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Abstract

Dimensionality reduction is commonly used in the setting of multi-label super-
vised classification to control the learning capacity and to provide a meaningful
representation of the data. We introduce a simple forward probabilistic model
which is a multinomial extension of reduced rank regression, and show that this
model provides a probabilistic interpretation of discriminative clustering meth-
ods with added benefits in terms of number of hyperparameters and optimization.
While the expectation-maximization (EM) algorithm is commonly used to learn
these probabilistic models, it usually leads to local maxima because it relies on
a non-convex cost function. To avoid this problem, we introduce a local approx-
imation of this cost function, which in turn leads to a quadratic non-convex op-
timization problem over a product of simplices. In order to maximize quadratic
functions, we propose an efficient algorithm based on convex relaxations and low-
rank representations of the data, capable of handling large-scale problems. Exper-
iments on text document classification show that the new model outperforms other
supervised dimensionality reduction methods, while simulations on unsupervised
clustering show that our probabilistic formulation has better properties than exist-
ing discriminative clustering methods.

1 Introduction

Latent representations of data are wide-spread tools in supervised and unsupervised learning. They
are used to reduce the dimensionality of the data for two main reasons: on the one hand, they
provide numerically efficient representations of the data; on the other hand, they may lead to better
predictive performance. In supervised learning, latent models are often used in a generative way,
e.g., through mixture models on the input variables only, which may not lead to increased predictive
performance. This has led to numerous works on supervised dimension reduction (e.g., [1, 2]),
where the final discriminative goal of prediction is taken explicitly into account during the learning
process.

In this context, various probabilistic models have been proposed, such as mixtures of experts [3] or
discriminative restricted Boltzmann machines [4], where a layer of hidden variables is used between
the inputs and the outputs of the supervised learning model. Parameters are usually estimated by
expectation-maximization (EM), a method that is computationally efficient but whose cost function
may have many local maxima in high dimensions.

In this paper, we consider a simple discriminative latent class (DLC) model where inputs and outputs
are independent given the latent representation.We make the following contributions:

∗WILLOW project-team, Laboratoire d’Informatique de l’Ecole Normale Supérieure, (ENS/INRIA/CNRS
UMR 8548).
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– We provide in Section 2 a quadratic (non convex) local approximation of the log-likelihood of
our model based on the EM auxiliary function. This approximation is optimized to obtain robust
initializations for the EM procedure.

– We propose in Section 3.3 a novel probabilistic interpretation of discriminative clustering with
added benefits, such as fewer hyperparameters than previous approaches [5, 6, 7].

– We design in Section 4 a low-rank optimization method for non-convex quadratic problems over a
product of simplices. This method relies on a convex relaxation over completely positive matrices.

– We perform experiments on text documents in Section 5, where we show that our inference tech-
nique outperforms existing supervised dimension reduction and clustering methods.

2 Probabilistic discriminative latent class models

We consider a set of N observations xn ∈ R
p, and their labels yn ∈ {1, . . . ,M}, n ∈ {1, . . . , N}.

We assume that each observation xn has a certain probability to be in one of K latent classes, mod-
eled by introducing hidden variables zn ∈ {1, . . . ,K}, and that these classes should be predictive
of the label yn. We model directly the conditional probability of zn given the input data xn and the
probability of the label yn given zn, while making the assumption that yn and xn are independent
given zn (leading to the directed graphical model xn → zn → yn). More precisely, we assume that,
given xn, zn follows a multinomial logit model while, given zn, yn is a multinomial variable:

p(zn = k|xn) =
ewT

k xn+bk

∑K

j=1
ewT

j
xn+bj

and p(yn = m|zn = k) = αkm, (1)

with wk ∈ R
p, bk ∈ R and

∑M

m=1
αkm = 1. We use the notation w = (w1, . . . , wK), b =

(b1, . . . , bK) and α = (αkm)1≤k≤K,1≤m≤M . Note that the model defined by (1) can be kernelized
by replacing implicitly or explicitly x by the image Φ(x) of a non linear mapping.

Related models. The simple two-layer probabilistic model defined in Eq. (1), can be interpreted
and compared to other methods in various ways. First, it is an instance of a mixture of experts [3]
where each expert has a constant prediction. It has thus weaker predictive power than general mix-
tures of experts; however, it allows efficient optimization as shown in Section 4. It would be inter-
esting to extend our optimization techniques to the case of experts with non-constant predictions.
This is what is done in [8] where a convex relaxation of EM for a similar mixture of experts is con-
sidered. However, [8] considers the maximization with respect to hidden variables rather than their
marginalization, which is essential in our setting to have a well-defined probabilistic model. Note
also that in [8], the authors derive a convex relaxation of the softmax regression problems, while we
derive a quadratic approximation. It is worth trying to combine the two approaches in future work.

Another related model is a two-layer neural network. Indeed, if we marginalize the latent vari-
able z, we get that the probability of y given x is a linear combination of softmax functions of linear
functions of the input variables x. Thus, the only difference with a two-layer neural network with
softmax functions for the last layer is the fact that our last layer considers linear parameterization in
the mean parameters rather than in the natural parameters of the multinomial variable. This change
allows us to provide a convexification of two-layer neural networks in Section 4.

Among probabilistic models, a discriminative restricted Boltzmann machine (RBM) [4, 9] mod-
els p(y|z) as a softmax function of linear functions of z. Our model assumes instead that p(y|z)
is linear in z. Again, this distinction between mean parameters and natural parameters allows us to
derive a quadratic approximation of our cost function. It would of course be of interest to extend our
optimization technique to the discriminative RBM.

Finally, one may also see our model as a multinomial extension of reduced-rank regression (see,
e.g. [10]), which is commonly used with Gaussian distributions and reduces to singular value de-
composition in the maximum likelihood framework.
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3 Inference

We consider the negative conditional log-likelihood of yn given xn (regularized in w to avoid over-
fitting) where θ = (α,w, b) and ynm is equal to 1 if yn = m and 0 otherwise:

ℓ(θ) = −
1

N

N
∑

n=1

M
∑

m=1

ynm log p(ynm = 1|xn) +
λ

2K
‖w‖2

F . (2)

3.1 Expectation-maximization

A popular tool for solving maximum likelihood problems is the EM algorithm [10]. A traditional
way of viewing EM is to add auxiliary variables and minimize the following upperbound of the
negative log-likelihood ℓ, obtained by using the concavity of the logarithm:

F (ξ, θ) = −
1

N

N
∑

n=1

M
∑

m=1

ynm

[

K
∑

k=1

ξnk log
yT

n αkewT
k xn+bk

ξnk

− log
(

K
∑

k=1

ewT
k xn+bk

)

]

+
λ

2K
‖w‖2

F ,

where αk = (αk1, . . . , αkm)T ∈ R
M and ξ = (ξ1, . . . , ξK)T ∈ R

N×K with ξn =
(ξn1, . . . , ξnK) ∈ R

K . The EM algorithm can be viewed as a two-step block-coordinate descent
procedure [11], where the first step (E-step) consists in finding the optimal auxiliary variables ξ,
given the parameters of the model θ. In our case, the result of this step is obtained in closed form

as ξnk ∝ yT
n αkewT

k xn+bk with ξT
n 1K = 1. The second step (M-step) consists of finding the best set

of parameters θ, given the auxiliary variables ξ. Optimizing the parameters αk leads to the closed

form updates αk ∝
∑N

n=1
ξnkyn with αT

k 1M = 1 while optimizing jointly on w and b leads to a
softmax regression problem, which we solved with Newton method.

Since F (ξ, θ) is not jointly convex in ξ and θ, this procedure stops when it reaches a local minimum,
and its performance strongly depends on its initialization. We propose in the following section, a
robust initialization for EM given our latent model, based on an approximation of the auxiliary cost
function obtained with the M-step.

3.2 Initialization of EM

Minimizing F w.r.t. ξ leads to the original log-likelihood ℓ(θ) depending on θ alone. Minimizing F
w.r.t. θ gives a function of ξ alone. In this section, we focus on deriving a quadratic approximation
of this function, which will be minimized to obtain an initialization for EM.

We consider second-order Taylor expansions around the value of ξ corresponding to the uniformly
distributed latent variables zn, independent of the observations xn, i.e., ξ0 = 1

K
1N1T

K . This choice
is motivated by the lack of a priori information on the latent classes. We briefly explain the calcu-
lation of the expansion of the terms depending on (w, b). For the rest of the calculation, see the
supplementary material.

Second-order Taylor expansion of the terms depending on (w, b). Assuming uniformly dis-
tributed variables zn and independence between zn and xn implies that wT

k xn + bk = 0. There-

fore, using the second-order expansion of the log-sum-exp function ϕ(u) = log(
∑K

k=1
exp(uk))

around 0 leads to the following approximation of the terms depending on (w, b):

Jwb(ξ) = cst +
K

2N
tr(ξξT ) −

1

2K
min
w,b

[ 1

N
‖(Kξ − Xw − b)ΠK‖2

F + λ‖w‖2
F + O(‖Xw + b‖3)

]

,

where ΠK = I − 1

K
1K1T

K is the usual centering projection matrix, and X = (x1, . . . , xN )T . The

third-order term O(‖Xw + b‖3
F ) can be replaced by third-order terms in ‖ξ − ξ0‖, which makes

the minimization with respect to w and b correspond to a multi-label classification problem with a
square-loss [7, 10, 12]. Its solution may be obtained in closed form and leads to:

Jwb(ξ) = cst +
K

2N
tr
[

ξξT
(

I − A(X,λ)
)

]

+ O(‖ξ − ξ0‖
3),

where A(X,λ) = ΠN

(

I − X(NλI + XT ΠN )−1XT
)

ΠN .
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Quadratic approximation. Omitting the terms that are independent of ξ or of an order in ξ higher
than two, the second-order approximation Japp of the function obtained for the M-step is:

Japp(ξ) =
K

2
tr
[

ξξT
(

B(Y ) − A(X,λ)
)]

, (3)

where B(Y ) = 1

N

(

Y (Y T Y )−1Y T − 1

N
1N1T

N

)

and Y ∈ R
N×M is the matrix with entries ynm.

Link with ridge regression. The first term, tr(ξξT B(Y )), is a concave function in ξ, whose maxi-
mum is obtained for ξξT = I (each variable in a different cluster). The second term, A(X,λ), is the
matrix obtained in ridge regression [7, 10, 12]. Since A(x, λ) is a positive semi-definite matrix such
that A(X,λ)1N = 0, the maximum of the second term is obtained for ξξT = 1N1T

N (all variables
in the same cluster). Japp(ξ) is thus a combination of a term trying to put every point in the same
cluster and a term trying to spread them equally. Note that in general, Japp is not convex.

Non linear predictions. Using the matrix inversion lemma, A(X,λ) can be expressed in terms
of the Gram matrix K = XXT , which allows us to use any positive definite kernel in our frame-
work [12], and tackle problems that are not linearly separable. Moreover, the square loss gives a
natural interpretation of the regularization parameter λ in terms of the implicit number of param-
eters of the learning procedure [10]. Indeed, the degree of freedom defined as df = n(1 − trA)
provides a intuitive method for setting the value of λ [7, 10].

Initialization of EM. We optimize Japp(ξ) to get a robust initialization for EM. Since the entries
of each vector ξn sum to 1, we optimize Japp over a set of N simplices in K dimensions, S = {v ∈
R

K | v ≥ 0, vT 1K = 1}. However, since this function is not convex, minimizing it directly leads
to local minima. We propose, in Section 4, a general reformulation of any non-convex quadratic
program over a set of N simplices and propose an efficient algorithm to optimize it.

3.3 Discriminative clustering

The goal of clustering is to find a low-dimensional representation of unlabeled observations, by
assigning them to K different classes, Xu et al. [5] proposes a discriminative clustering framework
based on the SVM and [7] simplifies it by replacing the hinge loss function by the square loss,
leading to ridge regression. By taking M = N and the labels Y = I , we obtain a formulation
similar to [7] where we are looking for a latent representation that can recover the identity matrix.
However, unlike [5, 7], our discriminative clustering framework is based on a probabilistic model
which may allow natural extensions. Moreover, our formulation naturally avoids putting all variables
in the same cluster, whereas [5, 7] need to introduce constraints on the size of each cluster. Also,
our model leads to a soft assignment of the variables, allowing flexibility in the shape of the clusters,
whereas [5, 7] is based on hard assignment. Finally, since our formulation is derived from EM, we
obtain a natural rounding by applying the EM algorithm after the optimization whereas [7] uses a
coarse k-means rounding. Comparisons with these algorithms can be found in Section 5.

4 Optimization of quadratic functions over simplices

To initialize the EM algorithm, we must minimize the non-convex quadratic cost function defined by
Eq. (3) over a product of N simplices. More precisely, we are interested in the following problems:

min
V

f(V ) = 1

2
tr (V V T B) s.t. V = (V1, . . . , VN )T ∈ R

N×K and ∀n, Vn ∈ S, (4)

where B can be any N×N symmetric matrix. Denoting v = vec(V ) ∈ R
NK the vector obtained by

stacking all the columns of V and definingQ = (BT⊗IK)T , where⊗ is the Kronecker product [13],
the problem (4) is equivalent to:

min
v

1

2
vT Qv s.t. v ∈ R

NK , v ≥ 0 and (IN ⊗ 1T
K)v = 1N . (5)

Note that this formulation is general, and that Q could be any NK ×NK symmetric matrix. Tradi-
tional convex relaxation methods [14] would rewrite the objective function as vT Qv = tr(QvvT ) =
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tr(QT ) where T = vvT is a rank-one matrix which satisfies the set of constraints:

− T ∈ DNK = {T ∈ R
NK×NK | T ≥ 0, T < 0} (6)

− ∀ n,m ∈ {1, . . . , N}, 1T
KTnm1K = 1, (7)

− ∀ n, i, j ∈ {1, . . . , N}, Tni1K = Tnj1K . (8)

We note F the set of matrix T verifying (7-8). With the unit-rank constraint, optimizing over v is
exactly equivalent to optimizing over T . The problem is relaxed into a convex problem by removing
the rank constraint, leading to a semidefinite programming problem (SDP) [15].

Relaxation. Optimizing T instead of v is computationally inefficient since the running time com-
plexity of general purpose SDP toolboxes is in this case O

(

(KN)7
)

. On the other hand, for prob-
lems without pointwise positivity, [16, 17] have considered low-rank representations of matrices T ,
of the form T = V V T where V has more than one column. In particular, [17] shows that the non
convex optimization with respect to V leads to the global optimum of the convex problem in T .

In order to apply the same technique here, we need to deal with the pointwise nonnegativity. This
can be done by considering the set of completely positive matrices, i.e.,

CPK = {T ∈ R
NK×NK |∃R ∈ N

∗, ∃V ∈ R
NK×R, V ≥ 0, T = V V T }.

This set is strictly included in the set DNK of doubly non-negative matrices (i.e., both pointwise
nonnegative and positive semi-definite). For R ≥ 5, it turns out that the intersection of CPK and F
is the convex hull of the matrices vvT such that v is an element of the product of simplices [16]. This
implies that the convex optimization problem of minimizing tr (QT ) over CPK ∩F is equivalent to
our original problem (for which no polynomial-time algorithm is known).

However, even if the set CPK ∩ F is convex, optimizing over it is computationally inefficient [18].
We thus follow [17] and consider the problem through the low-rank pointwise nonnegative matrix
V ∈ R

NK×R instead of through matrices T = V V T . Note that following arguments from [16], if R
is large enough, there are no local minima. However, because of the positivity constraint one cannot
find in polynomial time a local minimum of a differentiable function. Nevertheless, any gradient
descent algorithm will converge to a stationary point. In Section 5, we compare results with R > 1
than with R = 1, which corresponds to a gradient descent directly on the simplex.

Problem reformulation. In order to derive a local descent algorithm, we reformulate the con-
straints (7-8) in terms of V (details can be found in the supplementary material). Denoting by Vr

the r-th column of V , V n
r the K-vector such as Vr = (V 1

r , . . . , V N
r )T and V n = (V n

1 , . . . , V n
R ),

condition (8) is equivalent to ‖V m
r ‖1 = ‖V n

r ‖1 for all n and m. Substituting this in (7) yields that

for all n, ‖V n‖2−1 = 1, where ‖V n‖2
2−1 =

∑R

r=1
(1T V n

r )2 is the squared ℓ2−1 norm. We drop this
condition by using a rescaled cost function which equivalent. Finally, using the notation D:

D = {W ∈ R
NK | W ≥ 0, ∀n,m, ‖Wn‖1 = ‖Wm‖1},

we obtain a new equivalent formulation:

min
V ∈RNK×R, ∀r, Vr∈D

1

2
tr(V D−1V T Q) with D = Diag((IN ⊗ 1K)T V V T (IN ⊗ 1K)), (9)

where Diag(A) is the matrix with the diagonal of A and 0 elsewhere. Since the set of constraints for
V is convex, we can use a projected gradient method [19] with the projection step we now describe.

Projection onD. GivenN K-vectorsZn stacked in aNK vectorZ = [Z1; . . . ;ZN ], we consider
the projection of Z on D. For a given positive real number a, the projection of Z on the set of
all U ∈ D such that for all n, ‖Un‖1 = a, is equivalent to N independent projections on the ℓ1 ball
with radius a. Thus projecting Z on D is equivalent to find the solution of:

min
a≥0

L(a) =
N

∑

n=1

max
λn∈R

min
Un≥0

1

2
‖Un − Zn‖2

2 + λn(1T
KUn − a),

where (λn)n≤N are Lagrange multipliers. The problem of projecting each Zn on the ℓ1-
ball of radius a is well studied [20], with known expressions for the optimal Lagrange mul-
tipliers, (λn(a))n≤N and the corresponding projection for a given a. The function L(a) is
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Figure 1: Comparison between our algorithm and R independent optimizations. Also comparison
between two rounding: by summing and by taking the best column. Average results for K = 2, 3, 5
(Best seen in color).

convex, piecewise-quadratic and differentiable, which yields the first-order optimality condi-

tion
∑N

n=1
λn(a) = 0 for a. Several algorithms can be used to find the optimal value of a. We

use a binary search by looking at the sign of
∑N

n=1
λn(a) on the interval [0, λmax], where λmax is

found iteratively. This method was found to be empirically faster than gradient descent.

Overall complexity and running time. We use projected gradient descent, the bottleneck of our
algorithm is the projection with a complexity of O(RN2K log(K)). We present experiments on
running times in the supplementary material.

5 Implementation and results

We first compare our algorithm with others to optimize the problem (4). We show that the per-
formances are equivalent but, our algorithm can scale up to larger database. We also consider the
problem of supervised and unsupervised discriminative clustering. In both cases, we show that our
algorithm outperforms existing methods.

Implementation. For supervised and unsupervised multilabel classification, we first optimize the
second-order approximation Japp, using the reformulation (9). We use a projected gradient descent
method with Armijo’s rule along the projection arc for backtracking [19]. It is stopped after a
maximum number of iterations (500) or if relative updates are too small (10−8). When the algorithm

stops, the matrix V has rank greater than 1 and we use the heuristic v∗ =
∑R

r=1
Vr ∈ S as our final

solution (“avg round”). We also compare this rounding with another heuristic obtained by taking
v∗ = argminVr

f(Vr) (“min round”). v∗ is then used to initialize the EM algorithm described in
Section 2.

Optimization over simplices. We compare our optimization of the non-convex quadratic prob-
lem (9) in V , to the convex SDP in T = V V T on the set of constraints defined by T ∈ DNK , (7)
and (8). To optimize the SDP, we use generic algorithms, CVX [21] and PPXA [22]. CVX uses
interior points methods whereas PPXA uses proximal methods [22]. Both algorithms are com-
putationally inefficient and do not scale well with either the number of points or the number of
constraints. Thus we set N = 10 and K = 2 on discriminative clustering problems (which are
described later in this section). We compare the performances of these algorithms after rounding.
For the SDP, we take ξ∗ = T1NK and for our algorithm we report performances obtained for both
rounding discuss above (“avg round” and “min round”). On these small examples, our algorithm
associated with “min round” reaches similar performances than the SDP, whereas, associated with
“avg round”, its performance drops.

Study of rounding procedures. We compare the performances of the two different roundings,
“min round” and “avg round” on discriminative clustering problems. After rounding, we apply the
EM algorithm and look at the classification scores. We also compare our algorithm for a given R, to
two baselines where we solve independently problem (4) R times and then apply the same round-
ings (“ind - min round” and “ind - avg round”). Results are shown Figure 1. We consider three
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Figure 2: Classification rate for several binary classification tasks (from top to bottom) and for
different values of K, from left to right (Best seen in color).

different problems, N = 100 and K = 2, K = 3 and K = 5. We look at the average perfor-
mances as the number of noise dimensions increases in discriminative clustering problems. Our
method outperforms the baseline whatever rounding we use. Figure 1 shows that on problems with
a small number of latent classes (K < 5), we obtain better performances by taking the column
associated with the lowest value of the cost function (“min round”), than summing all the columns
(“avg round”). On the other hand, when dealing with a larger number of classes (K ≥ 5), the per-
formance of “min round’ drops significantly while “avg round” maintains good results. A potential
explanation is that summing the columns of V gives a solution close to 1

K
1N1T

K in expectation, thus
in the region where our quadratic approximation is valid. Moreover, the best column of V is usually
a local minimum of the quadratic approximation, which we have found to be close to similar local
minima of our original problem, therefore, preventing the EM algorithm from converging to another
solution. In all others experiments, we choose “avg round”.

Application to classification. We evaluate the optimization performance of our algorithm (DLC)
on text classification tasks. For our experiments, we use the 20 Newsgroups dataset
(http://people.csail.mit.edu/jrennie/), which contains postings to Usenet newsgroups. The postings
are organized by content into 20 categories. We use the five binary classification tasks considered
in [23, Chapter 4, page 91]. To set the regularization parameter λ, we use the degree of free-
dom df (see Section 3.2). Each document has 13312 entries and we take df = 1000. We use 50
random initializations for our algorithm. We compare our method with classifiers such as the lin-
ear SVM and the supervised Latent Dirichlet Allocation (sLDA) classifier of Blei et al. [2]. We
also compare our results to those obtained by an SVM using the features obtained with dimension-
reducing methods such as LDA [1] and PCA. For these models, we select parameters with 5-fold
cross-validation. We also compare to the EM without our initialization (“rand-init”) but also with
50 random initializations, a local descent method which is close to back-propagation in a two-layer
neural network, which in this case strongly suffers from local minima problems. An interesting
result on computational time is that EM without our initialization needs more steps to obtain a local
minimum. It is therefore slower than with our initialization in this particular set of experiments.
We show some results in Figure 2 (others maybe found in the supplementary material) for different
values of K and with an increasing number N of training samples. In the case of topic models, K
represents the number of topics. Our method significantly outperforms all the other classifiers. The
comparison with “rand-init” shows the importance of our convex initialization. We also note that
our performance increases slowly with K. Indeed, the number of latent classes needed to correctly
separate two classes of text is small. Moreover, the algorithm tends to automatically select K. Em-
pirically, we notice that starting with K = 15 classes, our average final number of active classes is
around 3. This explains the relatively small gain in performance as K increases.
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Figure 3: Clustering error when increasing the number of noise dimensions. We have take 50
different problems and 10 random initializations for each of them. K = 2, N = 100 and R = 5, on
the left, and K = 5, N = 250 and R = 10, on the right(Best seen in color).

Figure 4: Comparison between our method (left) and k-means (right). First, circles with RBF
kernels. Second, linearly separable bumps. K = 2, N = 200 and R = 5 in both cases.

Application to discriminative clustering. Figure 3 shows the optimization performance of the
EM algorithm with 10 random starting points with (“DLC”) and without (“rand-init”) our initial-
ization method. We compare their performances to K-means, Gaussian Mixture Model (“GMM”),
Diffrac [7] and max-margin clustering (“MMC”) [24]. Following [7], we take linearly separable
bumps in a two-dimensional space and add dimensions containing random independent Gaussian
noise (e.g. “noise dimensions”) to the data. We evaluate the ratio of misclassified observations over
the total number of observations. For the first experiment, we fix K = 2, N = 100, and R = 5, and
for the second K = 5, N = 250, and R = 10. The additional independent noise dimensions are
normally distributed. We use linear kernels for all the methods. We set the regularization parame-
ters λ to 10−2 for all experiments but we have seen that results do not change much as long as λ
is not too small (> 10−8). Note that we do not show results for the MMC algorithm when K = 5
since this algorithm is specially designed for problems with K = 2. It would be interesting to com-
pare to the extension for multi-class problems proposed by Zhang et al. [24]. On both examples, we
are significantly better than Diffrac, k-means and MMC. We show in Figure 4 additional examples
which are non linearly separable.

6 Conclusion

We have presented a probabilistic model for supervised dimension reduction, together with associ-
ated optimization tools to improve upon EM. Application to text classification has shown that our
model outperforms related ones and we have extended it to unsupervised situations, thus drawing
new links between probabilistic models and discriminative clustering. The techniques presented in
this paper could be extended in different directions: First, in terms of optimization, while the embed-
ding of the problem to higher dimensions has empirically led to finding better local minima, sharp
statements might be made to characterize the robustness of our approach. In terms of probabilistic
models, such techniques should generalize to other latent variable models. Finally, some additional
structure could be added to the problem to take into account more specific problems, such as multiple
instance learning [25], multi-label learning or discriminative clustering for computer vision [26, 27].
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