
Learning Multiple Tasks using Manifold
Regularization

Arvind Agarwal∗ Hal Daumé III∗
Department of Computer Science

University of Maryland
College Park, MD 20740
arvinda@cs.umd.edu
hal@umiacs.umd.edu

Samuel Gerber
Scientific Computing and Imaging Institute

University of Utah
Salt Lake City, Utah 84112
sgerber@cs.utah.edu

Abstract

We present a novel method for multitask learning (MTL) based on manifold regu-
larization: assume that all task parameters lie on a manifold. This is the general-
ization of a common assumption made in the existing literature: task parameters
share a common linear subspace. One proposed method uses the projection dis-
tance from the manifold to regularize the task parameters. The manifold structure
and the task parameters are learned using an alternating optimization framework.
When the manifold structure is fixed, our method decomposes across tasks which
can be learnt independently. An approximation of the manifold regularization
scheme is presented that preserves the convexity of the single task learning prob-
lem, and makes the proposed MTL framework efficient and easy to implement.
We show the efficacy of our method on several datasets.

1 Introduction

Recently, it has been shown that learning multiple tasks together helps learning [8, 19, 9] when the
tasks are related, and one is able to use an appropriate notion of task relatedness. There are many
ways by which one can enforce the relatedness of the tasks. One way to do so is to assume that two
tasks are related if their parameters are “close”. This notion of relatedness is usually incorporated in
the form of a regularizer [4, 16, 13] or a prior [15, 22, 21].

In this work we present a novel approach for multitask learning (MTL) that considers a notion of
relatedness based on ideas from manifold regularization1. Our approach is based on the assumption
that the parameters of related tasks can not vary arbitrarily but rather lie on a low dimensional man-
ifold. A similar idea underlies the standard manifold learning problems: the data does not change
arbitrarily, but instead follows a manifold structure. Our assumption is also a generalization of the
assumption made in [1] which assumes that all tasks share a linear subspace, and a learning frame-
work consists of learning this linear subspace and task parameters simultaneously. We remove the
linear constraint from this problem, and assume that the tasks instead share a non-linear subspace.

In our proposed approach we learn the task parameters and the task-manifold alternatively, learning
one while keeping the other fixed, similar to [4]. First, we learn all task parameters using a single
task learning (STL) method, and then use these task parameters to learn the initial task manifold. The
task-manifold is then used to relearn the task parameters using manifold regularization. Learning of
manifold and task parameters is repeated until convergence. We emphasize that when we learn the
task parameters (keeping the manifold structure fixed), the MTL framework decomposes across the
∗This work was done at School of Computing, University of Utah, Salt Lake City, Utah
1It is not to be confused with the manifold regularization presented in [7]. We use the projection distance

for regularization while Belkin et.al. use the graph structure (graph Laplacian).

1

tasks, which can be learned independently using standard method such as SVMs. Note that unlike
most manifold learning algorithms, our framework learns an explicit representation of the manifold
and naturally extends to new tasks. Whenever a new task arrives, one can simply use the existing
manifold to learn the parameters of the new task. For a new task, our MTL model is very efficient
as it does not require relearning all tasks.

As shown later in the examples, our method is simple, and can be implemented with only a small
change to the existing STL algorithms. Given a black box for manifold learning, STL algorithms
can be adapted to the proposed MTL setting. To make the proposed framework even simpler, we
provide an approximation which preserves the convexity of the STL problem. We emphasize that
this approximation works very well in practice. All the experimental results used this approximation.

2 Related Work

In MTL, task relatedness is a fundamental question and models differ in the ways they answer
this question. Like our method, most of the existing methods first assume a structure that defines
the task relatedness, and then incorporate this structure in the MTL framework in the form of a
regularizer [4, 16, 13].

One plausible approach is to assume that all task parameters lie in a subspace [1]. The tasks are
learned by forcing the parameters to lie in a common linear subspace therefore exploiting the as-
sumed relatedness in the model. Argyriou et.al. [4] later generalized this work by using a function
F to model the shared structure. In this work, the relatedness structure is forced by applying a
function F on a covariance matrix D which yields a regularization of the form tr(F (D)WWT) on
the parameters W . Here, the function F can model different kind of relatedness structures among
tasks including the linear subspace structure [1]. Given a function F , this framework learns both,
the relatedness matrix D and the task parameters W . One of the limitations of this approach is
the dependency on F which has to be provided externally. In an informal way, F introduces the
non-linearity and it is not clear as what the right choice of F is. Our framework generalizes the lin-
ear framework by introducing the nonlinearity through the manifold structure learned automatically
from the data, and thus avoids the need of any external function. Argyriou et. al. extend their work
[4] in [2, 3] where non-linearity is introduced by considering a kernel function on the input data,
and then learning the linear subspace in the Hilbert space. This method in spirit is very similar to
our method except that we learn an explicit manifold therefore our method is naturally extensible to
new tasks.

Another work that models the task relatedness in the form of proximity of the parameters is [16]
which assumes that task parameters wt for each task is close to some common task w0 with some
variance vt. These vt and w0 are learned by minimizing the Euclidean norm which is again equiva-
lent to working in the linear space. This idea is later generalized by [13], where tasks are clustered,
and regularized with respect to the cluster they belong to. The task parameters are learned under this
cluster assumption by minimizing a combination of different penalty functions.

There is another line of work [10], where task relatedness is modeled in term of a matrix B which
needs to be provided externally. There is also a large body of work on multitask learning that find
the shared structure in the tasks using Bayesian inference [23, 24, 9], which in spirit, is similar to
the above approaches, but done in a Bayesian way. It is to be noted that all of the above methods
either work in a linear setting or require external function/matrix to enforce the nonlinearity. In our
method, we work in the non-linear setting without using any external function.

3 Multitask Learning using Manifold

In this section we describe the proposed MTL framework. As mentioned earlier, our framework
assumes that the tasks parameters lie on a manifold which is a step further to the assumption made
in [1] i.e., the task parameters lie on a linear subspace or share a common set of features. Similar
to the linear subspace algorithm [1] that learns the task parameters (and the shared subspace) by
regularizing the STL framework with the orthogonal projections of the task parameters onto the
subspace, we propose to learn the task parameters (and non-linear subspace i.e., task-manifold) by

2

regularizing the STL with the projection distance of the task parameters from this task-manifold (see
Figure 1).

We begin with some notations. Let T be the total number of tasks, and for each task t, let
Xt = {x1, . . . xnt} be the set of examples and Yt = {y1, . . . ynt} be the corresponding labels.
Each example xi ∈ Rd is a d dimensional vector, and yi is a label; yi ∈ {+1,−1} in case of a
classification problem, and a real value yi ∈ R in case of regression problem. nt is the number
of examples in task t. For the simplicity of the notations, we assume that all tasks have the same
number of examples i.e. n1 = . . . = nT = n, though in practice they may vary. Now for each task
t, let θt be the parameter vector, referred as the task parameter.

w

w∗

Figure 1: Projection of the estimated
parameters w of the task in hand on the
manifold learned from all tasks parame-
ters. w∗ is the optimal parameter.

Given example-label pairs set (Xt, Yt) for task t, a learning
problem would be to find a function ft that for any future
example x, predicts the correct value of y i.e. y = ft(x). A
standard way to learn this function is to minimize the loss be-
tween the value predicted by the function and the true value.
Let L be such a loss function. Let k be a kernel defined on the
input examples k : Rd × Rd → R and Hk be the reproduc-
ing kernel Hilbert space (RKHS) associated with the kernel
k. Restricting ft to the functions in the RKHS and denoting
it by f(x, θt) = 〈θt, φ(x)〉, single task learning solves the
following optimization problem:

θ∗t = arg min
θt

∑
x∈Xt

L(f(x; θt), y) + λ ||ft||2Hk
, (1)

here λ is a regularization parameter. Note that the kernel is
assumed to be common for all tasks hence does not have the
subscript t. This is equivalent to saying that all tasks belong
to the same RKHS.

Now one can extend the above STL framework to the multitask setting. In MTL, tasks are related,
this notion of relatedness is incorporated through a regularizer. Let u be such regularizer, then MTL
solves:

(θ∗1 , . . . θ
∗
T) = arg min

(θ1,...θT)

TX
t=1

“ X
x∈Xt

L(f(x; θt), y) + λ ||ft||2Hk

”
+ γu(θ1 . . . θT), (2)

where γ is a trade off parameter similar to λ that trades off the amount of MTL regularization. As
mentioned in Section 2, there are many ways in which this regularizer can be implemented. For
example, for the assumption that the task parameters are close to a common task θ0, regularizer
would just be ‖θt − θ0‖2. In our approach, we split the regularizer u(θ1, . . . , θT) into T different
regularizers u(θt,M) such that u(θt,M) regularizes the parameter of task t while considering the
effect of other tasks through the manifold M. The optimization problem under such regularizer can
be written as:

(θ∗1 , . . . θ
∗
T) = arg min

(θ1,...θT),M

TX
t=1

“ X
x∈Xt

L(f(x; θt), y) + λ ||ft||2Hk
+ γu(θt,M)

”
. (3)

Note that optimization is now performed over both task parameters and the manifold. If manifold
structure M is fixed then the above optimization problem decomposes into T independent optimiza-
tion problems. In our approach, the regularizer depends on the structure of the manifold constructed
from the task parameters {θ1, . . . θT }. Let M be such manifold, and PM(θt) be the projection dis-
tance of θt from the manifold. Now one can use this projection distance as a regularizer u(θt,M)
in the cost function since all task parameters are assumed to lie on the task manifold M. The cost
function is now given by:

CP =

TX
t=1

“ X
x∈Xt

L(f(x; θt), y) + λ ||ft||2Hk
+ γPM(θt)

”
. (4)

Since the manifold structure is not known, the cost function (4) needs to be optimized simulta-
neously for the task parameters (θ1 . . . θT) and for the task-manifold M. Optimizing for θ and M
jointly is a hard optimization problem, therefore we resort to the alternating optimization. We first

3

fix the task parameters and learn the manifold. Next, we fix the manifold M, and learn the task
parameters by minimizing (4). In order to minimize (4) for the task parameters, we need an expres-
sion for PM i.e. an expression for computing the projection distance of task parameters from the
manifold. More precisely, we only need the gradient of PM not the function itself since we will
solve this problem using gradient descent.

3.1 Manifold Regularization

Our approach relies heavily on the capability to learn a manifold, and to be able to compute the
gradient of the projection distances onto the manifold. Much recent work in manifold learning
focused on uncovering low dimensional representation [18, 6, 17, 20] of the data. These approaches
do not provide the tools crucial to this work i.e., the gradient of the projection distance. Recent
work [11] addresses this issues and proposes a manifold learning algorithm, based on the idea of
principal surfaces [12]. It explicitly represents the manifold in the ambient space as a parametric
surface which can be used to compute the projection distance and its gradient.

For the sake of completeness, we briefly describe this method (for details refer [11]). The method
is based on minimizing the expected reconstruction error E[g(h(θ)) − θ] of the task parameter θ
onto the manifold M. Here h is the mapping from the manifold to the lower dimensional Euclidean
space and g is the mapping from the lower dimensional Euclidean space to the manifold. Thus, the
composition g ◦ h maps a point belonging to manifold to the manifold, using the mapping to the
Euclidean space as an intermediate step. Note that θ and g(h(θ)) are usually not the same. These
mappings g and h can be formulated in terms of kernel regressions over the data points:

h(θ) =

TX
j=1

Kθ(θ − θj)PT
l=1Kθ(θ − θl)

zj (5)

with Kθ a kernel function and zj a set of parameters to be estimated in the manifold learning
process. Similarly

g(r) =

TX
j=1

Kr(r − h(θj))PT
l=1Kr(r − h(θl))

θj (6)

again with Kr a kernel function.

Note that in the limit, the kernel regression converges to the conditional expectation g(r) =
E[(θ1, . . . , θT)|r] where expectation is taken with respect to probability distribution p(θ), param-
eters are assumed to be sampled from. If h is an orthogonal projection, this yields a principal
surface [12], i.e informally g passes through the middle of the density. In [11] it is shown that in
the limit, as the number of samples to learn from increases, h indeed yields an orthogonal projec-
tion onto g. Under this orthogonal projection, the estimation of the parameters zi, i.e. the mani-
fold learning, can be done through gradient descent on the sample mean of the projection distance
1
T

∑T
i=1 g(h(θi)) − θi using a global manifold learning approach for initialization. Once h is esti-

mated, the projection distance is immediate by

PM = ‖θ − g(h(θ))‖2 = ‖θ − θM‖2 (7)

For the optimization of (4) we need the gradient of the projection distance which is

dPM(θ)

dθ
= 2(g(h(θ))− θ)dg(r)

dr
|r=h(θ)

dh(θ)

dθ
. (8)

The projection distance for a single task parameters is O(n) due to the definition of h and g as
kernel regressions which show up in the projection distance gradient in dg(r)

dr |r=h(θ) and dh(θ)
dθ .

This is fairly expensive therefore we propose an approximation, justified by the convergence to an
orthogonal projection of h, to the exact projection gradient. For an orthogonal projection the term
dg(r)
dr |r=h(θ) dh(θ)dθ vanishes (dh(θ)dθ is orthogonal to the tangent plane dg(r)

dr |r=h(θ)of the projected
point) and the gradient simplifies to

dPM(θ)

dθ
= 2(g(h(θ))− θ), (9)

which is exactly the gradient of (7) assuming that the projection of θ onto the manifold is fixed. A
further advantage of this approximation , besides a computational speedup, is that no non-convexities
are introduced due to the regularization.

4

Algorithm 1 MTL using Manifold Regularization
Input: {xi, yi}ni=1 for t = 1 . . . T .
Output: θ1, . . . θT .
Initialize: Learn θ1, . . . θT independently.
Learn the task-manifold using θ1, . . . θT .
while it < numIter do

for t = 1 to T do
Learn θt using (4) with (7) or (10).

end for
Relearn the task-manifold using θ1, . . . θT .

end while

The proposed manifold regularization approximation allows to use any STL method without much
change in the optimization of the STL problem. The proposed method for MTL pipelines manifold
learning with the STL. Using (7) one can write the (4) as:

CP =

TX
t=1

“ X
x∈Xt

L(f(x; θt), y) + λ ||θt||2 + γ
˛̨̨˛̨̨
θt − θ̃M

t

˛̨̨˛̨̨2 ”
(10)

here θ̃M
t is the fixed projection of the θ on the manifold. Note that in the proposed approximation

of the above expression, θ̃M
t is fixed while computing the gradient i.e., one does not have to worry

about moving the projection of the point on the manifold during the gradient step. Although in
the following example, we will solve (10) for linear kernel, extension for the non-linear kernels is
straightforward under the proposed approximation. This approximation allows one to treat the man-
ifold regularizer similar to the RKHS regularizer ‖θt‖2 and solve the generalized learning problem
(4) with non-linear kernels. Note that ‖θt− θ̃M

t ‖2 is a monotonic function of θ so it does not violate
the representer theorem.

3.2 Example: Linear Regression

In this section, we solve the optimization problem (4) for the linear regression model. This is the
model we have used in all of our experiments. In the learning framework (4), the loss function is
L(x, y, wt) = (y−〈wt, x〉)2 with linear kernel k(x, y) = 〈x, y〉. We have changed the notations for
parameters from θ to w to differentiate the linear regression from the general framework. The cost
function for linear regression can now be written as:

CP =

TX
t=1

“ X
x∈Xt

(y − 〈wt, x〉)2 +
λ

2
||wt||2 + γPM(wt)

”
(11)

This cost function may be convex or non-convex depending upon the manifold terms PM(wt). The
first two terms are convex. If one uses the approximation (10), this problem becomes convex and
has the form similar to STL. The solution under this approximation is given by:

wt =
`
(λ+ γ)I + 〈Xt, XT

t 〉
´−1`

XtY
T
t + γw̃M

t

´
(12)

where I is a d × d identity matrix, Xt is a d × n example matrix, and Yt is a row vector of
corresponding labels. w̃Mt is the orthogonal projection of w on the manifold.

3.3 Algorithm Description

The algorithm for MTL with manifold regularization is straightforward and shown in Algorithm 1.
The algorithm begins with the STL setting i.e., each task parameter is learned independently. These
learned task parameters are then used to estimate the task-manifold. Keeping the manifold structure
fixed, we relearn all task parameters using manifold regularization. Equation (9) is used to compute
the gradient of the projection distance used in relearning the parameters. This step gives us the
explicit representation of the projection in the case of a linear kernel while a set of weights in the
case of a non-linear kernel. Current code available for computing the projection [11] only handles
points in the Euclidean space (RKHS with linear kernel), not in a general RKHS, though in theory,
it is possible to extend the current code to general RKHS. Once the parameters for all tasks are
learned, the manifold is re-estimated based on the updated task parameters. This process is repeated
for a fixed number of iterations (in our experiments we use 5 iterations).

5

4 Experiments

In this section, we consider the regression task and show the experimental results of our method. We
evaluate our method on both synthetic and real datasets.

4.1 Synthetic Dataset

First, we evaluate our method on a synthetic data. This data is generated from the task parameters
sampled from a known manifold (swiss roll). The data is generated by first sampling the points
from the 3-dimensional swiss roll, and then using these points as the task parameters to generate the
examples using the linear regression model. We sample 100 tasks, and for each task we generate
2 examples. The number of examples per task is kept low for two reasons. First, the task at hand
(this is linear) is a relatively easy task and more number of examples give a nearly perfect regression
model with the STL method itself, leaving almost no room for improvement. Second, MTL in the
real world makes sense only when the number of examples per task is low. In all of our experiments,
we compare our approach with the approach presented in [4] for two reasons. First, this is the
approach most closely related to our approach (this makes linear assumption while we make the
non-linear assumption), and second, code is available online2 .

In all our experiments we report the root mean square error (RMSE) [4]. For a set of 100 tasks,
taskwise results for the synthetic data is shown in Figure 2(a). In this figure, the x-axis represents
the RMSE of the STL model while the y-axis is the RMSE of the MTL model. Figure 2(a) shows
the performance of the MTL model relative to the STL model. Each point (x, y) in the figure
represents the (STL,MTL) pair. Blue dots denote the MTL performance of our method while green
crosses denote the performance of the baseline method [4]. The red line denote the points where
MTL and STL performed equally. Any point above the red line shows that the RMSE of MTL is
higher (bad case) while points below denote that RMSE of MTL is lower (good case). It is clear
from Figure 2(a) that our method is able to use the manifold information therefore outperform both
STL and MTL-baseline methods. We improve the performance of almost all tasks with respect to
STL, while MTL-baseline improves the performance of only few tasks. Note the mean performance
improvement (reduction in RMSE i.e. RMSE of (STL-MTL)) of all tasks in our method and in the
baseline-MTL. We get an improvement of +0.0131 while baseline has the negative performance
improvement of −0.0204. For the statistical significance, reported numbers are averaged over 10
runs. Hyperparameters of both models (baseline and ours (λ and γ)) were tuned on a small dataset
chosen randomly.

4.2 Real Regression Dataset

We now evaluate our method on two real datasets school dataset and computer survey dataset [14],
the same datasets as used in the baseline model [4]. Moreover they have also been used in previous
MTL studies, for example, school dataset in [5, 10] and computer dataset in [14].

Computer This dataset is a survey of 190 students who rated the likelihood of purchasing one of
20 different personal computers. Here students correspond to the tasks and computers correspond
to the examples. Each student rated all of the 20 computers on a scale of 0-10, therefore giving 20
labeled examples per task. Each computer (input example) is represented by 13 different computer
characteristics (RAM, cache, CPU, price etc.). Training and test sets were obtained by splitting the
dataset into 75% and 25%, thus giving 15 examples for training and 5 examples for testing.

School This dataset 3 is from the Inner London Education Authority and consists of the exami-
nation scores of 15362 students from 139 schools in London. Here, each school corresponds to a
task, thus a total of 139 tasks. The input consists of the year of the examination, 4 school-specific
and 3 student-specific attributes. Following [5, 4], each categorical feature is replaced with binary

2For a fair comparison, we use the code provided by the author, available at http://ttic.uchicago.
edu/˜argyriou/code/mtl_feat/mtl_feat.tar.

3Available at http://www.cmm.bristol.ac.uk/learning-training/
multilevel-m-support/datasets.shtml

6

http://ttic.uchicago.edu/~argyriou/code/mtl_feat/mtl_feat.tar
http://ttic.uchicago.edu/~argyriou/code/mtl_feat/mtl_feat.tar
http://www.cmm.bristol.ac.uk/learning-training/multilevel-m-support/datasets.shtml
http://www.cmm.bristol.ac.uk/learning-training/multilevel-m-support/datasets.shtml

0.05 0.1 0.15 0.2 0.25

0.05

0.1

0.15

0.2

0.25

n=2, T=100, AvgManifold=0.0131
AvgBaseline=−0.0204

RMSE (STL)

R
M

S
E

 (
M

T
L)

(a)

0 50 100 150 200 250
1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

Number of examples per task

A
vg

 R
M

S
E

STL

MTL−Manifold

MTL−Baseline

(b)

Figure 2: Taskwise performance on the synthetic dataset. The red line marks where STL and MTL
perform equally. Any points above it represent the tasks whose RMSE increased through the MTL
framework while those below showed performance improvement (reduced RMSE). Green crosses
are the baseline method and blue dots are the manifold method. Avg{Manifold,Baseline} in the title is
the mean performance improvement of all tasks over STL. (b) Average RMSE vs number of examples
for school dataset

1 1.5 2 2.5

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

n=15, T=190, AvgManifold=0.2302
AvgBaseline=−0.9121

RMSE (STL)

R
M

S
E

 (
M

T
L)

(a)

1 1.5 2 2.5 3 3.5 4
1

1.5

2

2.5

3

3.5

4

n=10, T=139, AvgManifold=0.1458
AvgBaseline=0.1563

RMSE (STL)

R
M

S
E

 (
M

T
L)

(b)

Figure 3: Taskwise performance on (a) computer and (b) school datasets.

features, giving us a total of 26 features. We again split the dataset into 75% training and 25%
testing.

Similar to the synthetic dataset, hyperparameters of the baseline method and manifold method (γ
and λ) were tuned on a small validation dataset picked randomly from the training set. In the
experiments, whenever we are required to use fewer number of examples, examples were chosen
randomly. In such experiments, reported numbers were averaged over 10 runs for the statistical
significance. Note that the fewer the examples, the higher the variance because of randomness. In
order to see if learning tasks simultaneously helps, we did not consider the zero value while tuning
the hyperparameters of MTL to avoid the reduction of MTL method to STL ones.

Figure 3(a) and Figure 3(b) shows the taskwise performance of the computer and school datasets
respectively. We note that for the computer dataset, we perform significantly better than both STL
and the baseline methods. The baseline method performs worse than the STL method, therefore
giving a negative average performance improvement of −0.9121. We believe that this is because
the tasks are related non-linearly. For the school dataset, we perform better than both STL and the
baseline method though relative performance improvement is not as significant as in the computer
dataset. On the school dataset, the baseline method has a mixed behavior relative to the STL method,
performing good on some tasks while performing worse on others. In both of these datasets, we
observe that our method does not cause the negative transfer i.e. causing a task to perform worse
than the STL. Although we have not used anything in our problem formulation to avoid negative
transfer, this observation is interesting. Note that almost all of the existing MTL methods suffer
from the negative transfer phenomena. We emphasize that the baseline method has two parameters

7

that are very important, the regularization parameter and the P . In our experiments we found that the
baseline method is very sensitive to both of these parameters. In order to have a fair and competitive
comparison, we used the best value of these parameters, tuned on a small validation dataset picked
randomly from the training set.

0 50 100 150 200
0.5

1

1.5

2

2.5

3

Number of tasks

A
vg

 R
M

S
E

 STL

MTL−Manifold

MTL−Baseline

(a)

0 50 100 150
1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

Number of tasks

A
vg

 R
M

S
E

STL

MTL−Manifold

MTL−Baseline

(b)

Figure 4: RMSE Vs number of tasks for (a) computer dataset (b) school dataset

Now we show the performance variation with respect to the number of training examples. Fig-
ure 2(b) shows the relative performance of the STL, MTL-baseline and MTL-Manifold for the
school dataset. We outperform STL method significantly while we perform comparative to the
baseline. Note that when the number of examples is relatively low, the baseline method outper-
forms our method because we do not have enough examples to estimate the parameters of the task
which is used for the manifold construction. But as we increase the number of examples, we get
better estimate of the parameters, hence better manifold regularization. For n > 100 we outperform
the baseline method by a small amount. Variation of the performance with n is not shown for the
computer dataset because computer dataset has only 20 examples per task.

Performance variation with respect to the number of tasks for school and computer datasets is shown
in Figure 4. We outperform STL method and the baseline method for the computer dataset while
perform better/equal on the school dataset. These two plots indicate how the tasks are related in these
two datasets. It suggests that tasks in school datasets are related linearly (Manifold and baseline
methods have the same performance 4) while tasks in the computer dataset are related non-linearly,
which is why baseline method performs poor compared to the STL method. Both datasets exhibit the
different behavior as we increase the number of tasks, though behavior relative to the STL method
remains constant. This suggests that after a certain number of tasks, performance is not affected by
adding more tasks. This is especially true for the computer dataset since it only has 13 features and
only a few tasks are required to learn the task relatedness structure.

In summary, our method improves the performance over STL in all of these datasets (no negative
transfer), while baseline method performs comparatively on the school dataset and performs worse
on the computer dataset.

5 Conclusion

We have presented a novel method for multitask learning based on a natural and intuitive assumption
about the task relatedness. We have used the manifold assumption to enforce the task relatedness
which is a generalization of the previous notions of relatedness. Unlike many other previous ap-
proaches, our method does not require any other external information e.g. function/matrix other
than the manifold assumption. We have performed experiments on synthetic and real datasets, and
compared our results with the state-of-the-art method. We have shown that we outperform the base-
line method in nearly all cases. We emphasize that unlike the baseline method, we improve over
single task learning in almost all cases and do not encounter the negative transfer.

4In the ideal case, the non-linear method should be able to discover the linear structure. But in practice,
they might differ, especially when there are fewer number of tasks. This is the reason we perform equal on the
school dataset when the number of tasks is high.

8

References
[1] A. Argyriou, T. Evgeniou, and M. Pontil. Multi-task feature learning. In NIPS ’06, 2006.
[2] A. Argyriou, T. Evgeniou, M. Pontil, A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-

task feature learning. In Machine Learning. press, 2007.
[3] A. Argyriou, C. A. Micchelli, and M. Pontil. When is there a representer theorem? vector

versus matrix regularizers. J. Mach. Learn. Res., 10:2507–2529, 2009.
[4] A. Argyriou, C. A. Micchelli, M. Pontil, and Y. Ying. A spectral regularization framework for

multi-task structure learning. In NIPS ’08. 2008.
[5] B. Bakker and T. Heskes. Task clustering and gating for bayesian multitask learning. JMLR,

4:2003, 2003.
[6] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data repre-

sentation. Neural Computation, 15:1373–1396, 2002.
[7] M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for

learning from labeled and unlabeled examples. J. Mach. Learn. Res., 7:2399–2434, 2006.
[8] R. Caruana. Multitask learning. In Machine Learning, pages 41–75, 1997.
[9] H. Daumé III. Bayesian multitask learning with latent hierarchies. In Conference on Uncer-

tainty in Artificial Intelligence ’09, Montreal, Canada, 2009.
[10] T. Evgeniou, C. A. Micchelli, and M. Pontil. Learning multiple tasks with kernel methods.

JMLR, 6:615–637, 2005.
[11] S. Gerber, T. Tasdizen, and R. Whitaker. Dimensionality reduction and principal surfaces via

kernel map manifolds. In In Proceedings of the 2009 International Conference on Computer
Vison (ICCV), 2009.

[12] T. Hastie. Principal curves and surfaces. PhD thesis, Stanford University, 1984.
[13] L. Jacob, F. Bach, and J.-P. Vert. Clustered multi-task learning: A convex formulation. In NIPS

’08, 2008.
[14] P. J. Lenk, W. S. DeSarbo, P. E. Green, and M. R. Young. Hierarchical bayes conjoint anal-

ysis: Recovery of partworth heterogeneity from reduced experimental designs. MARKETING
SCIENCE, 1996.

[15] Q. Liu, X. Liao, H. L. Carin, J. R. Stack, and L. Carin. Semisupervised multitask learning.
IEEE 2009, 2009.

[16] C. A. Micchelli and M. Pontil. Regularized multi-task learning. In KDD 2004, pages 109–117,
2004.

[17] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding.
Science, 290(5500):2323–2326, December 2000.

[18] J. B. Tenenbaum, V. Silva, and J. C. Langford. A global geometric framework for nonlinear
dimensionality reduction. Science, 290(5500):2319–2323, December 2000.

[19] S. Thrun and L. Pratt, editors. Learning to learn. Kluwer Academic Publishers, Norwell, MA,
USA, 1998.

[20] K. Q. Weinberger, F. Sha, and L. K. Saul. Learning a kernel matrix for nonlinear dimensionality
reduction. In In ICML 2004, pages 839–846. ACM Press, 2004.

[21] Y. Xue, X. Liao, L. Carin, and B. Krishnapuram. Multi-task learning for classification with
dirichlet process priors. J. Mach. Learn. Res., 8:35–63, 2007.

[22] K. Yu, V. Tresp, and A. Schwaighofer. Learning gaussian processes from multiple tasks. In
ICML ’05, 2005.

[23] J. Zhang, Z. Ghahramani, and Y. Yang. Flexible latent variable models for multi-task learning.
Mach. Learn., 73(3):221–242, 2008.

[24] J. Zhang, J. Zhang, Y. Yang, Z. Ghahramani, and Y. Yang. Learning multiple related tasks
using latent independent component analysis. In NIPS ’05, 2005.

9

