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Abstract

Is there a principled way to learn a probabilistic discriminative classifier from an
unlabeled data set? We present a framework that simultaneously clusters the data
and trains a discriminative classifier. We call it Regularized Information Maxi-
mization (RIM). RIM optimizes an intuitive information-theoretic objective func-
tion which balances class separation, class balance and classifier complexity. The
approach can flexibly incorporate different likelihood functions, express prior as-
sumptions about the relative size of different classes and incorporate partial labels
for semi-supervised learning. In particular, we instantiate the framework to un-
supervised, multi-class kernelized logistic regression. Our empirical evaluation
indicates that RIM outperforms existing methods on several real data sets, and
demonstrates that RIM is an effective model selection method.

1 Introduction

Clustering algorithms group data items into categories without requiring human supervision or def-
inition of categories. They are often the first tool used when exploring new data. A great number
of clustering principles have been proposed, most of which can be described as either generative
or discriminative in nature. Generative clustering algorithms provide constructive definitions of
categories in terms of their geometric properties in a feature space or as statistical processes for
generating data. Examples include k-means and Gaussian mixture model clustering. In order for
generative clustering to be practical, restrictive assumptions must be made about the underlying
category definitions.

Rather than modeling categories explicitly, discriminative clustering techniques represent the
boundaries or distinctions between categories. Fewer assumptions about the nature of categories
are made, making these methods powerful and flexible in real world applications. Spectral graph
partitioning [1] and maximum margin clustering [2] are example discriminative clustering methods.
A disadvantage of existing discriminative approaches is that they lack a probabilistic foundation,
making them potentially unsuitable in applications that require reasoning under uncertainty or in
data exploration.

We propose a principled probabilistic approach to discriminative clustering, by formalizing the
problem as unsupervised learning of a conditional probabilistic model. We generalize the work of
Grandvalet and Bengio [3] and Bridle et al. [4] in order to learn probabilistic classifiers that are
appropriate for multi-class discriminative clustering, as explained in Section 2. We identify two
fundamental, competing quantities, class balance and class separation, and develop an information
theoretic objective function which trades off these quantities. Our approach corresponds to
maximizing mutual information between the empirical distribution on the inputs and the induced



label distribution, regularized by a complexity penalty. Thus, we call our approach Regularized
Information Maximization (RIM).

In summary, our contribution is RIM, a probabilistic framework for discriminative clustering with
a number of attractive properties. Thanks to its probabilistic formulation, RIM is flexible: it is
compatible with diverse likelihood functions and allows specification of prior assumptions about
expected class proportions. We show how our approach leads to an efficient, scalable optimization
procedure that also provides a means of automatic model selection (determination of the number
of clusters). RIM is easily extended to semi-supervised classification. Finally, we show that RIM
performs better than competing approaches on several real-world data sets.

2 Regularized Information Maximization

Suppose we are given an unlabeled dataset of N feature vectors (datapoints) X = (X1, ,Xn),
where x; = (x;1,...,; D)T € RP are D-dimensional vectors with components x;q. Our goal is
to learn a conditional model p(y|x, W) with parameters W which predicts a distribution over label
values y € {1,..., K} given an input vector x.

Our approach is to construct a functional F'(p(y|x, W); X, A\) which evaluates the suitability of
p(y|x, W) as a discriminative clustering model. We then use standard discriminative classifiers
such as logistic regression for p(y|x, W), and maximize the resulting function F'(W; X, \) over
the parameters W. )\ is an additional tuning parameter that is fixed during optimization.

We are guided by three principles when constructing F'(p(y|x, W); X, A). The first is that the dis-
criminative model’s decision boundaries should not be located in regions of the input space that are
densely populated with datapoints. This is often termed the cluster assumption [5], and also corre-
sponds to the idea that datapoints should be classified with large margin. Grandvalet & Bengio [3]
show that a conditional entropy term —+ Y. H{p(y|x;, W)} very effectively captures the cluster
assumption when training probabilistic classifiers with partial labels. However, in the case of fully
unsupervised learning this term alone is not enough to ensure sensible solutions, because conditional
entropy may be reduced by simply removing decision boundaries and unlabeled categories tend to
be removed. We illustrate this in Figure 1 (left) with an example using the multilogit regression
classifier as the conditional model p(y|x, W), which we will develop in Section 3.

In order to avoid degenerate solutions, we incorporate the notion of class balance: we prefer con-
figurations in which category labels are assigned evenly across the dataset. We define the empirical
label distribution

ply; W) Z/ﬁ(X)p(ylwi)dX = %Zp(ylxi,w),

which is an estimate of the marginal distribution of y. A natural way to encode our preference
towards class balance is to use the entropy H{p(y; W)}, because it is maximized when the labels
are uniformly distributed. Combining the two terms, we arrive at

o (g xE = {5 W)= S Hiplylxi, W)} m

which is the empirical estimate of the mutual information between x and y under the conditional
model p(y|x, W).

Bridle et al. [4] were the first to propose maximizing Iw {y; X} in order to learn probabilistic classi-
fiers without supervision. However, they note that Iy {y; x} may be trivially maximized by a con-
ditional model that classifies each data point x; into its own category y;, and that classifiers trained
with this objective tend to fragment the data into a large number of categories, see Figure 1 (center).
We therefore introduce a regularizing term R(W; ) whose form will depend on the specific choice
of p(y|x, W). This term penalizes conditional models with complex decision boundaries in order
to yield sensible clustering solutions. Our objective function is

F(W:;X,\) = Iw{y;x} — R(W; \) (2)

and we therefore refer to our approach as Regularized Information Maximization (RIM), see Figure 1
(right). While we motivated this objective with notions of class balance and seperation, our approach
may be interpreted as learning a conditional distribution for y that preserves information from the
data set, subject to a complexity penalty.
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Figure 1: Example unsupervised multilogit regression solutions on a simple dataset with three clus-
ters. The top and bottom rows show the category label arg max,, p(y|x, W) and conditional entropy
H{p(y|x, W)} at each point x, respectively. We find that both class balance and regularization
terms are necessary to learn unsupervised classifiers suitable for multi-class clustering.

3 Example application: Unsupervised Multilogit Regression

The RIM framework is flexible in the choice of p(y | x; W) and R(W; X). As an example instan-
tiation, we here choose multiclass logistic regression as the conditional model. Specifically, if K is
the maximum number of classes, we choose

p(y = k|x, W) x exp(wix +b;) and R(W;)\) )\Zwk W, 3)

where the set of parameters W = {w1,..., Wg;by,...,bx} consists of weight vectors wy, and
bias values by, for each class k. Each weight vector w;, € R” is D-dimensional with components
wgq. The regularizer is the squared Lo norm of the weight vectors, and may be interpreted as an
isotropic normal distribution prior on the weights W. The bias terms are not penalized.

In order to optimize Eq. 2 specialized with Eqs. 3, we require the gradients of the objective function.
For clarity, we deﬁne pki = p(y = k|x;, W), and pj, = ﬁ(y = k’ W) The partial derivatives are

apcz pcz apcz pci
—— il . 4
8wkd Z 5‘wkd 6bk Z 3bk pC ( )

Naive computation of the gradlent requires O(N K2 D), since there are K (D + 1) parameters and
each derivative requires a sum over N K terms. However, the form of the conditional probability
derivatives for multi-logit regression are:
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where dj. is equal to one when indices k and c are equal, and zero otherwise. When these expres-
sions are substituted into Eq. 4 we find the following expressions:
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Computing the gradient requires only O(/N K D) operations since the terms ) . p.; log % may be
computed once and reused in each partial derivative expression.

The above gradients are used in the L-BFGS [6] quasi-Newton optimization algorithm!. We find em-
pirically that the optimization usually converges within a few hundred iterations. When specialized

"We used Mark Schmidt’s implementation at http://www.cs.ubc.ca/~schmidtm/Software/
minFunc.html.
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Figure 2: Demonstration of model selection on the toy problem from Figure 1. The algorithm is
initialized with 50 category weight vectors wi. Upon convergence, only three of the categories
are populated with data examples. The negative bias terms of the unpopulated categories drive the
unpopulated class probabilities p; towards zero. The corresponding weight vectors wj, have norms
near zero.

to multilogit regression, the objective function F'(W; x, A) is non-concave. Therefore the algorithm
can only be guaranteed to halt at locally optimal stationary points of F'. In Section 3.1, we explain
how we can obtain an initialization that is robust against local optima.

3.1 Model Selection
Setting the derivatives (Eq. 5) equal to zero yields the following condition at stationary points of F:

Wi =D 0jXi ©)
where we have defined )
—— DPki DPci
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The Lo regularizing function R(W; \) in Eq. 3 is additively composed of penalty terms associated

with each category: wiwy = >, y Q0 szTXj- It is instructive to observe the limiting behavior

of the penalty term w} wy, when datapoints are not assigned to category k; that is, when p; =

% > ;Pri — 0. This implies that py; — 0 for all ¢, and therefore oj; — 0 for all i. Finally,

T o ;T . . . .
WL WE = ), 00X X — 0. This means that the regularizing function does not penalize

unpopulated categories.

We find empirically that when we initialize with a large number of category weights wy, many de-
cay away depending on the value of A\. Typically as A increases, fewer categories are discovered.
This may be viewed as model selection (automatic determination of the number of categories) since
the regularizing function and parameter A may be interpreted as a form of prior on the weight pa-
rameters. The bias terms b, are unpenalized and are adjusted during optimization to drive the class
probablities py, arbitrarily close to zero for unpopulated classes. This is illustrated in Figure 2.

This behavior suggests an effective initialization procedure for our algorithm. We first oversegment
the data into a large number of clusters (using k-means or other suitable algorithm) and train a
supervised multi-logit classifier using these cluster labels. (This initial classifier may be trained with
a small number of L-BFGS iterations since it only serves as a starting point.) We then use this
classifier as the starting point for our RIM algorithm and optimize with different values of \ in order
to obtain solutions with different numbers of clusters.

4 Example Application: Unsupervised Kernel Multilogit Regression

The stationary conditions have another interesting consequence. Equation 6 indicates that at sta-
tionary points, the weights are located in the span of the input datapoints. We use this insight as
justification to define explicit coefficients «v;; and enforce the constraint wj, = >, a;x; during
optimization. Substituting this equation into the multilogit regression conditional likelihood allows
replacement of all inner products w7, x with Y, a; K (x;, %), where K is a positive definite kernel
function that evaluates the inner product x? x. The conditional model now has the form

p(y = k|x, a,b) x exp(z o K (x,%) + bk).



Substituting the constraint into the regularizing function Y, w{ wy, yields a natural replacement of
wEwy, by the Reproducing Hilbert Space (RKHS) norm of the function > K (x4, )

R(a) = Z Zakiaij(xi,xj). (8)
ko ij

We use the L-BFGS algorithm to optimize the kernelized algorithm over the coefficients ay; and
biases by. The partial derivatives for the kernel coefficients are

oF 1 DPki Dei
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and the derivatives for the biases are unchanged. The gradient of the kernelized algorithm requires
O(K'N?) to compute. Kernelized unsupervised multilogit regression exhibits the same model
selection behavior as the linear algorithm.

5 Extensions

We now discuss how RIM can be extended to semi-supervised classification, and to encode prior
assumptions about class proportions.

5.1 Semi-supervised Classification

In semi-supervised classification, we assume that there are unlabeled examples XY =
{xY{, .-, x§} as well as labeled examples X© = {xF, ... xk } withlabels Y = {y1,--- ,yan}.

We again use mutual information Iw{y;x} (Eq. 1) to define the relationship between unlabeled
points and the model parameters, but we incorporate an additional parameter 7 which will define
the tradeoff between labeled and unlabeled examples. The conditional likelihood is incorporated for
labeled examples to yield the semi-supervised objective:

S(W;r,\) =rIw{y:x} — ROW; ) + Y _log p(yilx/, W)

The gradient is computed and again used in the L-BFGS algorithm in order to optimize this com-
bined objective. Our approach is related to the objective in [3], which does not contain the class
balance term H (p(y; W)).

5.2 Encoding Prior Beliefs about the Label Distribution

So far, we have motivated our choice for the objective function F' through the notion of class balance.
However, in many classification tasks, different classes have different number of members. In the
following, we show how RIM allows flexible expression of prior assumptions about non-uniform
class label proportions.

First, note that the following basic identity holds

H{p(y; W)} = log(K) — KL{p(y; W)||U} ©)
where U is the uniform distribution over the set of labels {1, - - - , K'}. Substituting the identity, then
dropping the constant log(K) yields another interpretation of the objective

1 .
F(WX,\) = =% > H{p(ylxi, W)} = KL{p(y; W)U} = R(W; ). (10)

The term —K L{p(y; W)||U} is maximized when the average label distribution is uniform. We
can capture prior beliefs about the average label distribution by substituting a reference distribution
D(y;~) in place of U ( is a parameter that may be fixed or optimized during learning). [7] also use
relative entropy as a means of enforcing prior beliefs, although not with respect to class distributions
in multi-class classification problems.

This construction may be used in a clustering task in which we believe that the cluster sizes obey
a power law distribution as, for example, considered by [8] who use the Pitman-Yor process for
nonparametric language modeling. Simple manipulation yields the following objective:

F(W; X, A7) = Iw{x;y} — H{p(y; W)||D(y;7)} = R(W; A)
where H{p(y; W)||D(y;~y)} is the cross entropy — >, p(y = k; W)log D(y = k;~). We there-

fore find that label distribution priors may be incorporated using an additional cross entropy regu-
larization term.
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Figure 3: Unsupervised Clustering: Adjusted Rand Index (relative to ground truth) versus number
of clusters.

6 Experiments

We empirically evaluate our RIM approach on several real data sets, in both fully unsupervised and
semisupervised configurations.

6.1 Unsupervised Learning

Kernelized RIM is initialized according to the procedure outlined in Section 3.1, and run until L-
BFGS converges. Unlabeled examples are then clustered according to arg maxy p(y = k|x, W).
We compare RIM against the spectral clustering (SC) algorithm of [1], the fast maximum margin
clustering (MMC) algorithm of [9], and kernelized k-means [10]. MMC is a binary clustering algo-
rithm. We use the recursive scheme outlined by [9] to extend the approach to multiple categories.
The MMC algorithm requires an initial clustering estimate for initialization, and we use SC to pro-
vide this.

We evaluate unsupervised clustering performance in terms of how well the discovered clusters reflect
known ground truth labels of the dataset. We report the Adjusted Rand Index (ARI) [11] between an
inferred clustering and the ground truth categories. ARI has a maximum value of 1 when two clus-
terings are identical. We evaluated a number of other measures for comparing clusterings to ground
truth including mutual information, normalized mutual information [12], and cluster impurity [13].
We found that the relative rankings of the algorithms were the same as indicated by ARIL.

We evaluate the performance of each algorithm while varying the number of clusters that are dis-
covered, and we plot ARI for each setting. For SC and k-means the number of clusters is given as
an input parameter. MMC is evaluated at {2, 4, 8, - - - } clusters (powers of two, due to the recursive
scheme.) For RIM, we sweep the regularization parameter A and allow the algorithm to discover the
final number of clusters.

Image Clustering. We test the algorithms on an image clustering task with 350 images from four
Caltech-256 [14] categories (Faces-Easy, Motorbikes, Airplanes, T-Shirt) for a total of N = 1400
images. We use the Spatial Pyramid Match kernel [15] computed between every pair of images.
We sweep RIM’s A parameter across [O}Vj, %] The results are summarized in figure 3. Overall,
the clusterings that best match ground truth are given by RIM when it discovers four clusters. We
find that RIM outperforms both SC and MMC at all settings. RIM outperforms kernelized k-means
when discovering between 4 and 8 clusters. Their performances are comparable for other numbers
of clusters. Figure 4 shows example images taken from clusters discovered by RIM. Our RIM
implementation takes approximately 110 seconds per run on the Caltech Images datset on a quad
core Intel Xeon server. SC requires 38 seconds per run, while MMC requires 44-51 seconds per run
depending on the number of clusters specified.

Molecular Graph Clustering. We further test RIM’s unsupervised learning performance on two
molecular graph datasets. D&D [16] contains N = 1178 protein structure graphs with binary
ground truth labels indicating whether or not they function as enzymes. NCI109 [17] is composed
of N = 4127 compounds labeled according to whether or not they are active in an anti-cancer
screening. We use the subtree kernel developed by [18] with subtree height of 1. For D&D, we

sweep RIM’s lambda parameter through the range [%, %] and for NCI we sweep through the

interval [2301 L], Results are summarized in Figures 3 (center and right). We find that of all

methods, RIM produces the clusterings that are nearest to ground truth (when discovering 2 clusters
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Figure 4: Left: Randomly chosen example images from clusters discovered by unsupervised RIM
on Caltech Image. Right: Semi-supervised learning on Caltech Images.
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Figure 5: Left, Tetrode dataset average waveform. Right, the waveform with the most uncertain
cluster membership according to the classifier learned by RIM.

for D&D and 5 clusters for NCI109). RIM outperforms both SC and MMC at all settings. RIM has
the advantage over k-means when discovering a small number of clusters and is comparable at other
settings. On NCI109, RIM required approximately 10 minutes per run. SC required approximately
13 minutes, while MMC required on average 18 minutes per run.

Neural Tetrode Recordings. We demonstrate RIM on a large scale data set of 319,209 neural
activity waveforms recorded from four co-located electrodes implanted in the hippocampus of a
behaving rat. The waveforms are composed of 38 samples from each of the four electrodes and are
the output of a neural spike detector which aligns signal peaks to the 13-th sample, see the average
waveform in Figure 5 (left). We concatenate the samples into a single 152-dimensional vector and
preprocess by subtracting the mean waveform and divide each vector component by its variance.
We use the linear RIM algorithm given in Section 3, initialized with 100 categories. We set A to %
and RIM discovers 33 clusters and finishes in 12 minutes. There is no ground truth available for this
dataset, but we use it to demonstrate RIM’s efficacy as a data exploration tool. Figure 6 shows two
clusters discovered by RIM. The top row consists of cluster member waveforms superimposed on
each other, with the cluster’s mean waveform plotted in red. We find that the clustered waveforms
have substantial similarity to each other. Taken as a whole, the clusters give an idea of the typical
waveform patterns. The bottom row shows the learned classifier’s discriminative weights wy, for
each category, which can be used to gain a sense for how the cluster’s members differ from the
dataset mean waveform. We can use the probabilistic classifier learned by RIM to discover atypical
waveforms by ranking them according to their conditional entropy H{p(y|x;, W)}. Figure 5 (right)
shows the waveform whose cluster membership is most uncertain.
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Figure 6: Two clusters discovered by RIM on the Tetrode data set. Top row: Superimposed
waveform members, with cluster mean in red. Bottom row: The discriminative category weights
w, associated with each cluster.



6.2 Semi-supervised Classification

We test our semi-supervised classification method described in Section 5.1 against [3] on the Cal-
tech Images dataset. The methods were trained using both unlabeled and labeled examples, and
classification performance is assessed on the unlabeled portion. As a baseline, a supervised classi-
fier was trained on labeled subsets of the data and tested on the remainder. Parameters were selected
via cross-validation on a subset of the labeled examples. The results are summarized in Figure 4.
We find that both semi-supervised methods significantly improve classification performance rela-
tive to the supervised baseline when the number of labeled examples is small. Additionally, we
find that RIM outperforms Grandvalet & Bengio. This suggests that incorporating prior knowledge
about class size distributions (in this case, we use a uniform prior) may be useful in semi-supervised
learning.

7 Related Work

Our work has connections to existing work in both unsupervised learning and semi-supervised clas-
sification.

Unsupervised Learning. The information bottleneck method [19] learns a conditional model
p(y|x) where the labels y form a lossy representation of the input space x, while preserving in-
formation about a third “relevance” variable z. The method maximizes I (y; z) — A (z; y), whereas
we maximize the information between y and x while constraining complexity with a parametric
regularizer. The method of [20] aims to maximize a similarity measure computed between members
within the same cluster while penalizing the mutual information between the cluster label y and the
input z. Again, mutual information is used to enforce a lossy representation of y|x. Song et al. [22]
also view clustering as maximization of the dependence between the input variable and output la-
bel variable. They use the Hilbert-Schmidt Independence Criterion as a measure of dependence,
whereas we use Mutual Information.

There is also an unsupervised variant of the Support Vector Machine, called max-margin cluster-
ing. Like our approach, the works of [2] and [21] use notions of class balance, seperation, and
regularization to learn unsupervised discriminative classifiers. However, they are formulated in the
max-margin framework rather than our probabilistic approach. Ours appears more amenable to
incorporating prior beliefs about the class labels. Unsupervised SVMs are solutions to a convex
relaxation of a non-convex problem, while we directly optimize our non-convex objective. The
semidefinite programming methods required are much more expensive than our approach.

Semi-supervised Classification. Our semi-supervised objective is related to [3], as discussed in
section 5.1. Another semi-supervised method [23] uses mutual information as a regularizing term to
be minimized, in contrast to ours which attempts to maximize mutual information. The assumption
underlying [23] is that any information between the label variable and unlabeled examples is an
artifact of the classifier and should be removed. Our method encodes the opposite assumption:
there may be variability (e.g. new class label values) not captured by the labeled data, since it is
incomplete.

8 Conclusions

We considered the problem of learning a probabilistic discriminative classifier from an unlabeled
data set. We presented Regularized Information Maximization (RIM), a probabilistic framework
for tackling this challenge. Our approach consists of optimizing an intuitive information theoretic
objective function that incorporates class separation, class balance and classifier complexity, which
may be interpreted as maximizing the mutual information between the empirical input and implied
label distributions. The approach is flexible, in that it allows consideration of different likelihood
functions. It also naturally allows expression of prior assumptions about expected label proportions
by means of a cross-entropy with respect to a reference distribution. Our framework allows
natural incorporation of partial labels for semi-supervised learning. In particular, we instantiate the
framework to unsupervised, multi-class kernelized logistic regression. Our empirical evaluation
indicates that RIM outperforms existing methods on several real data sets, and demonstrates that
RIM is an effective model selection method.
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