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Abstract

We consider problems for which one has incomplete binary matrices that evolve
with time (e.g., the votes of legislators on particular legislation, with each year
characterized by a different such matrix). An objective of such analysis is to infer
structure and inter-relationships underlying the matrices, here defined by latent
features associated with each axis of the matrix. In addition, it is assumed that
documents are available for the entities associated with at least one of the ma-
trix axes. By jointly analyzing the matrices and documents, one may be used
to inform the other within the analysis, and the model offers the opportunity to
predict matrix values (e.g., votes) based only on an associated document (e.g.,
legislation). The research presented here merges two areas of machine-learning
that have previously been investigated separately: incomplete-matrix analysis and
topic modeling. The analysis is performed from a Bayesian perspective, with ef-
ficient inference constituted via Gibbs sampling. The framework is demonstrated
by considering all voting data and available documents (legislation) during the
220-year lifetime of the United States Senate and House of Representatives.

1 Introduction
There has been significant recent research on the analysis of incomplete matrices [10, 15, 1, 12,
13, 18]. Most analyses have been performed under the assumption that the matrix is real. There
are interesting problems for which the matrices may be binary; for example, reflecting the pres-
ence/absence of links on nodes of a graph, or for analysis of data associated with a series of binary
questions. One may connect an underlying real matrix to binary (or, more generally, integer) obser-
vations via a probit or logistic link function; for example, such analysis has been performed in the
context of analyzing legislative roll-call data [6]. A problem that has received less attention concerns
the analysis of time-evolving matrices. The specific motivation of this paper involves binary ques-
tions in a legislative setting; we are interested in analyzing such data over many legislative sessions,
and since the legislators change over time, it is undesirable to treat the entire set of votes as a single
matrix. Each piece of legislation (question) is unique, but it is desirable to infer inter-relationships
and commonalities over time. Similar latent groupings and relationships exist for the legislators.
This general setting is also of interest for analysis of more-general social networks [8].

A distinct line of research has focused on analysis of documents, with topic modeling constituting a
popular framework [4, 2, 17, 3, 11]. Although the analysis of matrices and documents has heretofore
been performed independently, there are many problems for which documents and matrices may be
coupled. For example, in addition to a matrix of links between websites or email sender/recipient
data, one also has access to the associated documents (website and email content). By analyzing the
matrices and documents simultaneously, one may infer inter-relationships about each. For example,
in a factor-based model of matrices [8], the associated documents may be used to relate matrix
factors to topics/words, providing insight from the documents about the matrix, and vice versa.
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To the authors’ knowledge, this paper represents the first joint analysis of time-evolving matrices and
associated documents. The analysis is performed using nonparametric Bayesian tools; for example,
the truncated Dirichlet process [7] is used to jointly cluster latent topics and matrix features. The
framework is demonstrated through analysis of large-scale data sets. Specifically, we consider binary
vote matrices from the United States Senate and House of Representatives, from the first congress
in 1789 to the present. Documents of the legislation are available for the most recent 20 years, and
those are also analyzed jointly with the matrix data. The quantitative predictive performance of this
framework is demonstrated, as is the power of this setting for making qualitative assessments of
large-scale and complex joint matrix-document data.

2 Modeling Framework
2.1 Time-evolving binary matrices
Assume we are given a set of binary matrices, {Bt}t=1,τ , with Bt ∈ {0, 1}N

(t)
y ×N

(t)
x . The number

of rows and columns, respectively N (t)
y and N (t)

x , may vary with time. For example, for the leg-
islative roll-call data consider below, time index t corresponds to year and the number of pieces of
legislation and legislators changes with time (e.g., for the historical data considered for the United
States congress, the number of states and hence legislators changes as the country has grown).

Using a modeling framework analogous to that in [6], the binary matrix has a probit-model gener-
ative process, with Bt(i, j) = 1 if Xt(i, j) > 0, and Bt(i, j) = 0 otherwise, and the latent real
matrix is defined as

Xt(i, j) =< y
(t)
i ,x

(t)
j > +β

(t)
i + α

(t)
j + ε

(t)
i,j (1)

where < ·, · > denotes a vector inner product, and ε(t)i,j ∼ N (0, 1). The random effects are drawn

β
(t)
i ∼ N (0, λ−1β ) and α(t)

j ∼ N (0, λ−1α ), with λα ∼ µαδ∞ + (1 − µα)Gamma(a, b) and λβ ∼
µβδ∞ + (1− µβ)Gamma(a, b); δ∞ is a point measure at infinity, corresponding to there not being
an associated random effect. The probability of whether there is a random effect is controlled by µβ
and µα, each of which is drawn from a beta distribution.

Random effect αj is motivated by our example application, for which the index j denotes a specific
piece of legislation that is voted upon; this parameter reflects the “difficulty” of the vote, and if |αj |
is large, then all people are likely to vote one way or the other (an “easy” vote), while if α(t)

j is small

the details of the legislator (defined by y(t)
i ) and legislation (defined by x(t)

j ) strongly impact the
vote. In previous political science Bayesian analysis [6] researchers have simply set µβ = 1 and
µα = 0, but here we consider the model in a more-general setting, and infer these relationships.

Additionally, in previous Bayesian analysis [6] the dimensionality of y(t)
i and x(t)

j has been set
(usually to one or two). In related probabilistic matrix factorization (PMF) applied to real ma-
trices [15, 12], priors/regularizers are employed to constrain the dimensionality of the latent fea-
tures. Here we employ the sparse binary vector b ∈ {0, 1}K , with bk ∼ Bernoulli(πk), and
πk ∼ Beta(c/K, d(K − 1)/K), for K set to a large integer. By setting c and d appropriately,
this favors that most of the components of b are zero (imposes sparseness). Specifically, by inte-
grating out the {πk}k=1,K , one may readily show that the number of non-zero components in b is a
random variable drawn from Binomial(K, c/(c + d(K − 1))), and the expected number of ones in
b is cK/[c+ d(K − 1)]. This is related to a draw from a truncated beta-Bernoulli process [16].

We consider two types of matrix axes. Specifically, we assume that each row corresponds to a
person/entity that may be present for matrix t+ 1 and matrix t. It is assumed here that each column
corresponds to a question (in the examples, a piece of legislation), and each question is unique. Since
the columns are each unique, we assume x(t)

j = b◦ x̂(t)
j , x̂(t)

j ∼ N (0, γ−1x IK), γx ∼ Gamma(e, f),
where ◦ denotes the pointwise/Hadamard vector product. If the person/entity associated with the
ith row at time t is introduced for the first time, its associated feature vector is similarly drawn
y
(t)
i = b ◦ ŷ(t)

i , ŷ
(t)
i ∼ N (0, γ−1y IK), with γy ∼ Gamma(e, f). However, assuming y(t)

i is
already drawn (person/entity i is active prior to time t + 1), then a simple auto-regressive model is
used to draw y(t+1)

i : y(t+1)
i = b ◦ ŷ(t+1)

i , ŷ(t+1)
i ∼ N (ŷ

(t)
i , ξ−1IK), with ξ ∼ Gamma(g, h). The

prior on ξ is set to favor small/smooth changes in the features of an individual on consecutive years.

This model constitutes a relatively direct extension of existing techniques for real matrices [15, 12].
Specifically, we have introduced a probit link function and a simple auto-regression construction to
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impose statistical correlation in the traits of a person/entity at consecutive times. The introduction
of the random effects αj and βi has also not been considered within much of the machine-learning
matrix-analysis literature, but the use of αj is standard in political science Bayesian models [6]. The
principal modeling contribution of this paper concerns how one may integrate such a time-evolving
binary-matrix model with associated documents.

2.2 Topic model
The manner in which the topic modeling is performed is a generalization of latent Dirichlet allo-
cation (LDA) [4]. Assume that the documents of interest have words drawn from a vocabulary
V = {w1, . . . , wV }. The kth topic is characterized by a distribution pk on words (“bag-of-words”
assumption), where pk ∼ Dir(αV /V, . . . , αV /V ). The generative model draws {pk}k=1,T once
for each of the T possible topics.

Each document is characterized by a probability distribution on topics, where the cl ∼
Dir(αT /T, . . . , αT /T ) corresponds to the distribution across T topics for document l. The gen-
erative process for drawing words for document l is to first (and once) draw cl for document l. For
word i in document l, we draw a topic zil ∼ Mult(cl), and then the specific word is drawn from a
multinomial with probability vector pzil .

The above procedure is like the standard LDA [4], with the difference manifested in how we handle
the Dirichlet distributions Dir(αV /V, . . . , αV /V ) and Dir(αT /T, . . . , αT /T ). The Dirichlet dis-
tribution draws are constituted via Sethuraman’s construction [14]; this allows us to place gamma
priors on αV and αT , while retaining conjugacy, permitting analytic Gibbs’ sampling (we there-
fore get a full posterior distribution for all model parameters, while most LDA implementations
employ a point estimate for the document-dependent probabilities of topics). Specifically, the fol-
lowing hierarchical construction is used for draws from Dir(αV /V, . . . , αV /V ) (and similarly for
Dir(αT /T, . . . , αT /T )):

pk =

∞∑
h=1

ahδθh , ah = Uh
∏
n<h

(1− Un) , Uh ∼ Beta(1, αV ) , θh ∼
V∑
w=1

1

V
δw (2)

The probability mass ah is associated with component θh ∈ {1, . . . , V } of the probability vec-
tor. The infinite sum is truncated, analogous to the truncated stick-breaking representation of the
Dirichlet process [9].

2.3 Joint analysis of matrices and documents
Section 2.1 discusses how we model time-evolving binary matrices, and Section 2.2 describes our
procedure for implementing topic models. We now put these two models together. Specifically,
we consider the case for which there is a document D(t)

j of words associated with the jth column
at time t; in our example below, this will correspond to the jth piece of legislation in year t. It is
possible that we may have documents associated with the matrix rows as well (e.g., speeches for the
ith legislature), but in our model development (and in our examples), documents are only assumed
present for the columns.

For column j at time t, we have both a feature vector x(t)
j (for the matrix) and a distribution on

topics c(t)j (for the document D(t)
j ), and these are now coupled; the remainder of the matrix and

topic models are unchanged. We define a set of atoms {c∗m,µ∗m, ζ∗m}m=1,M . The atoms µ∗m are
drawn from N (0, γ−1x IK), again with a gamma prior placed on γx, and ζ∗m are also drawn from a
gamma distribution; the c∗m are drawn iid from Dir(αT /T, . . . , αT /T ), using the Dirichlet distribu-
tion construction as above. To couple the pair (x(t)

j , c
(t)
j ), we draw indicator variable ujt as

ujt ∼
M∑
m=1

bmδm , bm = Cm
∏
i<m

(1− Ci) , Cm ∼ Beta(1, η) (3)

with a gamma prior again placed on η (with CM = 1). The pair (x
(t)
j , c

(t)
j ) is now defined by

x
(t)
j = b ◦ x̂(t)

j , with x̂(t)
j ∼ N (µ∗ujt

, ζ∗ujt

−1IK). Further, c(t)j is set to c∗ujt
.

This construction clusters the columns, with the clustering mechanism defined by a truncated stick-
breaking representation of the Dirichlet process [9]. The components {µ∗m, ζ∗m}m=1,M define a
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j = 1,…,  

m = 1,…,M 

i = 1,…,  

k = 1,…, K 

t = 1,…, T 

Figure 1: Graphical representation of the model, with the hyperparameters omitted for simplicity. The plates
indicate replication, and the filled circle around Bt indicates it is observed.

Gaussian mixture model (GMM) in matrix-column feature space, while the {c∗m}m=1,M define a
set of M probability vectors over topics, with one such vector associated with each of the afore-
mentioned GMM mixture components. The truncated Dirichlet process infers how many mixture
components are needed to represent the data.

In this construction, each of the matrix columns is associated with a distribution on topics (based
upon which mixture component it is drawn from). This provides powerful interpretative insights
between the latent features in the matrix model and the words from the associated documents. Fur-
ther, since the topic and matrix models are constituted jointly, the topics themselves are defined as
to be best matched to the characteristics of the matrix (vis-a-vis simply modeling the documents in
isolation, which may yield topics that are not necessarily well connected to what matters for the
matrices). A graphical representation of the model is shown in Figure 1.

There are several extensions one may consider in future work. For example, for simplicity the GMM
in column feature space is assumed time-independent. One may consider having a separate GMM
for each time (year) t. Further, we have not explicitly imposed time-dependence in the topic model
itself, and this may also be considered [2, 11]. For the examples presented below on real data,
despite these simplifications, the model seems to perform well.

2.4 Computations
The posterior distribution of all model parameters has been computed using Gibbs sampling; the
detailed update equations are provided as supplemental material at http://sites.google.
com/site/matrixtopics/. The first 1000 Gibbs iterations were discarded as burn-in followed
by 500 collection iterations.The truncation levels on the model are T = 20, M = 10, K = 30, and
the number of words in the vocabulary is V = 5249. Hyperparameters were set as a = b = e =
f = 10−6, c = d = 1, g = 103, and h = 10−3. None of these parameters have been optimized, and
“reasonable” related settings yield very similar results.

We have performed joint matrix and text analysis considering the United States Congress voting
records (and, when available, the document associated with the legislation); we consider both the
House of Representatives (House) and Senate, from 1789-2008. Legislation documents and meta-
data (bill sponsorship, party affiliation of voters, etc.) are available for sessions 101–110 (1989-
2008). For the legislation, stop words were removed using a common stopword list (the 514 stop
words are posted at http://sites.google.com/site/matrixtopics/, and the corpus
was stemmed using a Porter stemmer). These data are available from www.govtrack.us and
from the Library of Congress thomas.loc.gov (votes, text and metadata), while the votes dat-
ing from 1789 are at voteview.com. A binary matrix is manifested by mapping all “affirmative”
vote codes (e.g., “Yea”, “Yes”, “Present”) to one, and “negative” codes (e.g., “Nay”,“No”,“Not
Present”) to zero. Not all legislatures are present to vote on a given piece of legislation, and there-
fore missing data are manifested naturally. It varies from year to year, but typically 4% of the votes
are missing in a given year.

We implemented our proposed model in non-optimized Matlab. Computations were performed on
a PC with a 3.6GHz CPU and 4GB memory. A total of 11.5 hours of CPU time are required for
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analysis of Senate sessions 101-110 (1989-2008), and 34.6 hours for House sessions 101-110; in
both cases, this corresponds to joint analysis of both votes and text (legislation). If we only analyze
the votes, 15.5 hours of CPU are required for Senate session 1-110 (1789-2008), and 62.1 hours for
House 1-110 respectively (the number of legislators in the House is over four times larger than that
for the Senate).

3 Experiments
3.1 Joint analysis of documents and votes
We first consider the joint analysis of the legislation (documents) and votes in the Senate, for 1989-
2008. A key aspect of this analysis is the clustering of the legislation, with legislation j at time t
mapped to a cluster (mixture component), with each mixture component characterized by a distri-
bution across latent topics c(t)j , and a latent feature x(t)

j for the associated matrix analysis (recall
Section 2.3). Five dominant clusters were inferred for these data. Since we are running a Gibbs
sampler, and the cluster index changes in general between consecutive iterations (because the index
is exchangeable), below we illustrate the nature of the clusters based upon the last Gibbs iteration.

The dimensionality of the features was inferred to be ‖b‖0 = 5 (on average, across the Gibbs
collection), but two dimensions dominated for the legislation feature vectors x(t)

j . In Figure 2 we
present the inferred distributions of the five principal mixture components (clusters). The cluster
index and the indices of the features are arbitrary; we, for example, number the clusters from 1 to 5
for illustrative simplicity.

In Figure 2 we depict the distribution of topics c∗m associated with each of the five clusters, and
in Figure 3 we list the ten most probable words associated with each of the topics. By examining
the topic characteristics in Figure 3, and the cluster-dependent distribution of topics, we may assign
words/topics to the latent features x(t)

j that are linked to the associated matrix, and hence to the vote
itself. For example, clusters 1 and 4, which are the most separated in latent space (top row in Figure
2), share a very similar support over topics (bottom row in Figure 2). These clusters appear to be as-
sociated with highly partisan topics, specifically taxes (topics 11 and 15) and health/Medicare/Social
Security (topics 12 and 16), as can be seen by considering the topic-dependent words in Figure 3.
Based upon the voting data and the party of the legislation sponsor (bill author), cluster 1 (red)
appears to represent a Republican viewpoint on these topics, while cluster 4 (blue) appears to repre-
sent a Democratic viewpoint. This distinction will play an important role in predicting the votes on
legislation based on the documents, as discussed below in Section 3.2.

In Figure 4 (last plot) we present the estimated density functions for the random-effect parame-
ters β(t)

i and α(t)
j (estimated from the Gibbs collection iterations). Note that p(β) is much more

tightly concentrated around zero than p(α). In the political science literature [6] (in which the leg-
islation/documents have not been considered), researchers simply just set β = 0, and therefore only
assume random effects on the legislation, but not on the senators/congressman. Our analysis appears
to confirm that this simplification is reasonable.
3.2 Matrix prediction based on documents
There has been significant recent interest in the analysis of matrices, particularly in predicting matrix
entries that are missing at random [10, 15, 1, 12, 13, 18]. In such collaborative-filtering research, the
views of a subset of individuals on a movie, for example, help inform predictions on ratings of people
who have not seen the movie (but a fraction of the people must have seen every movie). However,
in the problem considered here, these previous models are not applicable: prediction of votes on a
new legislation LN requires one to relate LN to votes on previous legislation L1, . . . ,LN−1, but in
the absence of any prior votes on LN ; this corresponds to estimating an entire column of the vote
matrix). The joint analysis of text (legislation) and votes, however, offers the ability to relate LN
to L1, . . . ,LN−1, by making connections via the underlying topics of the legislation (documents),
even in the absence of any votes for LN .

To examine this predictive potential, we performed joint analysis on all votes and legislation (doc-
uments) in the US Senate from 1989-2007. Through this process, we yielded a model very similar
to that summarized in Figures 2-4. Using this model, we predict votes on new legislation in 2008,
based on the documents of the associated legislation (but using no vote information on this new
legislation). To do this, the mixture of topics learned from 1989-2007 data are assumed fixed (each
topic characterized by a distribution over words), and these fixed topics are used in the analysis of
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Figure 2: Characteristics of the five principal mixture components (clusters) associated with Senate data, based
upon joint analysis of the documents and the associated vote matrix. Top row: Principal two dimensions of the
latent matrix features x(t)

j , with the ellipses denoting the standard deviation about the mean of the five clusters.
The points reflect specific legislation, with results shown for the 101st and 110th Congresses. The colors of
the ellipses are linked to the colors of the topic distributions. Bottom row: Distribution of topics c∗m for the
five clusters (number indices arbitrary). T = 20 topics are considered, and each cluster is characterized by a
distribution over topics c∗m (bottom row), as well as an associated feature (top row) for the matrix.
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Figure 3: Top-ten most probable words associated with the Senate-legislation topics, 1989-2008.

the documents from new legislation. In this manner, each of the new documents is mapped to one
of the mixture-dependent distributions on topics {c∗m}m=1,M . If a particular piece of legislation is
mapped to cluster m (with mapping based upon the words alone), it is then assumed that the latent
matrix feature associated with the legislation is the associated cluster mean µ∗m (learned via the
modeling of 1989-2007 data).

Once this mapping of legislation to matrix latent space is achieved, and using the senator’s latent
feature vector y(t)

i from 2007, we may readily compute < y
(t)
i ,µ∗m >, and via the probit link

function the probability of a “yes” vote is quantified, for Senator i on new legislation LN . This is
the model in (1), with β(t)

i = 0 and α(t)
j = 0. Based upon Figure 4 (last plot), the approximation

β
(t)
i = 0 is reasonable. The legislation-dependent random effect α(t)

j is expected to be important
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Figure 4: First four plots: Predicted probability of voting “Yes” given only the legislation text for 2008, based
upon the model learned using vote-legislation data from 1898–2007. The dots (colored by party affiliation)
show the empirical voting frequencies for all legislation in the cluster, from 2008 (not used in model). Only
four clusters are utilized during session 2008, out of five inferred by the model for the overall period 1989–2007.
Last plot: Estimated log p(α) and log p(β). Note how p(β) is much more sharply peaked near zero.

for legislation for which most senators vote “yes” (large positive α(t)
j ) or “no” (large negative α(t)

j ).

When testing the predictive quality of the model for the held-out year 2008, we assume α(t)
j = 0

(since this parameter cannot be inferred without modeling the text and votes jointly, while for 2008
we are only modeling the documents); we therefore only test the model on legislation from 2008
for which less than 90% of the senators agreed, such legislation assumed corresponding to small
|α(t)
j | (it is assumed that in practice it would be simple to determine whether a piece of legislation is

likely to be near-unanimous “yes” or “no”, and therefore model-based prediction of votes for such
legislation is deemed less interesting).

In Figure 4 we compare the predicted, probit-based probability of a given senator voting “yes” for
legislation within clusters 1-4 (see Figure 2); the points in Figure 4 represent the empirical data for
each senator, and the curve represents the predictions of the probit link function. These results are
deemed to be remarkably good. In Figure 4, the senators along each horizontal axis are ordered
according to the probability of voting “yes”.

One interesting issue that arises in this prediction concerns clusters 1 and 4 in Figure 2, and the as-
sociated predictions for the held-out year 2008, in Figure 4. Since the distributions of these clusters
over topics is very similar, the documents alone cannot distinguish between clusters 1 and 4. How-
ever, we also have the sponsor of each piece of legislation, and based upon the data from 1989-2007,
if a piece of legislation from 2008 is mapped to either cluster 1 or 4, it is disambiguated based upon
the party affiliation of the sponsor (cluster 1 is a Republican viewpoint on these topics, while cluster
4 is a Democratic viewpoint, based upon voting records from 1989-2007).

3.3 Time evolution of congressman and legislation
The above joint analysis of text and votes was restricted to 1989-2008, since the documents (leg-
islation) were only available for those years. However, the dataset contains votes on all legislation
from 1789 to the present, and we now analyze the vote data from 1789-1988. Figure 5 shows
snapshots in time of the latent space for voters and legislation, for the House of Representatives
(similar results have been computed for the Senate, and are omitted for brevity; as supplemental ma-
terial, at http://sites.google.com/site/matrixtopics/ we present movies of how
legislation and congressman evolve across all times, for both the House and Senate). Five features
were inferred, with the two highest-variance features chosen for the axes. The blue symbols denote
Democratic legislators, or legislation sponsored by a Democrat, and the red points correspond to
Republicans. Results like these are of interest to political scientists, and allow examination of the
degree of partisanship over time, for example.
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Figure 5: Congressman (top) and legislation (bottom) in latent space for sessions 1–98 of the House of Rep-
resentatives. The Democrat/Republican separation is usually sharper than for the Senate, and frequently only
the partisan information seems to matter. Note the gradual rotation of the red/blue blue axis. Best viewed
electronically, zoomed-in.

3.4 Additional quantitative tests
One may ask how well this model addresses the more-classical problem of estimating the values of
matrix data that are missing uniformly at random, in the absence of documents. To examine this
question, we considered binary Senate vote data from 1989-2008, and removed a fraction of the
votes uniformly at random, and then use the proposed time-evolving matrix model to process the
observed data, and to compute the probability of a “yes” vote on all missing data (via the probit link
function). If the probability is larger than 0.5 the vote is set to “yes”, and otherwise it is set to “no”.
We compare our time-evolving model to [12], with the addition of a probit link function; for the
latter we processed all 20 years as one large matrix, rather than analyzing time-evolving structure.
Up to 40% missingness, the proposed model and a modified version of that in [12] performed almost
identically, with an average probability of error (on the binary vote) of approximately 0.1. For
greater than 40% missingness, the proposed time-evolving model manifested a “phase transition”,
and the probability of error increased smoothly up to 0.3, as the fraction of missing data rose to
80%; in contrast, the generalized model in [12] (with probit link) continued to yield a probability
of error of about 0.1. The phase transition of the proposed model is likely manifested because the
entire matrix is partitioned by year, with a linkage between years manifested via the Markov process
between legislators (we don’t analyze all data by one contiguous, large matrix). The phase transition
is expected based on the theory in [5], when the fraction of missing data gets large enough (since
the size of the contiguous matrices analyzed by the time-evolving model is much smaller than that
of the entire matrix, such a phase transition is expected with less missingness than via analysis of
the entire matrix at once).

While the above results are of interest and deemed encouraging, such uniformly random missingness
on matrix data alone is not the motivation of the proposed model. Rather, traditional matrix-analysis
methods [10, 15, 1, 12, 13, 18] are incapable of predicting votes on new legislation based on the
words alone (as in Figure 4), and such models do not allow analysis of the time-evolving properties
of elements of the matrix, as in Figure 5.

4 Conclusions
A new model has been developed for the joint analysis of time-evolving matrices and associated
documents. To the authors’ knowledge, this paper represents the first integration of research hereto-
fore performed separately on topic models and on matrix analysis/completion. The model has been
implemented efficiently via Gibbs sampling. A unique set of results are presented using data from
the US Senate and House of Representatives, demonstrating the ability to predict the votes on new
legislation, based only on the associated documents. The legislation data was considered principally
because it was readily available and interesting in its own right; however, the proposed framework
is of interest for many other problems. For example, the model is applicable to analysis of time-
evolving relationships between multiple entities, augmented by the presence of documents (e.g.,
links between websites, and the associated document content).
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