) general EM applications
beyond mixture modeling.
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