
Optimal Web-scale Tiering as a Flow Problem

Gilbert Leung
eBay, Inc.

San Jose, CA, USA
gleung@alum.mit.edu

Novi Quadrianto
SML-NICTA & RSISE-ANU

Canberra, ACT, Australia
novi.quad@gmail.com

Alexander J. Smola
Yahoo! Research

Santa Clara, CA, USA
alex@smola.org

Kostas Tsioutsiouliklis
Yahoo! Labs

Sunnyvale, CA, USA
kostas@yahoo-inc.com

Abstract

We present a fast online solver for large scale parametric max-flow problems as
they occur in portfolio optimization, inventory management, computer vision, and
logistics. Our algorithm solves an integer linear program in an online fashion. It
exploits total unimodularity of the constraint matrix and a Lagrangian relaxation to
solve the problem as a convex online game. The algorithm generates approximate
solutions of max-flow problems by performing stochastic gradient descent on a set
of flows. We apply the algorithm to optimize tier arrangement of over 84 million
web pages on a layered set of caches to serve an incoming query stream optimally.

1 Introduction

Parametric flow problems have been well-studied in operations research [7]. It has received a sig-
nificant amount of contributions and has been applied in many problem areas such as database
record segmentation [2], energy minimization for computer vision [10], critical load factor determi-
nation in two-processor systems [16], end-of-session baseball elimination [6], and most recently by
[19, 18, 20] in product portfolio selection. In other words, it is a key technique for many estima-
tion and assignment problems. Unfortunately many algorithms proposed in the literature are geared
towards thousands to millions of objects rather than billions, as is common in web-scale problems.

Our motivation for solving parametric flow is the problem of webpage tiering for search engine
indices. While our methods are entirely general and could be applied to a range of other machine
learning and optimization problems, we focus on webpage tiering as the illustrative example in this
paper. The rationale for choosing this application is threefold: firstly, it is a real problem in search
engines. Secondly, it provides very large datasets. Thirdly, in doing so we introduce a new problem
to the machine learning community. That said, our approach would also be readily applicable to
very large scale versions of the problems described in [2, 16, 6, 19].

The specific problem that will provide our running example is that of assigning webpages to several
tiers of a search engine cache such that the time to serve a query is minimized. For a given query,
a search engine returns a number of documents (typically 10). The time it takes to serve a query
depends on where the documents are located. The first tier (or cache) is the fastest (using premium
hardware, etc. thus also often the smallest) and retrieves its documents with little latency. If even
just a single document is located in a back tier, the delay is considerably increased since now we
need to search the larger (and slower) tiers until the desired document is found. Hence it is our
goal to assign the most popular documents to the fastest tiers while taking the interactions between
documents into account.

1

2 The Tiering Problem

We would like to allocate documents d ∈ D into k tiers of storage at our disposal. Moreover, let
q ∈ Q be the queries arriving at a search engine, with finite values vq > 0 (e.g. the probability of
the query, possibly weighted by the relevance of the retrieved results), and a set of documents Dq

retrieved for the query. This input structure is stored in a bipartite graph G with vertices V = D∪Q
and edges (d, q) ∈ E whenever document d should be retrieved for query q.

The k tiers, with tier 1 as the most desirable and k the least (most costly for retrieval), form an
increasing sequence of cummulative capacitiesCt, withCt indicating how many pages can be stored
by tiers t′ ≤ t together. Without loss of generality, assume Ck−1 < |D| (that is, the last tier is
required to hold all documents, or the problem can be reduced). Finally, for each t ≥ 2 we assume
that there is a penalty pt−1 > 0 incurred by a tier-miss at level t (known as “fallthrough” from tier
t − 1 to tier t). And since we have to access tier 1 regardless, we set p0 = 0 for convenience. For
instance, retrieving a page in tier 3 incurs a total penalty of p1 + p2.

2.1 Background

Optimization of index structures and data storage is a key problem in building an efficient search
engine. Much work has been invested into building efficient inverted indices which are optimized for
query processing [17, 3]. These papers all deal with the issue of optimizing the data representation
for a given query and how an inverted index should be stored and managed for general queries. In
particular, [3, 14] address the problem of computing the top-k results without scanning over the
entire inverted lists. Recently, machine learning algorithms have been proposed [5] to improve the
ordering within a given collection beyond the basic inverted indexing setup [3].

A somewhat orthogonal strategy to this is to decompose the collection of webpages into a number
of disjoint tiers [15] ordered in decreasing level of relevance. That is, documents are partitioned
according to their relevance for answering queries into different tiers of (typically) increasing size.
This leads to putting the most frequently retrieved or the most relevant (according to the value of
query, the market or other operational parameters) pages into the top tier with the smallest latency
and relegating the less frequently retrieved or the less relevant pages into bottom tiers. Since queries
are often carried out by sequentially searching this hierarchy of tiers, an improved ordering mini-
mizes latency, improves user satisfaction, and it reduces computation.

A naive implementation of this approach would simply assign a value to each page in the index and
arrange them such that the most frequently accessed pages reside in the highest levels of the cache.
Unfortunately this approach is suboptimal: in order to answer a given query well a search engine
typically does not only return a single page as a result but rather returns a list of r (typically r = 10)
pages. This means that if even just one of these pages is found at a much lower tier, we either need
to search the backtiers to retrieve this page or alternatively we need to sacrifice result relevance.

At first glance, the problem is daunting: we need to take all correlations among pages induced by
user queries into account. Moreover, for reasons of practicality we need to design an algorithm
which is linear in the amount of data presented (i.e. the number of queries) and whose storage
requirements are only linear in the number of pages. Finally, we would like to obtain guarantees in
terms of performance for the assignment that we obtain from the algorithm. Our problem, even for
r = 2, is closely related to the weighted k-densest subgraph problem, which is NP hard [13].

2.2 Optimization Problem

Since the problem we study is somewhat more general than the parametric flow problem we give a
self-contained derivation of the problem and derive the more general version beyond [7]. For brevity,
we relegate all proofs to the Appendix.

We denote the result set for query q byDq := {d : (d, q) ∈ G}, and similarly, the set of queries seek-
ing for a document d by Qd := {q : (d, q) ∈ G}. For a document d we denote by zd ∈ {1, . . . , k}
the tier storing d. Define

uq := max
d∈Dq

zd (1)

2

as the number of cache levels we need to traverse to answer query q. In other words, it is the
document found in the worst tier which determines the cost of access. Integrating the optimization
over uq we may formulate the tiering problem as an integer program:

minimize
z,u

∑
q∈Q

vq

uq−1∑
t=1

pt subject to zd ≤ uq ≤ k for all (q, d) ∈ G and
∑
d∈D

{zd ≤ t} ≤ Ct ∀ t.

(2)
Note that we replaced the maximization condition (1) by a linear inequality in preparation for a
reformulation as an integer linear program. Obviously, the optimal uq for a given z will satisfy (1).

Lemma 1 Assume that Ck ≥ |D| > Ck−1. Then there exists an optimal solution of (2) such that∑
d {zd ≤ t} = Ct for all 1 ≤ t < k.

In the following we address several issues associated with the optimization problem: A) Eq. (2) is an
integer program and consequently it is discrete and nonconvex. We show that there exists a convex
reformulation of the problem. B) It is at a formidable scale (often |D| > 109). Section 3.4 presents
a stochastic gradient descent procedure to solve the problem in few passes through the database. C)
We have insufficient data for an accurate tier assignment for pages associated with tail queries. This
can be addressed by a smoothing estimator for the tier index of a page.

2.3 Integer Linear Program

We now replace the selector variables zd and uq by binary variables via a “thermometer” code. Let

x ∈ {0; 1}D×(k−1) subject to xdt ≥ xd,t+1 for all d, t (3a)

y ∈ {0; 1}Q×(k−1) subject to yqt ≥ yq,t+1 for all q, t (3b)
be index variables. Thus we have the one-to-one mapping zd = 1 +

∑
t xdt and xdt = {zd > t}

between z and x. For instance, for k = 5, a middle tier z = 3 maps into x = (1, 1, 0, 0) (requiring
two fallthroughs), and the best tier z = 1 corresponds to x = (0, 0, 0, 0). The mapping between u
and y is analogous. The constraint uq ≥ zd can simply be rewritten coordinate-wise yqt ≥ xdt.
Finally, the capacity constraints assume the form

∑
d xdt ≥ |D| − Ct. That is, the number of pages

allocated to higher tiers are at least |D| − Ct. Define remaining capacities C̄t := |D| − Ct and use
the variable transformation (1) we have the following integer linear program:

minimize
x,y

v>yp (4a)

subject to xdt ≥ xd,t+1 and yqt ≥ yq,t+1 and yqt ≥ xdt for all (q, d) ∈ G (4b)∑
d xdt ≥ C̄t for all 1 ≤ t ≤ k − 1 (4c)

x ∈ {0; 1}D×(k−1)
; y ∈ {0; 1}Q×(k−1) (4d)

where p = (p1, . . . , pk−1)> and v = (v1, . . . , v|Q|)
> are column vectors, and y a matrix (yqt). The

advantage of (4) is that while still discrete, we now have linear constraints and a linear objective
function. The only problem is that the variables x and y need to be binary.

Lemma 2 The solutions of (2) and (4) are equivalent.

2.4 Hardness

Before discussing convex relaxations and approximation algorithms it is worthwhile to review the
hardness of the problem: consider only two tiers, and a case where we retrieve only two pages
per query. The corresponding graph has vertices D and edges (d, d′) ∈ E, whenever d and d′ are
displayed together to answer a query. In this case the tiering problem reduces to one of finding a
subset of verticesD′ ⊂ D such that the induced subgraph has the largest number (possibly weighted)
of edges subject to the capacity constraint |D′| ≤ C.

For the case of k pages per query, simply assume that k−2 of the pages are always the same. Hence
the problem of finding the best subset reduces to the case of 2 pages per query. This problem is
identical to the k-densest subgraph problem which is known to be NP hard [13].

3

URL

query

URL

quer
y

Figure 1: k-densest subgraph reduction. Vertices
correspond to URLs and queries correspond to
edges. Queries can be served whenever the corre-
sponding URLs are in the cache. This is the case
whenever the induced subgraph contains the edge.

3 Convex Programming

The key idea in solving (4) is to relax the capacity constraints for the tiers. This renders the problem
totally unimodular and therefore amenable to a solution by a linear program. We replace the capacity
constraint by a partial Lagrangian. This does not ensure that we will be able to meet the capacity
constraints exactly anymore. Instead, we will only be able to state ex-post that the relaxed solution
is optimal for the observed capacity distribution. Moreover, we are still able to control capacity by
a suitable choice of the associated Lagrange multipliers.

3.1 Linear Program

Instead of solving (4) we study the linear program:

minimize
x,y

v>yp− 1>xλ subject to xdt ≥ xd,t+1 and yqt ≥ yq,t+1 (5)

yqt ≥ xdt for (q, d) ∈ G and xdt, yqt ∈ [0, 1]

Here λ = (λ1, . . . , λk−1)> act as Lagrange multipliers λt ≥ 0 for enforcing capacity constraints
and 1 denotes a column of |D| ones. We now relate the solution of (5) to that of (4).

Lemma 3 For any choice of λ with λt ≥ 0 the linear program (5) has an integral solution, i.e. there
exists some x∗, y∗ satisfying x∗dt, y

∗
qt ∈ {0; 1} which minimize (5). Moreover, for C̄t =

∑
d x
∗
dt the

solution (x∗, y∗) also solves (4).

We have succeeded in reducing the complexity of the problem to that of a linear program, yet it is still
formidable and it needs to be solved to optimality for an accurate caching prescription. Moreover,
we need to adjust λ such that we satisfy the desired capacity constraints (approximately).

Lemma 4 Denote by L∗(λ) the value of (5) at the solution of (5) and let L(λ) := L∗(λ)+
∑
t C̄tλt.

Hence L(λ) is concave in λ and moreover, L(λ) is maximized for a choice of λ where the solution
of (5) satisfies the constraints of (4).

Note that while the above two lemmas provide us with a guarantee that for every λ and for every
associated integral solution of (5) there exists a set of capacity constraints for which this is optimal
and that such a capacity satisfying constraint can be found efficiently by concave maximization,
they do not guarantee the converse: not every capacity constraint can be satisfied by the convex
relaxation, as the following example demonstrates.

Example 1 Consider the case of 2 tiers (hence we drop the index t), a single query q and 3 docu-
ments d. Set the capacity constraint of the first tier to 1. In this case it is impossible to avoid a cache
miss in the ILP. In the LP relaxation of (4), however, the optimal (non-integral) solution is to set all
xd = 1

3 and yq = 1
3 . The partial Lagrangian L(λ) is maximized for λ = −p/3. Moreover, for

λ < −p/3 the optimization problem (5) has as its solution x = y = 1; whereas for λ > −p/3 the
solution is x = y = 0. For the critical value any convex combination of those two values is valid.

This example shows why the optimal tiering problem is NP hard — it is possible to design cases
where the tier assignment for a page is highly ambiguous. Note that for the integer programming
problem with capacity constraint C = 2 we could allocate an arbitrary pair of pages to the cache.
This does not change the objective function (total cache miss) or feasibility.

4

s t

pages queries

λ

∞

(1-vq)

s t

pages queries

λ

∞

(1-vq)

Figure 2: Left: maximum flow problem for a problem of 4 pages and 3 queries. The minimum cut
of the directed graph needs to sever all pages leading to a query or alternatively it needs to sever the
corresponding query incurring a penalty of (1− vq). This is precisely the tiering objective function
for the case of two tiers. Right: the same query graph for three tiers. Here the black nodes and
dashed edges represent a copy of the original graph — additionally each page in the original graph
also has an infinite-capacity link to the corresponding query in the additional graph.

3.2 Graph Cut Equivalence

It is well known that the case of two tiers (k = 2) can be relaxed to a min-cut, max-flow problem
[7, 4]. The transformation works by designing a bipartite graph between queries q and documents
d. All documents are connected to the source s by edges with capacity λ and queries are connected
to the sink t with capacity (1 − vq). Documents d retrieved for a query q are connected to q with
capacity∞.

Figure 2 provides an example of such a maximum-flow, minimum-cut graph from source s to sink
t. The conversion to several tiers is slightly more involved. Denote by vdi vertices associated with
document d and tier i and moreover, denote bywqi vertices associated with a query q and tier i. Then
the graph is given by edges (s, vdi) with capacities λi; edges (vdi, wqi′) for all (document, query)
pairs and for all i ≤ i′, endowed with infinite capacity; and edges (wqi, t) with capacity (1− vq).

As with the simple caching problem, we need to impose a cut on any query edge for which not all
incoming page edges have been cut. The key difference is that in order to benefit from storing pages
in a better tier we need to guarantee that the page is contained in the lower tier, too.

3.3 Variable Reduction

We now simplify the relaxed problem (5) further by reducing the number of variables, without
sacrificing integrality of the solution. A first step is to substitute yqt = maxd∈Dq xdt, to obtain an
optimization problem over the documents alone:

minimize
x

v>
(

max
d∈Dq

xdt

)
p− 1>xλ subject to xdt ≥ xdt′ for t′ > t and xdt ∈ [0, 1] (6)

Note that the monotonicity condition yqt ≥ yqt′ for t′ > t is automatically inherited from that of x.
The solution of (6) is still integral since the problem is equivalent to one with integral solution.

Lemma 5 We may scale pt and λt together by constants βt > 0, such that p′t/pt = βt = λ′t/λt.
The resulting solution of this new problem (6) with (p′, λ′) is unchanged.

Essentially, problem (5) as parameterized by (p, λ) yields solutions which form equivalence classes.
Consequently for the convenience of solving (5), we may assume p′t = 1 for t ≥ 1. We only need to
consider the original p for evaluating the objective using solution z (thus, same observed capacities
Ct).

Since (5) is a relaxation of (4) this reformulation can be extended to the integer linear program, too.
Moreover, under reasonable conditions on the capacity constraints, there is more structure in λ.

Lemma 6 Assume that C̄t is monotonically decreasing and that pt = 1 for t ≥ 1. Then any choice
of λ satisfying the capacity constraints is monotonically non-increasing.

5

Algorithm 1 Tiering Optimization
Initialize all zd = 0
Initialize n = 100
for i = 1 to MAXITER do

for all q ∈ Q do
η = 1√

n
(learning rate)

n← n+ 1 (increment counter)
Update z ← z − η∂x`q(z)
Project z to [1, k]D via
zd ← max(1,min(k, zd))

end for
end for

Algorithm 2 Deferred updates
Observe current time n′
Read timestamp n for document d
Compute update steps δ = δ(n′, n)
repeat
j = bzd + 1c (next largest tier)
t = (j − zd)/λj (change needed to reach next tier)
if t > δ then
δ = 0 and zd ← zd +λjδ (partial step; we are done)

else
δ ← δ − t and zd ← zd + 1 (full step; next tier)

end if
until δ = 0 (no more updates) or zd = k−1 (bottom tier)

One interpretation of this is that, unless the tiers are increasingly inexpensive, the optimal solu-
tion would assign pages in a fashion yielding empty middle tiers (the remaining capacities C̄t not
strictly decreasing). This monotonicity simplifies the problem. Consequently, we exploit this fact to
complete the variable reduction.

Define δλi := λi − λi+1 for i ≥ 1 (all non-negative by virtue of Lemma 6) and

fλ(χ) := −λ1χ+

k−2∑
i=1

δλi max(0, i− χ) for χ ∈ [0, k-1]. (7)

Note that by construction ∂χfλ(χ) = −λi whenever χ ∈ (i − 1, i). The function fλ is clearly
convex, which helps describe our tiering problem via the following convex program

minimize
z

v>
(

max
d∈Dq

zd

)
+
∑
d

fλ(zd − 1) for zd ∈ [1, k] (8)

We now use only one variable per document. Moreover, the convex constraints are simple box
constraints. This simplifies convex projections, as needed for online programming.
Lemma 7 The solution of (8) is equivalent to that of (5).

3.4 Online Algorithm

We now turn our attention to a fast algorithm for minimizing (8). While greatly simplified relative
to (2) it still remains a problem of billions of variables. The key observation is that the objective
function of (8) can be written as sum over the following loss functions

lq(z) := vq max
d∈Dq

zd +
1

|Q|
∑
d

fλ(zd − 1) (9)

where |Q| denotes the cardinality of the query set. The transformation suggests a simple stochastic
gradient descent optimization algorithm: traverse the input stream by queries, and update the values
of xd of all those documents d that would need to move into the next tier in order to reduce service
time for a query. Subsequently, perform a projection of the page vectors to the set [1, k] to ensure
that we do not assign pages to non-existent tiers.

Algorithm 1 proceeds by processing the input query-result records (q, vq, Dq) as a stream compris-
ing the set of pages that need to be displayed to answer a given query. More specifically, it updates
the tier preferences of the pages that have the lowest tier scores for each level and it decrements the
preferences for all other pages. We may apply results for online optimization algorithms [1] to show
that a small number of passes through the dataset suffice.

Lemma 8 The solution obtained by Algorithm 1 converges at rate O(
√

(log T)/T) to its minimum
value. Here T is the number of queries processed.

6

3.5 Deferred and Approximate Updates

The naive implementation of algorithm 1 is infeasible as it would require us to update all |D| coordi-
nates of xd for each query q. However, it is possible to defer the updates until we need to inspect zd
directly. The key idea is to exploit that for all zd with d 6∈ Dq the updates only depend on the value
of zd at update time (Section A.1) and that fλ is piecewise linear and monotonically decreasing.

3.6 Path Following

The tiering problem has the appealing property [19] that the solutions for increasing λ form a nested
subset. In other words, relaxing capacity constraints never demotes but only promotes pages. This
fact can be used to design specialized solvers which work well at determining the entire solution path
at once for moderate-sized problems [19]. Alternatively, we can simply take advantage of solutions
for successive values of λ in determining an approximate solution path by using the solution for λ
as initialization for λ′. This strategy is well known as path-following in numerical optimization.

In this context it is undesirable to solve the optimization for a particular value of λ to optimality.
Instead, we simply solve it approximately (using a small number of passes) and readjust λ. Due to
the nesting property [19] and the fact that the optimal solutions are binary (via total unimodularity)
the average over solutions on the entire path provides an ordering of pages into tiers. Thus,

Lemma 9 Denote by xd(λ) the solution of the two-tier optimization problem for a given value of
λ. Moreover, denote by ζd := [λ′ − λ]−1

∫ λ′

λ
xd(λ) the average value over a range of Lagrange

multipliers. Then ζd provides an order for sorting documents into tiers for the entire range [λ, λ′].

In practice1, we only choose a finite number of steps for near-optimal solutions. This yields

Algorithm 3 Path Following
Initialize all (xdt) = zd ∈ [1, k]
for each λ ∈ Λ do

Refine variables xdt(λ) by Algorithm 1 using a
small number of iterations.

end for
Average the variables xdt =

∑
λ∈Λ xdt(λ)/|Λ|

Sort the documents with the resulting total scores zd
Fill the ordered documents to tier 1, then tier 2, etc.

Experiments show that using synthetic data
(where it was feasible to compute and com-
pare with the optimal LP solution pointwise)
even |Λ| = 5 values of λ produce near-
optimal results in the two-tier case. More-
over, we may carry out the optimization
procedure for several parameters simultane-
ously. This is advantageous since the main
cost is sequential RAM read-write access
rather than CPU speed.

4 Experiments

To examine the efficacy of our algorithm at web-scale we tested it with real data from a major
search engine. The results of our proposed methods are compared to those of the max and sum
heuristics in Section A.2. We also performed experiments on small synthetic data (2-tier and 3-tier),
where we were able to show that our algorithm converges to exact solution given by an LP solver
(Appendix C). However, since LP solvers are very slow, it is not feasible for web-scale problems.

We processed the logs for one week of September 2009 containing results from the top geographic
regions which include a majority of the search engine’s user base. To simplify the heavy processing
involved for collecting such a massive data set, we only record whether a particular result, defined
as a (query, document) pair, appears in top 10 (first result page) for a given session and we aggregate
the view counts of such results, which will be used for the session value vq once. In its entirety
this subset contains about 108 viewed documents and 1.6 · 107 distinct queries. We excluded results
viewed only once, yielding a final data set of 8.4 · 107 documents.2 For simplicity, our experiments
are carried out for a two-tier (single cache) system such that the only design parameter is the relative

1This result can be readily extended to k > 2, and any probability measure over a set of Lagrangian values
λ ∈ Λ ⊆ Rk−1

+ so long as there are positive weights around the values yielding all the nested solutions.
2The search results for any fixed query vary for a variety of reasons, e.g. database updates. We approximate

the session graph by treating queries with different result sets as if they were different. This does not change

7

Figure 3: Left: Experimental results for real web-search data with 8.4 · 107 pages and 1.6 · 107

queries. Session miss rate for the online procedure, the max and sum heuristics (A.2). (The y-
axis is normalized such that SUM-tier’s first point is at 1). As seen, the max heuristic cannot be
optimal for any but small cache sizes, but it performs comparably well to Online. Right: “Online”
is outperforming MAX for cache size larger than 60%, sometimes more than twofold.

size of the prime tier (the cache). The ranking variant of our online Algorithm 3 (30 passes over the
data) consistently outperforms the max and sum heuristics over a large span of cache sizes (Figure 3).

Direct comparison can now be made between our online procedure and the max and sum heuristics
since each one induces a ranking on the set of documents. We then calculate the session miss rate
of each procedure at any cache size, and report the relative improvement of our online algorithm as
ratios of miss rates in Figure 3–Right.

The optimizer fits well in a desktop’s RAM since 5 values of λ only amount to about 2GB of single-
precision x(λ). We measure a throughput of approximately 0.5 million query-sessions per second
(qps) for this version, and about 2 million qps for smaller problems (as they incur fewer memory
page faults). Billion-scale problems can readily fit in 24GB of RAM by serializing computation one
λ value at a time. We also implemented a multi-thread version utilizing 4 CPU cores, although its
performance did not improve since memory and disk bandwidth limits have already been reached.

5 Discussion

We showed that very large tiering and densest subset optimization problems can be solved efficiently
by a relatively simple online optimization procedure (Some extensions are in Appendix B). It came
somewhat as a surprise that the max heuristic often works nearly as well as the optimal tiering
solution. Since we experienced this correlation on both synthetic and real data we believe that it
might be possible to prove approximation guarantees for this strategy whenever the bipartite graphs
satisfy certain power-law properties.

Some readers may question the need for a static tiering solution, given that data could, in theory,
be reassigned between different caching tiers on the fly. The problem is that in production systems
of a search engine, such reassignment of large amounts of data may not always be efficient for
operational reasons (e.g. different versions of the ranking algorithm, different versions of the index,
different service levels, constraints on transfer bandwidth). In addition to that, tiering is a problem
not restricted to the provision of webpages. It occurs in product portfolio optimization and other
resource constrained settings. We showed that it is possible to solve such problems at several orders
of magnitude larger scale than what was previously considered feasible.

Acknowledgments We thank Kelvin Fong for providing computer facilities. NICTA is funded by
the Australian Government as represented by the Department of Broadband, Communications and
the Digital Economy and the Australian Research Council through the ICT Centre of Excellence
program. This work was carried out while GL and NQ were with Yahoo! Labs.

the optimization problem and keeps the model accurate. Moreover, we remove rare results by maintaining that
the lowest count of a document is at least as large as the square root of the highest within the same session.

8

References
[1] P. Bartlett, E. Hazan, and A. Rakhlin. Adaptive online gradient descent. In J. C. Platt, D. Koller,

Y. Singer, and S. Roweis, editors, NIPS 20, Cambridge, MA, 2008.
[2] M. J. Eisner and D. G. Severance. Mathematical techniques for efficient record segmentation

in large shared databases. J. ACM, 23(4):619–635, 1976.
[3] R. Fagin. Combining fuzzy information from multiple systems. In Fifteenth ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems, pages 216–226, Montreal,
Canada, 1996.

[4] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal of
Mathematics, 8:399–404, 1956.

[5] S. Goel, J. Langford, and A. Strehl. Predictive indexing for fast search. In D. Koller, D. Schu-
urmans, Y. Bengio, and L. Bottou, editors, NIPS, pages 505–512. MIT Press, 2008.

[6] D. Gusfield and C. U. Martel. A fast algorithm for the generalized parametric minimum cut
problem and applications. Algorithmica, 7(5&6):499–519, 1992.

[7] D. Gusfield and É. Tardos. A faster parametric minimum-cut algorithm. Algorithmica,
11(3):278–290, 1994.

[8] I. Heller and C. Tompkins. An extension of a theorem of dantzig’s. In H. Kuhn and A. Tucker,
editors, Linear Inequalities and Related Systems, volume 38 of Annals of Mathematics Studies.
AMS, 1956.

[9] J. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the ACM,
46(5):604–632, 1999.

[10] V. Kolmogorov, Y. Boykov and C. Rother. Applications of parametric maxflow in computer
vision. ICCV, 1–8, 2007.

[11] Y. Nesterov and J.-P. Vial. Confidence level solutions for stochastic programming. Techni-
cal Report 2000/13, Université Catholique de Louvain - Center for Operations Research and
Economics, 2000.

[12] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: Bringing order
to the web. Technical report, Stanford Digital Library Technologies Project, Stanford, CA,
USA, Nov. 1998.

[13] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Complex-
ity. Prentice-Hall, New Jersey, 1982.

[14] M. Persin, J. Zobel, and R. Sacks-Davis. Filtered document retrieval with frequency-sorted
indexes. JASIS, 47(10):749–764, 1996.

[15] K. M. Risvik, Y. Aasheim, and M. Lidal. Multi-tier architecture for web search engines. In
LA-WEB, pages 132–143. IEEE Computer Society, 2003.

[16] H. S. Stone. Critical load factors in two-processor distributed systems. IEEE Trans. Softw.
Eng., 4(3):254–258, 1978.

[17] H. Yan, S. Ding, and T. Suel. Inverted index compression and query processing with opti-
mized document ordering. In J. Quemada, G. León, Y. Maarek, and W. Nejdl, editors, 18th
International Conference on World Wide Web, Madrid, Spain, pages 401–410. ACM, 2009.

[18] B. Zhang, J. Ward, and A. Feng. A simultaneous maximum flow algorithm for the selection
model. Technical Report HPL-2005-91, Hewlett Packard Laboratories, 2005.

[19] B. Zhang, J. Ward, and Q. Feng. A simultaneous parametric maximum-flow algorithm for
finding the complete chain of solutions. Technical Report HPL-2004-189, Hewlett Packard
Laboratories, 2004.

[20] B. Zhang, J. Ward, and Q. Feng. Simultaneous parametric maximum flow algorithm with
vertex balancing. Technical Report HPL-2005-121, Hewlett Packard Laboratories, 2005.

9

