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Abstract

We present a model that describes the structure in the respar different brain
areas to a set of stimuli in terms sfimulus categoriegclusters of stimuli) and
functional units(clusters of voxels). We assume that voxels within a unpoesl
similarly to all stimuli from the same category, and desigmaparametric hier-
archical model to capture inter-subject variability amdmg units. The model ex-
plicitly encodes the relationship between brain activagiand fMRI time courses.
A variational inference algorithm derived based on the rhtebens categories,
units, and a set of unit-category activation probabilifresn data. When applied
to data from an fMRI study of object recognition, the methadi$ meaningful
and consistent clusterings of stimuli into categories amdls into units.

1 Introduction

The advent of functional neuroimaging techniques, in paldir fMRI, has for the first time provided
non-invasive, large-scale observations of brain procegagnctional imaging techniques allow us to
directly investigate the high-level functional organiratof the human brain. Functional specificity
is a key aspect of this organization and can be studied alongé¢parate dimensions: 1) which sets
of stimuli or cognitive tasks are treated similarly by thaibr and 2) which areas of the brain have
similar functional properties. For instance, in the stadiévisual object recognition the first ques-
tion defines object categories intrinsic to the visual systehile the second characterizes regions
with distinct profiles of selectivity. To answer these gies, fMRI studies examine the responses
of all relevant brain areas to as many stimuli as possibléiwithe domain under study. Novel
methods of analysis are needed to extract the patterns ofidual specificity from the resulting
high-dimensional data.

Clustering is a natural choice for answering questions vee fh@re regarding functional specificity
with respect to both stimuli and voxels. Applying clusterin the space of stimuli identifies stimuli
that induce similar patterns of response and has been hees®td to discover objecatategories
from responses in the human inferior temporal cortex [1]pl&img clustering in the space of brain
locations seeks voxels that show similar functional respen2, 3, 4, 5]. We will refer to a cluster
of voxels with similar responses agumctional unit

In this paper, we present a model to investigate the interacbetween these two aspects of func-
tional specificity. We make the natural assumptions thattfanal units are organized based on
their responses to the categories of stimuli and the catsgof stimuli can be characterized by the
responses they induce in the units. Therefore, categongsimits are interrelated and informative
about each other. Our generative model simultaneouslgddhe specificity structure in the space of
both stimuli and voxels. We use a block co-clustering fraomvto model the relationship between
clusters of stimuli and brain locations [6]. In order to asebfor variability across subjects in a
group study, we assume a hierarchical model where a gragbdructure generates the clustering
of voxels in different subjects (Fig. 1). A nonparametrimpenables the model to search the space
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Figure 1: Co-clustering fMRI data across subjects. The fost shows a hypothetical data set of
brain activations. The second row shows the same data aftdustering, where rows and columns
are re-ordered based on the membership in categories actibfuad units.

of different numbers of clusters. Furthermore, we taila thethod specifically to brain imaging
by including a model of fMRI signals [7]. Most prior work ajid existing machine learning algo-
rithms to functional neuroimaging data. In contrast, ouydan integration of the co-clustering
model with the model of fMRI signals informs each level of thedel about the uncertainties of
inference in the other levels. As a result, the algorithmeigds suited to handling the high levels of
noise in fMRI observations.

We apply our method to a group fMRI study of visual object grution where 8 subjects are
presented with 69 distinct images. The algorithm finds atetireg of the set of images into a
number of categories along with a clustering of voxels ifiedént subjects into units. We find that
the learned categories and functional units are indeed imgfahand consistent.

Related Work Different variants of co-clustering algorithms have foagblications in biological
data analysis [8, 9, 10]. Our model is closely related to tebabilistic formulations of co-clustering
[11, 12] and the application of Infinite Relational Modelsc-clustering [13]. Prior work in the
applications of advanced machine learning techniques ®Ifivas mainly focused on supervised
learning, which requires prior knowledge of stimulus catégp [14]. Unsupervised learning meth-
ods such as Independent Component Analysis (ICA) have &so bpplied to fMRI data to de-
compose it into a set of spatial and temporal (functionafpgonents [15, 16]. ICA assumes an
additive model for the data and allows spatially overlaggiomponents. However, neither of these
assumptions is appropriate for studying functional spetyfi For instance, an fMRI response that
is a weighted combination of a component selective for aated and another component selective
for category B may be better described by selectivity for & nategory (the union of both). We
also note that Formal Concept Analysis, which is closelgtesl to the idea of block co-clustering,
has been recently applied to neural data from visual studiemwnkeys [17].

2 Model

Our model consists of three main components:

I. Co-clustering structure expressing the relationshigvben the clustering of stimuli (cate-
gories) and the clustering of brain voxels (functional sijit

Il. Hierarchical structure expressing the variability amgdunctional units across subjects,

[ll. Signal model expressing the relationship between Vaxativations and observed fMRI
time courses.

The co-clustering level is the key element of the model thabdes the interactions between stim-
ulus categories and functional units. Due to the differeringhe level of noise among subjects, we
do not expect to find the same set of functional units in aljestb. We employ the structure of the
Hierarchical Dirichlet Processes (HDP) [18] to accountlias fact. The first two components of the
model jointly explain how different brain voxels are acte@ by each stimulus in the experiment.
The third component of the model links these binary actregito the observed fMRI time courses
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Figure 2. The graphical representation of our model wheeestt of voxel response variables
(aji, ejin, Aji) and their corresponding prior parametéis, o, uj , o}, x5, 0;) are denoted by);;
andd;, respectively.

of voxels. Sec. 2.1 presents the hierarchical co-clugigrart of the model that includes both the
first and the second components above. Sec. 2.2 presendRiesignal model that integrates the
estimation of voxel activations with the rest of the modedc 2.3 outlines the variational algorithm
that we employ for inference. Fig. 2 shows the graphical rhéatethe joint distribution of the
variables in the model.

2.1 Nonparametric Hierarchical Co-clustering Model

Let z;;, € {0,1} be an activation variable that indicates whether stimulastivates voxel in
subjectj. The co-clustering model describes the distribution ofelactivationsz ;s based on
the category and the functional units to which stimudusnd voxel: belong. We assume that all
voxels within functional unitt have the same probability; ; of being activated by a particular
category! of stimuli. Letz = {z;;}, (z;; € {1,2,---}) be the set of unit memberships of voxels
andec = {c}, (s € {1,2,---}) the set of category memberships of the stimuli. Our model of
co-clustering assumes: i
Tjis | Zjis Cs, d) S Bernouui((zszj'i,cs)' (1)

The set¢p = {¢,} of the probabilities of activation of functional units tofférent categories
summarizes the structure in the responses of voxels to lstimu

We use the stick-breaking formulation of HDP [18] to constran infinite hierarchical prior for
voxel unit memberships:

Zi | B R Mul()), )
B | = "~ Dir(ar), (3)
Ty ~ GEM(y). 4)

Here,GEM() is a distribution over infinitely long vectors = [, 72, - - - |7, named after Griffiths,
Engen and McCloskey [19]. This distribution is defined as:

k—1
i.1.d.
me=oe [[A—ve), v ly "X Beta(l,), (5)
k'=1

where the components of the generated vectosim to one with probabilityi. In subjectj,
voxel memberships are distributed according to subjeetifip weights of functional units;. The
weights 3; are in turn generated by a Dirichlet distribution centeresliad = with a degree of
variability determined byr. Therefore,m acts as the group-level expected value of the subject-
specific weights. With this prior over the unit membershipvaxels z, the model in principle
allows an infinite number of functional units; however, foydinite set of voxels, a finite number
of units is sufficient to include all voxels.

We do not impose a similar hierarchical structure on thetehirgy of stimuli among subjects.
Conceptually, we assume that stimulus categories reflest the human brain has evolved to



organize the processing of stimuli within a system and agecflore identical across subjects. Even
if any variability exists, it will be hard to learn such a colep structure from data since we can
present relatively few stimuli in each experiment. Hence,agsume identical clusterinrgin the
space of stimuli for all subjects, with a Dirichlet proces®p

e [ p "R Mult(p),

plx ~ GEM(x). (6)
Finally, we construct the prior distribution for unit-cgt®y activation probabilitieg:

Pr1 "5 Beta(ry, 7). (7
2.2 Model of fMRI Signals

Functional MRl yields a noisy measure of average neuroriatdion in each brain voxel at different
time points. The standard linear time-invariant model oRMignals expresses the contribution of
each stimulus by the convolution of the spike train of stinsubnsets with a hemodynamic response
function (HRF) [20]. The HRF peaks at about 6-9 seconds, fimtglan intrinsic delay between
the underlying neural activity and the measured fMRI sig@acordingly, measured signal,; in
voxel i of subject; at timet is modeled as:

Yjit = Z bjisGsr + Z €jinthe + €jits 8)
s h

whereG; is the model regressor for stimulbsF},, represents nuisance facfgrsuch as a baseline
or a linear temporal trend, at timteande;;; is gaussian noise. We use the simplifying assumption

throughout that ;;, g Normal(0, /\31). In the absence of any priors, the respobisg of voxel i
to stimuluss can be estimated by solving the least squares regressiblepro

Unfortunately, fMRI signal does not have a meaningful sealé may vary greatly across trials and
experiments. In order to use this data for inferences abwin function across subjects, sessions,
and stimuli, we need to transform it into a standard and nmegini space. The binary activation
variablesz, introduced in the previous section, achieve this tramsétion by assuming that in
response to any stimulus a voxel is either in an active or aaubine state, similar to [7]. If voxel

i is activated by stimulus, i.e., if z;;5 = 1, its response takes positive valug that specifies the
voxel-specific amplitude of response; otherwise, its raspeemains. We can writeh;;s = a;; ;s

and assume that;; represents uninteresting variability in fMRI signal. Wheakimg inference on
binary activation variable ;;s, we consider not only the response, but also the level ofenaisl
responses to other stimuli. Therefore, the binary activatariables can be directly compared across
different subjects, sessions, and experiments.

We assume the following priors on voxel response variables:

ejin, ~ Normal (/J(;h70';h)7 ©
ajz- ~ NOI"IIlal+ (N?’O—?) ’ (10)
Aji ~ Gamma (s, 0;), (1)

whereNormal ;. defines a normal distribution constrained to only take p@sitalues.

2.3 Algorithm

The size of common fMRI data sets and the space of hidderblesian our model makes stochastic
inference methods, such as Gibbs sampling, prohibitiviely.sCurrently, there is no faster split-
merge-type sampling technique that can be applied to Ieieica nonparametric models [18]. We
therefore choose a variational Bayesian inference schehieh is known to yield faster algorithms.

To formulate the inference for the hierarchical unit mershgrs, we closely follow the derivation
of the Collapsed Variational HDP approximation [21]. Weeintate over the subject-specific unit
weights3 = {8;} and introduce a set of auxiliary variables= {r;;} that represent the number
of tables corresponding to unit (dish)n subject (restaurang)according to the Chinese restaurant
franchise formulation of HDP [18]. Let = {x, z,¢, 7, a, ¢, e, A, v,u} denote the set of all un-
observed variables. Here,= {v;} andu = {u;} are the stick breaking fractions corresponding



to distributionst andp, respectively. We approximate the posterior distributarthe hidden vari-
ables given the observed datéh|y) by a factorizable distributiog(h). The variational method
minimizes the Gibbs free energy functigtiq] = E[log q(h)] — E[log p(y, h)] whereE[] indicates

expected value with respect to distributignWe assume a distributiapof the form:

a(h) = q(rlz) [T ator) [T aCw) [T a(ona) [T ates) - TT |alasidaNsi)atzio) [ T atejis) [T alesin)
k l k,l s 7,0 s h

We apply coordinate descent in the space(@f to minimize the free energy. Since we explicitly

account for the dependency of the auxiliary variables ohmemberships in the posterior, we can

derive closed form update rules for all hidden variablese Buspace constraints in this paper, we

present the update rules and their derivations in the Soypieary Material.

Iterative application of the update rules leads to a localimum of the Gibbs free energy. Since
variational solutions are known to be biased toward thetiainconfigurations, the initialization
phase becomes critical to the quality of the results. Fdiaiisation of the activation variables;;,,
we estimate,; in Eq. (8) using least squares regression and for each voxelalize the estimates
to values betweef and1 using the voxel-wise maximum and minimum. We use the eséimat
of b to also initialize\ ande. For memberships, we initializg z) by introducing the voxels one
by one in random order to the collapsed Gibbs sampling scH&B8jeconstructed for our model
with each stimulus as a separate category and the initedsumed known. We initialize category
membershipg by clustering the voxel responses across all subjectslifsine set the hyperparam-
eters of the fMRI model such that they match the correspansliatistics computed by least squares
regression on the data.

Il NBC
3 Results [ Jeac
Classification Accuracy (CA)
Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

We demonstrate the performance of the oz
model and the inference algorithm on
both synthetic and real data. As a base-
llne algorlthm for Companson’ we use the Dataset 1 NDZ{:;:[hzzed Nlljiltggeltlgformgglzrs]eg:hﬂl) Dataset 5
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gorithm [6] with the Euclidean distance. o=
First, we show that the hierarchical struc-

ture of our algorithm enables us to retrieve

the cluster membership more accurately igig, ;e 3: Comparison between our nonparametric

synthetic group data. Then, we present the, eqjan co-clustering algorithm (NBC) and Block

“?5““5 Of. our metho_d_ in an fMRI study o Average Co-clustering (BAC) on synthetic data. Both

visual object recognition. classiciation accuracy (CA) and noramlized mutual in-
formation (NMI) are reported.

3.1 Synthetic Data

We generate synthetic data from a stochastic process défyrmad model with the set of parameters
v =3, a =100, x =1, andr, = » = 1, N; = 1000 voxels, S = 100 stimuli, andJ =

4 subjects. For the model of the fMRI signals, we use parammdbat are representative of our
experimental setup and the corresponding hyperparanmesgnsated from the data. We generate 5
data sets with these parameters; they have betWwéern categories and3 to 21 units. We apply
our algorithm directly to time courses in 5 different datssggenerated using the above scheme. To
apply BAC to the same data sets, we need to first turn the toneses into voxel-stimulus data.
We use the least squares estimates of voxel respohggk rformalized in the same way as we
initialize our fMRI model. We run each algorithm 20 times kviifferent initializations. The BAC
algorithm is initialized by the result of a sdftmeans clustering in the space of voxels. Our method
is initialized as explained in the previous section. For BA@ use thérue number of clusters while
our algorithm is always initialized with 15 clusters.

We evaluate the results of clustering with respect to botteland stimuli by comparing cluster-
ing results with the ground truth. Since there is no consepsuthe best way to compare different
clusterings of the same set, here we employ two differersteting distance measures. Lk, k')
denote the fraction of data points (voxels or stimuli) assijto clustek in the ground truth and’



in the estimated clustering. The first measure is the sedalassification accuracyCA), which

is defined as the fraction of data points correctly assigoedé true clusters [22]. To compute this
measure, we need to first match the cluster indices in oultsesith the true clustering. We find
a one-to-one matching between the two sets of clusters kingah bipartite graph matching prob-
lem. We define the graph such that the two sets of clusteresdiepresent the nodes aR¢k, k')
represents the weight of the edge between riogied%’. As the second measure, we useribemal-
ized mutual informatioiNMI), which expresses the proportion of the entropy (infation) of the
ground truth clustering that is shared with the estimatasdteting. We define two random variables
X andY that take values in the spaces of the true and the estimaistécindices, respectively.
Assuming a joint distributio? (X =k, Y =k") = P(k, k'), we setNMI = I(X;Y)/H(X). Both
measures take values between 0 and 1, with 1 correspondjagfert clustering.

Fig. 3 presents the clustering quality measures for the tgarighms on the 5 generated data sets.
As expected, our method performs consistently better inrfgithe true clustering structure on data
generated by the co-clustering process. Since the twoitligte share the same block co-clustering
structure, the advantage of our method is in its model fohtbearchical structure and fMRI signals.

3.2 Experiment

We apply our method to data from an fMRI study where 8 subjeiets 69 distinct images. Each
image is repeated on average about 40 times in one of the 8gmss in the experiment. The data
includes 42 slices of 1.65mm thickness with in plane voxat sif 1.5mm, aligned with the tempo-
ral lobe (ventral visual pathway). As part of the standamppocessing stream, the data was first
motion-corrected separately for the two sessions [23],thed spatially smoothed with a Gaussian
kernel of 3mm width. The time course data included 120 vokiper run and from 24 to 40 runs
for each subject. We registered the data from the two sess$wthe subject’s native anatomical
space [24]. We removed noisy voxels from the analysis byoperihg an ANOVA test and only
keeping the voxels for which the stimulus regressors siganitly explained the variation in the time
course (thresholg=10—* uncorrected). This procedure selects on average aboud 6@d@Is for
each subject. Finally, to remove the idiosyncratic aspefctesponses in different subjects, such as
attention to particular stimuli, we regressed out the sttkg@erage time course from voxel signals
after removing the baseline and linear trend. We splitgridleach image into two groups of equal
size and consider each group as an independent stimulughfiparotal of 138 stimuli. Hence, we
can examine the consistency of our stimulus categorizatiinrespect to identical trials.

We usea = 100,y = 5, x = 0.1, andm, = 7o = 1 for the nonparametric prior. We initialize our
algorithm 20 times and choose the solution that achievelthest Gibbs free energy. Fig. 4 shows
the categories that the algorithm finds on the data from alllfests. First, we note that stimulus
pairs corresponding to the same image are generally askigribe same category, confirming the
consistency of the resuls across trials. Category 1 cavreispto the scene images and, interestingly,
also includes all images of trees. This may suggest a high éategory structure that is not merely
driven by low level features. Such a structure is even moigeev in the 4th category where images
of a tiger that has a large face join human faces. Some otlerainare clustered together with
human bodies in categories 2 and 9. Shoes and cars, whichsimailar shapes, are clustered
together in category 3 while tools are mainly found in catggo

The interaction between the learned categories and théidnat units is summarized in the poste-
rior unit-category activation probabilitigs[¢y. ;| ( Fig. 4, right). The algorithm finds 18 units across
all subjects. The largest unit does not show preferencerfpiofthe categories. Functional unit 2

is the most selective one and shows high activation for cayeg (faces). This finding agrees with

previous studies that have discovered face-selectives amehe brain [25]. Other units show selec-
tivity for different combinations of categories. For inst&, Unit 6 prefers categories that mostly
include body parts and animals, unit 8 prefers categorydn@s and trees), while the selectivity of
unit 5 seems to be correlated with the pixel-size of the image

Our method further learns sets of variab{%zji:k)}ﬁv:jl that represent the probabilities that dif-
ferent voxels in subjeci belong to functional unik. Although the algorithm does not use any
information about the spatial location of voxels, we camualge the posterior membership proba-
bilities in each subject as a spatial map. To see whetheg themny degree of spatial consistency in
the locations of the learned units across subjects, we tilighrains of all subjects with the Montreal
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Figure 4: Categories (left) and activation probabiliti€fumctional units E[¢y;]) (right) estimated
by the algorithm from all 8 subjects in the study.
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Figure 5: (Left) Spatial maps of functional unit overlap@gs subjects in the normalized space. For
each voxel, we show the fraction of subjects in the group foictvthe voxel was assigned to the
corresponding functional unit. We see that functional simitth similar profiles between the two
datasets show similar spatial extent as well. (Right) Caiapa between the clustering robustness
in the results of our algorithm (NBC) and the best resultslotB Average Co-clustering (BAC) on
the real data.

Neurological Institute coordinate space using affine tegfion [26]. Fig. 5 (left) shows the average
maps across subjects for units 2, 5, and 6 in the normalizacesDespite the relative sparsity of
the maps, they have significant overlap across subjects.

As with many other real world applications of clusteringe talidation of results is challenging
in the absence of ground truth. In order to assess the Hitljabf the results, we examine their
consistency across subjects. We split the 8 subjects irdgyteups of 4 and perform the analysis
on the two group data separately. Fig. 6 (left) shows thegoaies found for one of the two groups
(group 1), which show good agreement with the categoriesdan the data from all subjects (cat-
egories are indexed based on the result of graph matching)a way to quantify the stability of
clustering across subjects, we compute the measures CA ihfoNthe results in the two groups
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Figure 6: Categories found by our algorithm in group 1 (left}i by BAC in all subjects fofl, k) =
(14, 14) (right).

relative to the results in the 8 subjects. We also apply th€ Bigorithm to response values esti-
mated via least squares regression in all 8 subjects anavthgroups. Since the number of units
and categories is not known a priori, we perform the BAC atbor for all pairs of(, k) such that

5 <l <15andk € {10,12,14,16,18,20}. Fig. 5 (right) compares the clustering measures for
our method with those found by the best BAC results in termavefage CA and NMI measures
(achieved with(l, k) = (6,14) for CA, and(l,k) = (14, 14) for NMI). Fig. 6 (right) shows the
categories forl, k) = (14,14), which appear to lack some of the structures found in ourltesu
We also obtain better measures of stability compared toeseBAC results for clustering stimuli,
while the measures are similar for clustering voxels. We tloét in contrast to the results of BAC,
our first unit is always considerably larger than all the athiecluding abou?0% of voxels. This
seems neuroscientifically plausible since we expect lamegsaof the visual cortex to be involved in
processing low level features and therefore incapablestingjuishing different objects.

4 Conclusion

This paper proposes a model for learning large-scale fomakistructures in the brain responses of
a group of subjects. We assume that the structure can be sizathan terms of functional units
with similar responses to categories of stimuli. We derivaidational Bayesian inference scheme
for our hierarchical nonparametric Bayesian model andyaippd both synthetic and real data. In
an fMRI study of visual object recognition, our method findeaningful structures in both object
categories and functional units.

This work is a step toward devising models for functionalifrienaging data that explicitly en-
code our hypotheses about the structure in the brain furatierganization. The assumption that
functional units, categories, and their interactions arficsent to describe the structure, although
proved successful here, may be too restrictive in generaimofe detailed characterization may
be achieved through a feature-based representation wistirawdus can simultaneously be part of
several categories (features). Likewise, a more carefatiment of the structure in the organization
of brain areas may require incorporating spatial infororatin this paper, we show that we can turn
such basic insights into principled models that allow usni@stigate the structures of interest in
a data-driven fashion. By incorporating the propertiesrairbimaging signals into the model, we
better utilize the data for making relevant inferences s&gubjects.
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