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Abstract

We present policy gradient results within the framework of linearly-solvable
MDPs. For the first time, compatible function approximators and natural pol-
icy gradients are obtained by estimating the cost-to-go function, rather than the
(much larger) state-action advantage function as is necessary in traditional MDPs.
We also develop the first compatible function approximators and natural policy
gradients for continuous-time stochastic systems.

1 Introduction

Policy gradient methods [18] in Reinforcement Learning have gained popularity, due to the guar-
anteed improvement in control performance over iterations (which is often lacking in approximate
policy or value iteration) as well as the discovery of more efficient gradient estimation methods.
In particular it has been shown that one can replace the true advantage function with a compatible
function approximator without affecting the gradient [8, 14], and that a natural policy gradient (with
respect to Fisher information) can be computed [2,5, 11].

The goal of this paper is to apply policy gradient ideas to the linearly-solvable MDPs (or LMDPs)
we have recently-developed [15, 16], as well as to a class of continuous stochastic systems with
similar properties [4, 7, 16]. This framework has already produced a number of unique results —
such as linear Bellman equations, general estimation-control dualities, compositionality of optimal
control laws, path-integral methods for optimal control, etc. The present results with regard to policy
gradients are also unique, as summarized in Abstract. While the contribution is mainly theoretical
and scaling to large problems is left for future work, we provide simulations demonstrating rapid
convergence. The paper is organized in two sections, treating discrete and continuous problems.

2 Discrete problems

Since a number of papers on LMDPs have already been published, we will not repeat the general
development and motivation here, but instead only summarize the background needed for the present
paper. We will then develop the new results regarding policy gradients.

2.1 Background on LMDPs

An LMDP is defined by a state cost ¢ (x) over a (discrete for now) state space X, and a transition
probability density p («’|z) corresponding to the notion of passive dynamics. In this paper we focus
on infinite-horizon average-cost problems where p (z'|x) is assumed to be ergodic, i.e. it has a
unique stationary density. The admissible "actions" are all transition probability densities 7 (2’| )
which are ergodic and satisfy 7 (2|z) = 0 whenever p (z'|z) = 0. The cost function is

(z, 7 (|z)) = ¢ () + Dxw (7 (z) [[p (-]2)) ()



Thus the controller is free to modify the default/passive dynamics in any way it wishes, but incurs a
control cost related to the amount of modification.

The average cost ¢ and differential cost-to-go v (z) for given 7 (z'|z) satisfy the Bellman equation

!/
_ i) (e ) L ,
-+ (@) = (o) + £y @lo) (los T 4 0 (0) @
where v () is defined up to a constant. The optimal ¢* and v* (z) can be shown to satisfy
¢+ 0" () = q(z) —log 32, p (2]x) exp (—v" (7)) ©)

and the optimal 7* (z'|x) can be found in closed form given v* (z):
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Exponentiating equation (3) makes it linear in exp (—v* (x)), although this will not be used here.

2.2 Policy gradient for a general parameterization

Consider a parameterization 7 (z'|z, w) which is valid in the sense that it satisfies the above con-
ditions and V7 £ O7/0w exists for all w € R™. Let y1 (x, w) be the corresponding stationary
density. We will also need the pair-wise density p (z,z', w) = p(x, w) 7 (2'|z, w). To avoid no-
tational clutter we will suppress the dependence on w in most of the paper; keep in mind that all
quantities that depend on 7 are functions of w.

Our objective here is to compute Vy,c. This is done by differentiating the Bellman equation (2) and
following the template from [14]. The result (see Supplement) is given by

Theorem 1. The LMDP policy gradient for any valid parameterization is

7 (2 |x)
Vwe = v ! 1 ! 5
wo= Tt () T (o) (1o 55 4 00 0
Let us now compare (5) to the policy gradient in traditional MDPs [14], which is
VWC = Z,]lu (Z') Zavwﬂ- ((L|Z') Q (xa a) (6)

Here 7 (a|x) is a stochastic policy over actions (parameterized by w) and Q (x, a) is the correspond-
ing state-action cost-to-go. The general form of (5) and (6) is similar, however the term log (7 /p)+v
in (5) cannot be interpreted as a )-function. Indeed it is not clear what a ()-function means in the
LMDP setting. On the other hand, while in traditional MDPs one has to estimate ) (or rather the
advantage function) in order to compute the policy gradient, it will turn out that in LMDPs it is
sufficient to estimate v.

2.3 A suitable policy parameterization

The relation (4) between the optimal policy 7* and the optimal cost-to-go v* suggests parameter-
izing 7 as a p-weighted Gibbs distribution. Since linear function approximators have proven very
successful, we will use an energy function (for the Gibbs distribution) which is linear in w :
a D (2'|z) exp (—wa (x’))

>, P (ylz) exp (—wTf (y))

Here f () € R™ is a vector of features. One can verify that (7) is a valid parameterization. We will
also need the m-expectation operator

I[f](z) £ 3,7 (ylo) £ () ®

defined for both scalar and vector functions over X'. The general result (5) is now specialized as

m (@], w)

(7

Theorem 2. The LMDP policy gradient for parameterization (7) is
Ve =g it (,2) (T[] (2) — £ (2)) (v (2') — W' (2)) ©)

As expected from (4), we see that the energy function w'f () and the cost-to-go v (z) are related.
Indeed if they are equal the gradient vanishes (the converse is not true).



2.4 Compatible cost-to-go function approximation

One of the more remarkable aspects of policy gradient results [8, 14] in traditional MDPs is that,
when the true @) function is replaced with a compatible approximation satisfying certain conditions,
the gradient remains unchanged. Key to obtaining such results is making sure that the approximation
error is orthogonal to the remaining terms in the expression for the policy gradient. Our goal in this
section is to construct a compatible function approximator for LMDPs. The procedure is somewhat
elaborate and unusual, so we provide the derivation before stating the result in Theorem 3 below.

Given the form of (9), it makes sense to approximate v (x) as a linear combination of the same
features f () used to represent the energy function: o (z,r) = r'f (x). Let us also define the
approximation error ¢, (z) = v (z) — ¥ (x,r). If the policy gradient V¢ is to remain unchanged
when v is replaced with ¥ in (9), the following quantity must be zero:

d(r) £ 32, o (z,2) (T[f] (2) — £ (27)) &r (2) (10)
Expanding (10) and using the stationarity of p, we can simplify d as
d(r) =3 ,p(x) (IL[f] (z) M ex] () — £ (2) &r (2)) (11

One can also incorporate an z-dependent baseline in (9), such as v (z) which is often used in tradi-
tional MDPs. However the baseline vanishes after the simplification, and the result is again (11).

Now we encounter a complication. Suppose we were to fit ¥ to v in a least-squares sense, i.e.
minimize the squared error weighted by n. Denote the resulting weight vector ry s:

rrg £ arg mrin Sp (@) (v(z) — r'f (:1:))2 (12)

This is arguably the best fit one can hope for. The error €, is now orthogonal to the features f, thus
for r = rpg the second term in (11) vanishes, but the first term does not. Indeed we have verified
numerically (on randomly-generated LMDPs) that d (rys) # 0.

If the best fit is not good enough, what are we to do? Recall that we do not actually need a good fit,
but rather a vector r such that d (r) = 0. Since d (r) and r are linearly related and have the same
dimensionality, we can directly solve this equation for r. Replacing &, (x) with v (z) — r'f (z) and
using the fact that IT is a linear operator, we have d (r) = Ar — k where

A2, (@) (£ @) @) T[] (@) T (2)") (13)
k2 Y, (@) (£ () v () — T [f] (2) TT ] (2)

We are not done yet because k still depends on v. The goal now is to approximate v in such a way
that k remains unchanged. To this end we use (2) and express II [v] in terms of v:

ctu(r) —£(z) =T (z) (14)
Here ¢ () is shortcut notation for ¢ (z, 7 (-|z, w)). Thus the vector k becomes
k=5 .u(x)(g @) v () +1[f](z) (£ (z) - ¢)) (15)
where the policy-specific auxiliary features g () are related to the original features f () as
g(z) = £ (z) - 1I[f] (2) (16)

The second term in (15) does not depend on v; it only depends on ¢ = i (x) £ (). The first term
in (15) involves the projection of v on the auxiliary features g. This projection can be computed by
defining the auxiliary function approximator ¥ (z,s) = s'g (z) and fitting it to v in a least-squares
sense, as in (12) but using g () rather than f (x). The approximation error is now orthogonal to the
auxiliary features g (z), and so replacing v (x) with ¥ (z, s) in (15) does not affect k. Thus we have

Theorem 3. The following procedure yields the exact LMDP policy gradient:

1. fitv (z,s) to v (x) in a least squares sense, and also compute ¢

2. compute A from (13), and k from (15) by replacing v (x) with v (z, s)
3. "fit" v (z,r) by solving Ar = k

4. the policy gradient is

Vwe =3, o (@a') (£ (2') T[] (2)) £ (&) (w =) (17)



This is the first policy gradient result with compatible function approximation over the state space
rather than the state-action space. The computations involve averaging over p, which in practice will
be done through sampling (see below). The requirement that v — v be orthogonal to g is somewhat
restrictive, however an equivalent requirement arises in traditional MDPs [14].

2.5 Natural policy gradient

When the parameter space has a natural metric G (w), optimization algorithms tend to work better

if the gradient of the objective function is pre-multiplied by G (w)_l. This yields the so-called
natural gradient [1]. In the context of policy gradient methods [5, 11] where w parameterizes a
probability density, the natural metric is given by Fisher information (which depends on x because
w parameterizes the conditional density). Averaging over u yields the metric

G(w) = > wwtt (2,27) Vi log m (2'|2) Vi log (x’|x)T (18)
We then have the following result (see Supplement):
Theorem 4. With the vector r computed as in Theorem 3, the LMDP natural policy gradient is

G(w) 'Vyc=w-—r (19)
Let us compare this result to the natural gradient in traditional MDPs [11], which is
G(w) ' Vwe=r (20)

In traditional MDPs one maximizes reward while in LMDPs one minimizes cost, thus the sign
difference. Recall that in traditional MDPs the policy 7 is parameterized using features over the
state-action space while in LMDPs we only need features over the state space. Thus the vectors w, r
will usually have lower dimensionality in (19) compared to (20).

Another difference is that in LMDPs the (regular as well as natural) policy gradient vanishes when
w = r, which is a sensible fixed-point condition. In traditional MDPs the policy gradient vanishes
when r = 0, which is peculiar because it corresponds to the advantage function approximation
being identically 0. The true advantage function is of course different, but if the policy becomes
deterministic and only one action is sampled per state, the resulting data can be fit with r = 0. Thus
any deterministic policy is a local maximum in traditional MDPs. At these local maxima the policy
gradient theorem cannot actually be applied because it requires a stochastic policy. When the policy
becomes near-deterministic, the number of samples needed to obtain accurate estimates increases
because of the lack of exploration [6]. These issues do not seem to arise in LMDPs.

2.6 A Gauss-Newton method for approximating the optimal cost-to-go

Instead of using policy gradient, we can solve (3) for the optimal v* directly. One option is approx-
imate policy iteration — which in our context takes on a simple form. Given the policy parameters

w(?) at iteration 4, approximate the cost-to-go function and obtain the feature weights r(*), and then
set witl) = r(z). This is equivalent to the above natural gradient method with step size 1, using a
biased approximator instead of the compatible approximator given by Theorem 3.

The other option is approximate value iteration — which is a fixed-point method for solving (3)
while replacing v* (z) with w'f (z). We can actually do better than value iteration here. Since
(3) has already been optimized over the controls and is differentiable, we can apply an efficient
Gauss-Newton method. Up to an additive constant ¢, the Bellman error from (3) is

e(z,w) 2wt (z) — q(x) +1log >, p (ylz) exp (—w'f (y)) 1)
Interestingly, the gradient of this Bellman error coincides with our auxilliary features g:
P (ylz) exp (~w'f (y))
V3P (slz) exp (—wTf (s))

where IT and g are the same as in (16, 8). We now linearize: e (z, w + dw) ~ e (z, w) + dw'g ()
and proceed to minimize (with respect to ¢ and §w) the quantity

L7 (@) (c+ e (2, w) + ow'g (2))° (23)

Vwe (z,w) =1 (z) =3 fy) =t () -1[f](z) =g (x) (22
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Figure 1: (A) Learning curves for a random LMDP. "resid" is the Gauss-Newton method. The
sampling versions use 400 samples per evaluation: 20 trajectories with 20 steps each, starting from
the stationary distribution. (B) Cost-to-go functions for the metronome LMDP. The numbers show
the average costs obtained. There are 2601 discrete states and 25 features (Gaussians). Convergence
was observed in about 10 evaluations (of the objective and the gradient) for both algorithms, exact
and sampling versions. The sampling version of the Gauss-Newton method worked well with 400
samples per evaluation; the natural gradient needed around 2500 samples.

Normally the density 7z (z) would be fixed, however we have found empirically that the resulting
algorithm yields better policies if we set 7z (x) to the policy-specific stationary density u (x, w)
at each iteration. It is not clear how to guarantee convergence of this algorithm given that the
objective function itself is changing over iterations, but in practice we observed that simple damping
is sufficient to make it convergent (e.g. w «— w + dw/2).

It is notable that minimization of (23) is closely related to policy evaluation via Bellman residual
minimization. More precisely, using (14, 16) it is easy to see that TD(0) applied to our problem
would seek to minimize

2
>t (2, w) (¢ = £ (2, w) +rTg (z)) (24)
The similarity becomes even more apparent if we write —¢ (x, w) more explicitly as
—l(z,w) = w'IL[f] () — q(z) +log 3, p (ylz) exp (~w'f (1)) (25)

Thus the only difference from (21) is that one expression has the term w ' f (z) at the place where
the other expression has the term w'II[f] (z). Note that the Gauss-Newton method proposed
here would be expected to have second-order convergence, even though the amount of computa-
tion/sampling per iteration is the same as in a policy gradient method.

2.7 Numerical experiments

We compared the natural policy gradient and the Gauss-Newton method, both in exact form and
with sampling, on two classes of LMDPs: randomly generated, and a discretization of a continuous
"metronome" problem taken from [17]. Fitting the auxiliary approximator v (z,s) was done using
the LSTD(\) algorithm [3]. Note that Theorem 3 guarantees compatibility only for A = 1, however
lower values of A reduce variance and still provide good descent directions in practice (as one would
expect). We ended up using A = 0.2 after some experimentation. The natural gradient was used
with the BFGS minimizer "minFunc" [12].

Figure 1A shows typical learning curves on a random LMDP with 100 states, 20 random features,
and random passive dynamics with 50% sparsity. In this case the algorithms had very similar per-
formance. On other examples we observed one or the other algorithm being slightly faster or pro-
ducing better minima, but overall they were comparable. The average cost of the policies found by
the Gauss-Newton method occasionally increased towards the end of the iteration.

Figure 1B compares the optimal cost-to-go v*, the least-squares fit to the known v* using our fea-
tures (which were a 5-by-5 grid of Gaussians), and the solution of the policy gradient method ini-
tialized with w = 0. Note that the latter has lower cost compared to the least-squares fit. In this case
both algorithms converged in about 10 iterations, although the Gauss-Newton method needed about
5 times fewer samples in order to achieve similar performance to the exact version.



3 Continuous problems

Unlike the discrete case where we focused exclusively on LMDPs, here we begin with a very general
problem formulation and present interesting new results. These results are then specialized to a
narrower class of problems which are continuous (in space and time) but nevertheless have similar
properties to LMDPs.

3.1 Policy gradient for general controlled diffusions

Consider the controlled Ito diffusion
dx =b (x,u)dt + C (x) dw (26)

where w (t) is a standard multidimensional Brownian motion process, and u is now a traditional
control vector. Let £ (x,u) be a cost function. As before we focus on infinite-horizon average-cost
optimal control problems. Given a policy u = 7 (x), the average cost ¢ and differential cost-to-go
v (x) satisfy the Hamilton-Jacobi-Bellman (HJB) equation

c=L(x,m(x)) + L[v] (%) @7

where L is the following 2nd-order linear differential operator:
L] (x) £ b(x,7(x) Vyv (%) + 3 trace (C’ (%) C (x)T Vyxv (x)) (28)

In can be shown [10] that £ coincides with the infinitesimal generator of (26), i.e. it computes the
expected directional derivative of v along trajectories generated by (26). We will need

Lemma 1. Let L be the infinitesimal generator of an Ito diffusion which has a stationary density [,
and let f be a twice-differentiable function. Then

[t L1560 dx =0 (29)

Proof: The adjoint £* of the infinitesimal generator £ is known to be the Fokker-Planck operator —
which computes the time-evolution of a density under the diffusion [10]. Since p is the stationary
density, £* [u] (x) = 0 for all x, and so (L* [u], f) = 0. Since £ and L£* are adjoint, (L* [u], f) =
{1, £ [f1)- Thus (p, L[f]) = 0.

This lemma seems important-yet-obvious so we would not be surprised if it was already known, but
we have not seen in the literature. Note that many diffusions lack stationary densities. For example
the density of Brownian motion initialized at the origin is a zero-mean Gaussian whose covariance
grows linearly with time — thus there is no stationary density. If however the diffusion is controlled
and the policy tends to keep the state within some region, then a stationary density would normally
exist. The existence of a stationary density may actually be a sensible definition of stability for
stochastic systems (although this point will not be pursued in the present paper).

Now consider any policy parameterization u = 7 (x, w) such that (for the current value of w) the
diffusion (26) has a stationary density p and V, 7 exists. Differentiating (27), and using the shortcut
notation b (x) in place of b (x, 7 (x, w)) and similarly for ¢ (x), we have

Vwe = Vel (X) + Vb (x)7 Vv () + L [V 0] (x) (30)

Here £ [Vv] is meant component-wise. If we now average over p, the last term will vanish due to
Lemma 1. This is essential for a policy gradient procedure which seeks to avoid finite differencing;
indeed Vv could not be estimated while sampling from a single policy. Thus we have

Theorem 5. The policy gradient of the controlled diffusion (26) is
Ve = / 1(30) (Tael (3) + Tub ()7 90 () dx 31

Unlike most other results in stochastic optimal control, equation (31) does not involve the Hessian
VxxV, although we can obtain a V,,v-dependent term here if we allow C to depend on u. We now
illustrate Theorem 5 on a linear-quadratic-Gaussian (LQG) control problem.



Example (LQG). Consider dynamics dx = udt + dw and cost £ (x,u) = 2? + u?. Letu = —wx
be the parameterized policy with w > 0. The differential cost-to-go is known to be in the form

- 2 . . . . . . - o 2+1
v(x) = sz”. Substituting in the HIB equation and matching powers of z yields ¢ = s = “5=,

and so the policy gradient can be computed directly as V,,c = 1 — % The stationary density

() is a zero-mean Gaussian with variance 02 = ﬁ One can now verify that the gradient given

by Theorem 5 is identical to the V., c computed above.

Another interesting aspect of Theorem 5 is that it is a natural generalization of classic results from
finite-horizon deterministic optimal control [13], even though it cannot be derived from those results.
Suppose we have an open-loop control trajectory u (¢) ,0 < ¢ < T, the resulting state trajectory
(starting from a given x¢) is x (¢), and the corresponding co-state trajectory (obtained by integrating
Pontryagin’s ODE backwards in time) is A (¢). It is known that the gradient of the total cost J w.r.t.
uis Vu/ + Vyb"\. Now suppose u (t) is parameterized by some vector w. Then

Ve = / Vot ()T V) Jdt = / (vwe (x (t),u(t))+Vwb(x(t),u(t))T)\(t)) dt  (32)

The co-state A (t) is known to be equal to the gradient Vyv (x,t) of the cost-to-go function for the
(closed-loop) deterministic problem. Thus (31) and (32) are very similar. Of course in finite-horizon
settings there is no stationary density, and instead the integral in (32) is over the trajectory. An RL
method for estimating V,J in deterministic problems was developed in [9].

Theorem 5 suggests a simple procedure for estimating the policy gradient via sampling: fit a function
approximator v to v, and use V¥ in (31). Alternatively, a compatible approximation scheme can be
obtained by fitting V40 to Vv in a least-squares sense, using a linear approximator with features
Vwb (x). This however is not practical because learning targets for Vv are difficult to obtain.
Ideally we would construct a compatible approximation scheme which involves fitting v rather than
Vx0. It is not clear how to do that for general diffusions, but can be done for a restricted problem
class as shown next.

3.2 Natural gradient and compatible approximation for linearly-solvable diffusions

We now focus on a more restricted family of stochastic optimal control problems which arise in
many situations (e.g. most mechanical systems can be described in this form):

dx = (a(x)+ B(x)u)dt + C (x) dw (33)
£(x,u) =q(z)+ %uTR (x)u

Such problems have been studied extensively [13]. The optimal control law u* and the optimal
differential cost-go-to v* (x) are known to be related as u* = —R™!BTv,v*. As in the discrete
case we use this relation to motivate the choice of policy parameterization and cost-to-go function
approximator. Choosing some features f (x), we define ¥ (x,r) = r'f (x) as before, and

m(x,w) 2 —R(x)"'B(x)" Vx (W'f(x)) (34)

It is convenient to also define the matrix F (x) £ V,f (x)', so that V4@ (x,r) = F (x)r. We can
now substitute these definitions in the general result (31), replace v with the approximation v, and
skipping the algebra, obtain the corresponding approximation to the policy gradient:

Vwe = / p(x)Fx)"Bx)Rx) " B(x)" F(x)(w—r)dx (35)

Before addressing the issue of compatibility (i.e. whether V¢ = V), we seek a natural gradient
version of (35). To this end we need to interpret /T BR~' BT F as Fisher information for the (in-
finitesimal) transition probability density of our parameterized diffusion. We do this by discretizing
the time axis with time step h, and then dividing by h. The h-step explicit Euler discretization of the
stochastic dynamics (33) is given by the Gaussian

pn Clx, w) = N (x +ha(x) — hB(x)R(x)"" B(x)T F(x)w; hC (x)C (x)T) (36)
Suppressing the dependence on x, Fisher information becomes

1 _
m / PrVwlogppVwlogppdx’ = FTBR™'BT (CCT) "BRTIBTF (37)



Comparing to (35) we see that a natural gradient result is obtained when

C(x)C(x)" =B R(x"B(x)" (38)
Assuming (38) is satisfied, and defining G (w) as the average of Fisher information over p (x),
G(w) ' Vwe=w-—r (39)

Condition (38) is rather interesting. Elsewhere we have shown [16] that the same condition is needed
to make problem (33) linearly-solvable. More precisely, the exponentiated HIB equation for the
optimal v* in problem (33, 38) is linear in exp (—v*). We have also shown [16] that the continuous
problem (33, 38) is the limit (when h — 0) of continuous-state discrete-time LMDPs constructed
via Euler discretization as above. The compatible function approximation scheme from Theorem
3 can then be applied to these LMDPs. Recall (8). Since L is the infinitesimal generator, for any
twice-differentiable function f we have

T{f](x) = f (%) + RL[f] (x) + 0 (1?) (40)
Substituting in (13), dividing by & and taking the limit 4 — 0, the matrix A and vector k become
A= 160 (-£106 £ 0T~ £ (0 £17) (") dx @1

k = /u () (L] (x) v (%) + £ (x) (£ (x) — ¢)) dx

Compatibility is therefore achieved when the approximation error in v is orthogonal to £ [f]. Thus
the auxiliary function approximator is now v (x,s) = s" £ [f] (x), and we have

Theorem 6. The following procedure yields the exact policy gradient for problem (33, 38):

1. fitv (x,s) to v (x) in a least-squares sense, and also compute ¢
2. compute A and k from (41), replacing v (x) with v (x, s)

3. "fit" ¥ (x,r) by solving Ar = k

4. the policy gradient is (35), and the natural policy gradient is (39)

This is the first policy gradient result with compatible function approximation for continuous sto-
chastic systems. It is very similar to the corresponding results in the discrete case (Theorems 3,4)
except it involves the differential operator £ rather than the integral operator II.

4 Summary

Here we developed compatible function approximators and natural policy gradients which only re-
quire estimation of the cost-to-go function. This was possible due to the unique properties of the
LMDP framework. The resulting approximation scheme is unusual, using policy-specific auxiliary
features derived from the primary features. In continuous time we also obtained a new policy gradi-
ent result for control problems that are not linearly-solvable, and showed that it generalizes results
from deterministic optimal control. We also derived a somewhat heuristic but nevertheless promis-
ing Gauss-Newton method for solving for the optimal cost-to-go directly; it appears to be a hybrid
between value iteration and policy gradient.

One might wonder why we need policy gradients here given that the (exponentiated) Bellman equa-
tion is linear, and approximating its solution using features is faster than any other procedure in
Reinforcement Learning and Approximate Dynamic Programming. The answer is that minimizing
Bellman error does not always give the best policy — as illustrated in Figure 1B. Indeed a combined
approach may be optimal: solve the linear Bellman equation approximately [17], and then use the
solution to initialize the policy gradient method. This idea will be explored in future work.

Our new methods require a model — as do all RL methods that rely on state values rather than state-
action values. We do not see this as a shortcoming because, despite all the effort that has gone
into model-free RL, the resulting methods do not seem applicable to truly complex optimal control
problems. Our methods involve model-based sampling which combines the best of both worlds:
computational speed, and grounding in reality (assuming we have a good model of reality).
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