
Learning Concept Graphs from Text with
Stick-Breaking Priors

America L. Chambers
Department of Computer Science
University of California, Irvine

Irvine, CA 92697
ahollowa@ics.uci.edu

Padhraic Smyth
Department of Computer Science
University of California, Irvine

Irvine, CA 92607
smyth@ics.uci.edu

Mark Steyvers
Department of Cognitive Science
University of California, Irvine

Irvine, CA 92697
mark.steyvers@uci.edu

Abstract

We present a generative probabilistic model for learning general graph structures,
which we term concept graphs, from text. Concept graphs provide a visual sum-
mary of the thematic content of a collection of documents—a task that is difficult
to accomplish using only keyword search. The proposed model can learn different
types of concept graph structures and is capable of utilizing partial prior knowl-
edge about graph structure as well as labeled documents. We describe a generative
model that is based on a stick-breaking process for graphs, and a Markov Chain
Monte Carlo inference procedure. Experiments on simulated data show that the
model can recover known graph structure when learning in both unsupervised and
semi-supervised modes. We also show that the proposed model is competitive
in terms of empirical log likelihood with existing structure-based topic models
(hPAM and hLDA) on real-world text data sets. Finally, we illustrate the applica-
tion of the model to the problem of updating Wikipedia category graphs.

1 Introduction

We present a generative probabilistic model for learning concept graphs from text. We define a
concept graph as a rooted, directed graph where the nodes represent thematic units (called concepts)
and the edges represent relationships between concepts. Concept graphs are useful for summarizing
document collections and providing a visualization of the thematic content and structure of large
document sets - a task that is difficult to accomplish using only keyword search. An example of
a concept graph is Wikipedia’s category graph1. Figure 1 shows a small portion of the Wikipedia
category graph rooted at the category MACHINE LEARNING2. From the graph we can quickly in-
fer that the collection of machine learning articles in Wikipedia focuses primarily on evolutionary
algorithms and Markov models with less emphasis on other aspects of machine learning such as
Bayesian networks and kernel methods.

The problem we address in this paper is that of learning a concept graph given a collection of
documents where (optionally) we may have concept labels for the documents and an initial graph
structure. In the latter scenario, the task is to identify additional concepts in the corpus that are

1http://en.wikipedia.org/wiki/Category:Main topic classifications
2As of May 5, 2009

1

Machine learning

Learning

Education

Computational Statistics

Statistics

Algorithms Society

Knowledge

Knowledge

Sharing

Mathematical

Sciences

Software

Engineering

Computing

Computer

Programming

Applied

Mathematics

Computer

Science

Formal

Sciences

Applied

Sciences

Cognition

Philosophy

Of mind

Cognitive

Science

Philosophy

By field

Metaphysics

Artificial

Intelligence

Probability and

Statistics

Thought

Figure 1: A portion of the Wikipedia category supergraph for the node MACHINE LEARNING

Bayesian
Networks

Classification
Algorithms

Ensemble
Learning

Genetic
Algorithms

Kernel
Methods

Genetic
Programming

Interactive
Evolutionary
Computation

Learning in
Computer

Vision

Markov
Networks

Statistical
Natural

Language
Processing

Evolutionary
Algorithms

Markov
Models

Machine
Learning

Figure 2: A portion of the Wikipedia category subgraph rooted at the node MACHINE LEARNING

not reflected in the graph or additional relationships between concepts in the corpus (via the co-
occurrence of concepts in documents) that are not reflected in the graph. This is particularly suited
for document collections like Wikipedia where the set of articles is changing at such a fast rate
that an automatic method for updating the concept graph may be preferable to manual editing or
re-learning the hierarchy from scratch. The foundation of our approach is latent Dirichlet allocation
(LDA) [1]. LDA is a probabilistic model for automatically identifying topics within a document
collection where a topic is a probability distribution over words. The standard LDA model does
not include any notion of relationships, or dependence, between topics. In contrast, methods such
as the hierarchical topic model (hLDA) [2] learn a set of topics in the form of a tree structure. The
restriction to tree structures however is not well suited for large document collections like Wikipedia.
Figure 1 gives an example of the highly non-tree like nature of the Wikipedia category graph. The
hierarchical Pachinko allocation model (hPAM) [3] is able to learn a set of topics arranged in a fixed-
sized graph with a nonparametric version introduced in [4]. The model we propose in this paper is
a simpler alternative to hPAM and nonparametric hPAM that can achieve the same flexibility (i.e.
learning arbitrary directed acyclic graphs over a possibly infinite number of nodes) within a simpler
probabilistic framework. In addition, our model provides a formal mechanism for utilizing labeled
data and existing concept graph structures. Other methods for creating concept graphs include the
use of techniques such as hierarchical clustering, pattern mining and formal concept analysis to
construct ontologies from document collections [5, 6, 7]. Our approach differs in that we utilize
a probabilistic framework which enables us (for example) to make inferences about concepts and
documents. Our primary novel contribution is the introduction of a flexible probabilistic framework
for learning general graph structures from text that is capable of utilizing both unlabeled documents
as well as labeled documents and prior knowledge in the form of existing graph structures.

In the next section we introduce the stick-breaking distribution and show how it can be used as
a prior for graph structures. We then introduce our generative model and explain how it can be
adapted for the case where we have an initial graph structure. We derive collapsed Gibbs’ sampling
equations for our model and present a series of experiments on simulated and real text data. We
compare our performance against hLDA and hPAM as baselines. We conclude with a discussion of
the merits and limitations of our approach.

2

2 Stick-breaking Distributions

Stick-breaking distributions P(·) are discrete probability distributions of the form:

P(·) =
∞∑
j=1

πjδxj (·) where
∞∑
j=1

πj = 1, 0 ≤ πj ≤ 1

and δxj (·) is the delta function centered at the atom xj . The xj variables are sampled independently
from a base distribution H (where H is assumed to be continuous). The stick-breaking weights πj
have the form

π1 = v1, πj = vj

j−1∏
k=1

(1− vk) for j = 2, 3, . . . ,∞

where the vj are independent Beta(αj , βj) random variables. Stick-breaking distributions derive
their name from the analogy of repeatedly breaking the remainder of a unit-length stick at a randomly
chosen breakpoint. See [8] for more details.

Unlike the Chinese restaurant process, the stick-breaking process lacks exchangeability. The prob-
ability of sampling a particular cluster from P(·) given the sequences {xj} and {vj} is not equal
to the probability of sampling the same cluster given a permutation of the sequences {xσ(j)} and
{vσ(j)}. This can be seen in Equation 2 where the probability of sampling xj depends upon the
value of the j − 1 proceeding Beta random variables {v1, v2, . . . , vj−1}. If we fix xj and permute
every other atom, then the probability of sampling xj changes: it is now determined by the Beta
random variables {vσ(1), vσ(2), . . . , vσ(j−1)}.
The stick-breaking distribution can be utilized as a prior distribution on graph structures. We con-
struct a prior on graph structures by specifying a distribution at each node (denoted as Pt) that
governs the probability of transitioning from node t to another node in the graph. There is some
freedom in choosing Pt; however we have two constraints. First, making a new transition must have
non-zero probability. In Figure 1 it is clear that from MACHINE LEARNING we should be able to
transition to any of its children. However we may discover evidence for passing directly to a leaf
node such as STATISTICAL NATURAL LANGUAGE PROCESSING (e.g. if we observe new articles
related to statistical natural language processing that do not use Markov models). Second, making
a transition to a new node must have non-zero probability. For example, we may observe new ar-
ticles related to the topic of Bioinformatics. In this case, we want to add a new node to the graph
(BIOINFORMATICS) and assign some probability of transitioning to it from other nodes.

With these two requirements we can now provide a formal definition for Pt. We begin with an
initial graph structure G0 with t = 1 . . . T nodes. For each node t we define a feasible set Ft as the
collection of nodes to which t can transition. The feasible set may contain the children of node t or
possible child nodes of node t (as discussed above). In general, Ft is some subset of the nodes in
G0. We add a special node called the ”exit node” to Ft. If we sample the exit node then we exit
from the graph instead of transitioning forward. We define Pt as a stick-breaking distribution over
the finite set of nodes Ft where the remaining probability mass is assigned to an infinite set of new
nodes (nodes that exist but have not yet been observed). The exact form of Pt is shown below.

Pt(·) =
|Ft|∑
j=1

πtjδftj (·) +
∞∑

j=|Ft|+1

πtjδxtj (·)

The first |Ft| atoms of the stick-breaking distribution are the feasible nodes ftj ∈ Ft. The remaining
atoms are unidentifiable nodes that have yet to be observed (denoted as xtj for simplicity).

This is not yet a working definition unless we explicitly state which nodes are in the set Ft. Our
model does not in general assume any specific form for Ft. Instead, the user is free to define it as
they like. In our experiments, we first assign each node to a unique depth and then define Ft as any
node at the next lower depth. The choice of Ft determines the type of graph structures that can be
learned. For the choice of Ft used in this paper, edges that traverse multiple depths are not allowed
and edges between nodes at the same depth are not allowed. This prevents cycles from forming
and allows inference to be performed in a timely manner. More generally, one could extend the
definition of Ft to include any node at a lower depth.

3

1. For node t ∈ {1, . . . ,∞}
i. Sample stick-break weights {vtj}|α, β ∼ Beta(α, β)
ii. Sample word distribution φt|η ∼ Dirichlet(η)

2. For document d ∈ {1, 2, . . . D}
i. Sample a distribution over levels τd|a, b ∼ Beta(a,b)
ii. Sample path pd ∼ {Pt}∞t=1

iii. For word i ∈ {1, 2, . . . , Nd}
Sample level ld,i ∼ TruncatedDiscrete(τd)
Generate word xd,i|{pd, ld,i,Φ} ∼Multinomial(φpd[ldi])

Figure 3: Generative process for GraphLDA

Due to a lack of exchangeability, we must specify the stick-breaking order of the elements in Ft.
Note that despite the order, the elements of Ft always occur before the infinite set of new nodes in
the stick-breaking permutation. We use a Metropolis-Hastings sampler proposed by [10] to learn
the permutation of feasible nodes with the highest likelihood given the data.

3 Generative Process

Figure 3 shows the generative process for our proposed model, which we refer to as GraphLDA.
We observe a collection of documents d = 1 . . . D where document d has Nd words. As discussed
earlier, each node t is associated with a stick-breaking prior Pt. In addition, we associate with each
node a multinomial distribution φt over words in the fashion of topic models.

A two-stage process is used to generate document d. First, a path through the graph is sampled
from the stick-breaking distributions. We denote this path as pd. The i + 1st node in the path
is sampled from Ppdi(·) which is the stick-breaking distribution at the ith node in the path. This
process continues until an exit node is sampled. Then for each word xi a level in the path, ldi, is
sampled from a truncated discrete distribution. The word xi is generated by the topic at level ldi
of the path pd which we denote as pd[ldi]. In the case where we observe labeled documents and an
initial graph structure the paths for document d is restricted to end at the concept label of document
d.

One possible option for the length distribution is a multinomial distribution over levels. We take
a different approach and instead use a parametric smooth form. The motivation is to constrain the
length distribution to have the same general functional form across documents (in contrast to the rel-
atively unconstrained multinomial), but to allow the parameters of the distribution to be document-
specific. We considered two simple options: Geometric and Poisson (both truncated to the number
of possible levels). In initial experiments the Geometric performed better than the Poisson, so the
Geometric was used in all experiments reported in this paper. If word xdi has level ldi = 0 then the
word is generated by the topic at the last node on the path and successive levels correspond to earlier
nodes in the path. In the case of labeled documents, this matches our belief that a majority of words
in the document should be assigned to the concept label itself.

4 Inference

We marginalize over the topic distributions φt and the stick-breaking weights {vtj}. We use a
collapsed Gibbs sampler [9] to infer the path assignment pd for each document, the level distribution
parameter τd for each document, and the level assignment ldi for each word. Of the five hyper-
parameters in the model, inference is sensitive to the value of β and η so we place an Exponential
prior on both and use a Metropolis-Hastings sampler to learn the best setting.

4.1 Sampling Paths

For each document, we must sample a path pd conditioned on all other paths p−d, the level variables,
and the word tokens. We only consider paths whose length is greater than or equal to the maximum

4

level of the words in the document.

p(pd|x, l,p−d, τ) ∝ p(xd|x−d, l,p) · p(pd|p−d) (1)

The first term in Equation 1 is the probability of all words in the document given the path pd. We
compute this probability by marginalizing over the topic distributions φt:

p(xd|x−d, l,p) =
λd∏
l=1

(
V∏
v=1

Γ(η +Npd[l],v)

Γ(η +N−dpd[l],v)

)
∗

Γ(V η +
∑
v N
−d
pd[l],v

)

Γ(V η +
∑
v Npd[l],v)

We use λd to denote the length of path pd. The notation Npd[l],v stands for the number of times
word type v has been assigned to node pd[l]. The superscript−dmeans we first decrement the count
Npd[l],v for every word in document d.

The second term is the conditional probability of the path pd given all other paths p−d. We present
the sampling equation under the assumption that there is a maximum number of nodes M allowed
at each level. We first consider the probability of sampling a single edge in the path from a node x
to one of its feasible nodes {y1, y2, . . . , yM} where the node y1 has the first position in the stick-
breaking permutation, y2 has the second position, y3 the third and so on.

We denote the number of paths that have gone from x to yi as N(x,yi). We denote the number of
paths that have gone from x to a node with a strictly higher position in the stick-breaking distribution
than yi as N(x,>yi). That is, N(x,>yi) =

∑M
k=i+1N(x,yk). Extending this notation we denote the

sum N(x,yi) +N(x,>yi) as N(x,≥yi). The probability of selecting node yi is given by:

p(x→ yi | p−d) =
α+N(x,yi)

α+ β +N(x,≥yi)

i−1∏
r=1

β +N(x,>yr)

α+ β +N(x,≥yr)
for i = 1 . . .M

If ym is the last node with a nonzero count N(x,ym) and m << M it is convenient to compute the
probability of transitioning to yi, for i ≤ m, and the probability of transitioning to any node higher
than ym. The probability of transitioning to a node higher than ym is given by

M∑
k=m+1

p(x→ yk|p−d) = ∆

[
1− β

α+ β

M−m
]

where ∆ =
∏m
r=1

β+N(x,>yr)

α+β+N(x,≥yr)
. A similar derivation can be used to compute the probability of

sampling a node higher than ym when M is equal to infinity. Now that we have computed the
probability of a single edge, we can compute the probability of an entire path pd:

p(pd|p−d) =
λd∏
j=1

p(pdj → pd,j+1|p−d)

4.2 Sampling Levels

For the ith word in the dth document we must sample a level ldi conditioned on all other levels l−di,
the document paths, the level parameters τ , and the word tokens.

p(ldi|x, l−di,p, τ) =

(
η +N−dipd[ldi],xdi

Wη +N−dipd[ldi],·

)
· (1− τd)ldi τd

(1− (1− τd)λd+1)

The first term is the probability of word type xdi given the topic at node pd[ldi]. The second term is
the probability of the level ldi given the level parameter τd.

4.3 Sampling τ Variables

Finally, we must sample the level distribution τd conditioned on the rest of the level parameters τ−d,
the level variables, and the word tokens.

p(τd|x, l,p, τ−d) =

(
Nd∏
i=1

(1− τd)ldi τd
(1− (1− τd)λd+1)

)
∗

(
τa−1
d (1− τd)b−1

B
(
a, b
))

(2)

5

1

2 3 4

5 6 7 8

9 10

973 1069 957

486 331 385 524 524 278

306 453 513 154

(a) Simulated Graph

1

2 3 4

5 6 7/10 4

9 8/4

973 1060 957

496 194 545 515 682 275

316 423 4 275

3/10

9

20

20

9

(b) Learned Graph (0 labeled documents)
1

2 3 4/7

5/1 6/9 7/10 8/4/1

9/2 10

972 1057 968

484 235 384 512 274 283

26 245 24

5/2

2

2
1

268

(c) Learned Graph (250 labeled documents)

1

2 3 4

5 6 7 8

9 10

973 1069 957

486 331 385 524 524 278

306 453 513 154

(d) Learned Graph (4000 labeled documents)

Figure 4: Learning results with simulated data

Due to the normalization constant (1− (1− τd)λd+1), Equation 2 is not a recognizable probability
distribution and we must use rejection sampling. Since the first term in Equation 2 is always less
than or equal to 1, the sampling distribution is dominated by a Beta(a, b) distribution. According
to the rejection sampling algorithm, we sample a candidate value for τd from Beta(a, b) and either
accept with probability

∏Nd
i=1

(1−τd)ldi τd
(1−(1−τd)λd+1)

or reject and sample again.

4.4 Metropolis Hastings for Stick-Breaking Permutations

In addition to the Gibbs sampling, we employ a Metropolis Hastings sampler presented in [10] to
mix over stick-breaking permutations. Consider a node x with feasible nodes {y1, y2, . . . , yM}. We
sample two feasible nodes yi and yj from a uniform distribution3. Assume yi comes before yj in
the stick-breaking distribution. Then the probability of swapping the position of nodes yi and yj is
given by

min

{
1,
N(x,yi)−1∏
k=0

α+ β +N∗(x,>yi) + k

α+ β +N(x,>yj) + k
·
N(x,yj)−1∏

k=0

α+ β +N(x,>yj) + k

α+ β +N∗(x,>yi) + k

}
where N∗(x,>yi) = N(x,>yi) − N(x,yj). See [10] for a full derivation. After every new path assign-
ment, we propose one swap for each node in the graph.

5 Experiments and Results

In this section, we present experiments performed on both simulated and real text data. We compare
the performance of GraphLDA against hPAM and hLDA.

5.1 Simulated Text Data

In this section, we illustrate how the performance of GraphLDA improves as the fraction of labeled
data increases. Figure 4(a) shows a simulated concept graph with 10 nodes drawn according to the

3In [10] feasible nodes are sampled from the prior probability distribution. However for small values of α
and β this results in extremely slow mixing.

6

stick-breaking generative process with parameter values η = .025, α = 10, β = 10, a = 2 and
b = 5. The vocabulary size is 1, 000 words and we generate 4, 000 documents with 250 words each.
Each edge in the graph is labeled with the number of paths that traverse it.

Figures 4(b)-(d) show the learned graph structures as the fraction of labeled data increases from
0 labeled and 4, 000 unlabeled documents to all 4, 000 documents being labeled. In addition to
labeling the edges, we label each node based upon the similarity of the learned topic at the node to
the topics of the original graph structure. The Gibbs sampler is initialized to a root node when there
is no labeled data. With labeled data, the Gibbs sampler is initialized with the correct placement of
nodes to levels. The sampler does not observe the edge structure of the graph nor the correct number
of nodes at each level (i.e. the sampler may add additional nodes). With no labeled data, the sampler
is unable to recover the relationship between concepts 8 and 10 (due to the relatively small number
of documents that contain words from both concepts). With 250 labeled documents, the sampler is
able to learn the correct placement of both nodes 8 and 10 (although the topics contain some noise).

5.2 Wikipedia Articles

In this section, we compare the performance of GraphLDA to hPAM and hLDA on a set of 518
machine-learning articles taken from Wikipedia. The input to each model is only the article text. All
models are restricted to learning a three-level hierarchical structure. For both GraphLDA and hPAM,
the number of nodes at each level was set to 25. For GraphLDA, the parameters were fixed at α = 1,
a = 1 and b = 1. The parameters β and η were initialized to 1 and .001 respectively and optimized
using a Metropolis Hastings sampler. We used the MALLET toolkit implementation of hPAM4 and
hLDA [11]. For hPAM, we used different settings for the topic hyperparameter η = (.001, .01, .1).
For hLDA we set η = .1 and considered γ = (.1, 1, 10) where γ is the smoothing parameter for the
Chinese restaurant process and α = (.1, 1, 10) where α is the smoothing over levels in the graph.

All models were run for 9, 000 iterations to ensure burn-in and samples were taken every 100 it-
erations thereafter, for a total of 10, 000 iterations. The performance of each model was evaluated
on a hold-out set consisting of 20% of the articles using both empirical likelihood and the left-to-
right evaluation algorithm (see Sections 4.1 and 4.5 of [12]) which are measures of generalization
to unseen data. For both GraphLDA and hLDA we use the distribution over paths that was learned
during training to compute the per-word log likelihood. For hPAM we compute the MLE estimate of
the Dirichlet hyperparameters for both the distribution over super-topics and the distributions over
sub-topics from the training documents. Table 5.2 shows the per-word log-likelihood for each model
averaged over the ten samples. GraphLDA is competitive when computing the empirical log likeli-
hood. We speculate that GraphLDA’s lower performance in terms of left-to-right log-likelihood is
due to our choice of the geometric distribution over levels (and our choice to position the geomet-
ric distribution at the last node of the path) and that a more flexible approach could result in better
performance.

Table 1: Per-word log likelihood of test documents
Model Parameters Empirical LL Left-to-Right LL
GraphLDA MH opt. -7.10 ± .003 -7.13 ± .009

hPAM
η = .1 -7.36 ± .013 -6.11 ± .007
η = .01 -7.33 ± .012 -6.47 ± .012
η = .001 -7.38 ± .006 -6.71 ± .013

hLDA
γ = .1, α = .1 -7.10 ± .004 -6.82 ± .007
γ = .1, α = 1 -7.09 ± .003 -6.86 ± .006
γ = .1, α = 10 -7.08 ± .003 -6.90 ± .008
γ = 1, α = .1 -7.08 ± .003 -6.83 ± .007
γ = 1, α = 1 -7.08 ± .002 -6.86 ± .006
γ = 1, α = 10 -7.06 ± .003 -6.88 ± .008
γ = 10, α = .1 -7.07 ± .004 -6.81 ± .006
γ = 10, α = 1 -7.07 ± .003 -6.83± .005
γ = 10, α = 10 -7.06 ± .003 -6.88 ± .010

7

set

data

learning

concept

model

learning

data

model

method
kernel

learning

dimensionality

classification

reduction

method

algorithm

svm

vector

problem

multiclass

clustering

data

principal

component

kmeans

model

noise

algorithm
hidden

training

model

selection

rbm
algorithm

feature

learning

policy

decision
graph

function

model

multitask

inference

Bayesian

Dirichlet

variables

node

network

parent
Bayesian

decision

classification

class
classifier

data

classifier

boosting

ensemble
hypothesis

margin

evolution

evolutionary

algorithm
individual

search

kernel

linear

space
vector

point

Markov
time

probability

chain

distribution

network

neural

neuron

cnn
function

genetic

fitness

mutation

selection
solution

graph

Markov

network

random
field

word

topic

language

model

document

learning

algorithm

kernel
convex

constraint

Figure 5: Wikipedia graph structure with additional machine learning abstracts. The edge widths
correspond to the probability of the edge in the graph

5.3 Wikipedia Articles with a Graph Structure

In our final experiment we illustrate how GraphLDA can be used to update an existing category
graph. We use the aforementioned 518 machine-learning Wikipedia articles, along with their cat-
egory labels, to learn topic distributions for each node in Figure 1. The sampler is initialized with
the correct placement of nodes and each document is initialized to a random path from the root to
its category label. After 2, 000 iterations, we fix the path assignments for the Wikipedia articles
and introduce a new set of documents. We use a collection of 400 machine learning abstracts from
the International Conference on Machine Learning (ICML). We sample paths for the new collec-
tion of documents keeping the paths from the Wikipedia articles fixed. The sampler was allowed
to add new nodes to each level to explain any new concepts that occurred in the ICML text set.
Figure 5 illustrates a portion of the final graph structure. The nodes in bold are the original nodes
from the Wikipedia category graph. The results show that the model is capable of augmenting an
existing concept graph with new concepts (e.g. clustering, support vector machines (SVMs), etc.)
and learning meaningful relationships (e.g. boosting/ensembles are on the same path as the concepts
for SVMs and neural networks).

6 Discussion and Conclusion

Motivated by the increasing availability of large-scale structured collections of documents such as
Wikipedia, we have presented a flexible non-parametric Bayesian framework for learning concept
graphs from text. The proposed approach can combine unlabeled data with prior knowledge in the
form of labeled documents and existing graph structures. Extensions such as allowing the model
to handle multiple paths per document are likely to be worth pursuing. In this paper we did not
discuss scalability to large graphs which is likely to be an important issue in practice. Computing
the probability of every path during sampling, where the number of graphs is a product over the
number of nodes at each level, is a computational bottleneck in the current inference algorithm and
will not scale. Approximate inference methods that can address this issue should be quite useful in
this context.

7 Acknowledgements

This material is based upon work supported in part by the National Science Foundation under Award
Number IIS-0083489, by a Microsoft Scholarship (AC), and by a Google Faculty Research award
(PS). The authors would also like to thank Ian Porteous and Alex Ihler for useful discussions.

4MALLET implements the “exit node” version of hPAM

8

References

[1] David Blei, Andrew Ng, and Michael Jordan. Latent dirichlet allocation. Journal of Machine
Learning Research, 3:993–1022, 2003.

[2] David M. Blei, Thomas L. Griffiths, and Michael I. Jordan. The nested chinese restaurant
process and bayesian nonparametric inference of topic hierarchies. Journal of the Acm, 57,
2010.

[3] David Mimno, Wei Li, and Andrew McCallum. mixtures of hierarchical topics with pachinko
allocation. In Proceedings of the 21st Intl. Conf. on Machine Learning, 2007.

[4] Wei Li, David Blei, and Andrew McCallum. Nonparametric bayes pachinko allocation. In
Proceedings of the Twenty-Third Annual Conference on Uncertainty in Artificial Intelligence
(UAI-07), pages 243–250, 2007.

[5] Blaz Fortuna, Marko Grobelnki, and Dunja Mladenic. Ontogen: Semi-automatic ontology
editor. In Proceedings of theHuman Computer Interaction International Conference, volume
4558, pages 309–318, 2007.

[6] S. Bloehdorn, P. Cimiano, and A. Hotho. Learning ontologies to improve text clustering and
classification. In From Data and Inf. Analysis to Know. Eng.: Proc. of the 29th Annual Conf.
the German Classification Society (GfKl ’05), volume 30 of Studies in Classification, Data
Analysis and Know. Org., pages 334–341. Springer, Feb. 2005.

[7] P. Cimiano, A. Hotho, and S. Staab. Learning concept hierarchies from text using formal
concept analysis. J. Artificial Intelligence Research (JAIR), 24:305–339, 2005.

[8] Hemant Ishwaran and Lancelot F. James. Gibbs sampling methods for stick-breaking priors.
Journal of the American Statistical Association, 96(453):161–173, March 2001.

[9] Tom Griffiths and Mark Steyvers. Finding scientific topics. Proceedings of the Natl. Academy
of the Sciences of the U.S.A., 101 Suppl 1:5228–5235, 2004.

[10] Ian Porteous, Alex Ihler, Padhraic Smyth, and Max Welling. Gibbs sampling for coupled
infinite mixture models in the stick-breaking representation. In Proceedings of UAI 2006,
pages 385–392, July 2006.

[11] Andrew Kachites McCallum. Mallet: A machine learning for language toolkit.
http://mallet.cs.umass.edu, 2002.

[12] Hanna M. Wallach, Iain Murray, Ruslan Salakhutdinov, and David Mimno. Evaluation meth-
ods for topic models. In Proceedings of the 26th Intl. Conf. on Machine Learning (ICML
2009), 2009.

9

