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Abstract

We propose a general framework to online learning for classification problems
with time-varying potential functions in the adversarial setting. This framework
allows to design and prove relative mistake bounds for any generic loss function.
The mistake bounds can be specialized for the hinge loss, allowing to recover and
improve the bounds of known online classification algorithms. By optimizing the
general bound we derive a new online classification algorithm, called NAROW,
that hybridly uses adaptive- and fixed- second order information. We analyze the
properties of the algorithm and illustrate its performance using synthetic dataset.

1 Introduction

Linear discriminative online algorithms have been shown to perform very well on binary and mul-
ticlass labeling problems [10, 6, 14, 3]. These algorithms work in rounds, where at each round a
new instance is given and the algorithm makes a prediction. After the true class of the instance is
revealed, the learning algorithm updates its internal hypothesis. Often, such update is taking place
only on rounds where the online algorithm makes a prediction mistake or when the confidence in
the prediction is not sufficient. The aim of the classifier is to minimize the cumulative loss it suffers
due to its prediction, such as the total number of mistakes.

Until few years ago, most of these algorithms were using only first-order information of the in-
put features. Recently [1, 8, 4, 12, 5, 9], researchers proposed to improve online learning algo-
rithms by incorporating second order information. Specifically, the Second-Order-Perceptron (SOP)
proposed by Cesa-Bianchi et al. [1] builds on the famous Perceptron algorithm with an additional
data-dependent time-varying “whitening” step. Confidence weighted learning (CW) [8, 4] and the
adaptive regularization of weights algorithm (AROW) [5] are motivated from an alternative view:
maintaining confidence in the weights of the linear models maintained by the algorithm. Both CW
and AROW use the input data to modify the weights as well and the confidence in them. CW and
AROW are motivated from the specific properties of natural-language-precessing (NLP) data and
indeed were shown to perform very well in practice, and on NLP problems in particular. However,
the theoretical foundations of this empirical success were not known, especially when using only
the diagonal elements of the second order information matrix. Filling this gap is one contribution of
this paper.

In this paper we extend and generalizes the framework for deriving algorithms and analyzing them
through a potential function [2]. Our framework contains as a special case the second order Percep-
tron and a (variant of) AROW. While it can also be used to derive new algorithms based on other
loss functions.

For carefully designed algorithms, it is possible to bound the cumulative loss on any sequence of
samples, even adversarially chosen [2]. In particular, many of the recent analyses are based on the
online convex optimization framework, that focuses on minimizing the sum of convex functions.
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Two common view-points for online convex optimization are of regularization [15] or primal-dual
progress [16, 17, 13]. Recently new bounds have been proposed for time-varying regularizations
in [18, 9], focusing on the general case of regression problems. The proof technique derived from
our framework extends the work of Kakade et al. [13] to support time varying potential functions.
We also show how the use of widely used classification losses, as the hinge loss, allows us to derive
new powerful mistake bounds superior to existing bounds. Moreover the framework introduced
supports the design of aggressive algorithms, i.e. algorithms that update their hypothesis not only
when they make a prediction mistake.

Finally, current second order algorithms suffer from a common problem. All these algorithms main-
tain the cumulative second-moment of the input features, and its inverse, qualitatively speaking, is
used as a learning rate. Thus, if there is a single feature with large second-moment in the prefix of the
input sequence, its effective learning rate would drop to a relatively low value, and the learning algo-
rithm will take more time to update its value. When the instances are ordered such that the value of
this feature seems to be correlated with the target label, such algorithms will set the value of weight
corresponding to this feature to a wrong value and will decrease its associated learning rate to a low
value. This combination makes it hard to recover from the wrong value set to the weight associated
with this feature. Our final contribution is a new algorithm that adapts the way the second order
information is used. We call this algorithm Narrow Adaptive Regularization Of Weights (NAROW).
Intuitively, it interpolates its update rule from adaptive-second-order-information to fixed-second-
order-information, to have a narrower decrease of the learning rate for common appearing features.
We derive a bound for this algorithm and illustrate its properties using synthetic data simulations.

2 Online Learning for Classification

We work in the online binary classification scenario where learning algorithms work in rounds.
At each round t, an instance xt ∈ Rd is presented to the algorithm, which then predicts a label
ŷt ∈ {−1,+1}. Then, the correct label yt is revealed, and the algorithm may modify its hypothesis.
The aim of the online learning algorithm is to make as few mistakes as possible (on any sequence
of samples/labels {(xt, yt)}Tt=1). In this paper we focus on linear prediction functions of the form
ŷt = sign(w>t xt).

We strive to design online learning algorithms for which it is possible to prove a relative mistakes
bound or a loss bound. Typical such analysis bounds the cumulative loss the algorithm suffers,∑T
t=1 `(wt,xt, yt), with the cumulative loss of any classifier u plus an additional penalty called

the regret, R(u) +
∑T
t=1 `(u,xt, yt). Given that we focus on classification, we are more interested

in relative mistakes bound, where we bound the number of mistakes of the learner with R(u) +∑T
t=1 `(u,xt, yt). Since the classifier u is arbitrary, we can choose, in particular, the best classifier

that can be found in hindsight given all the samples. Often R(·) depends on a function measuring
the complexity of u and the number of samples T , and ` is a non-negative loss function. Usually `
is chosen to be a convex upper bound of the 0/1 loss. We will also denote by `t(u) = `(u,xt, yt).

In the following we denote byM to be the set of round indexes for which the algorithm performed a
mistake. We assume that the algorithm always update if it rules in such events. Similarly, we denote
by U the set of the margin error rounds, that is, rounds in which the algorithm updates its hypothesis
and the prediction is correct, but the loss `t(wt) is different from zero. Their cardinality will be
indicated with M and U respectively. Formally, M = {t : sign(w>t xt) 6= yt & wt 6= wt+1},
and U = {t : sign(w>t xt) = yt & wt 6= wt+1}. An algorithm that updates its hypothesis only on
mistake rounds is called conservative (e.g. [3]). Following previous naming convention [3], we call
aggressive an algorithm that updates is rule on rounds for which the loss `t(wt) is different from
zero, even if its prediction was correct.

We define now few basic concepts from convex analysis that will be used in the paper. Given a
convex function f : X → R, its sub-gradient ∂f(v) at v satisfies: ∀u ∈ X, f(u) − f(v) ≥ (u −
v) ·∂f(v). The Fenchel conjugate of f , f∗ : S → R, is defined by f∗(u) = supv∈S

(
v ·u−f(v)

)
.

A differentiable function f : X→ R is β-strongly convex w.r.t. a norm ‖ · ‖ if for any u,v ∈ S and
α ∈ (0, 1), h(αu+ (1− α)v) ≤ αf(u) + (1− α)f(v)− β

2α(1− α) ‖u− v‖2. Strong convexity
turns out to be a key property to design online learning algorithms.
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3 General Algorithm and Analysis

We now introduce a general framework to design online learning algorithms and a general lemma
which serves as a general tool to prove their relative regret bounds. Our algorithm builds on previous
algorithms for online convex programming with a one significant difference. Instead of using a fixed
link function as first order algorithms, we allow a sequence of link functions ft(·), one for each time
t. In a nutshell, the algorithm maintains a weight vector θt. Given a new examples it uses the current
link function ft to compute a prediction weight vector wt. After the target label is received it sets
the new weight θt+1 to be the sum of θt and minus the gradient of the loss at wt. The algorithm is
summarized in Fig. 1.

The following lemma is a generalization of Corollary 7 in [13] and Corollary 3 in [9], for online
learning. All the proofs can be found in the Appendix.
Lemma 1. Let ft, t = 1, . . . , T be βt-strongly convex functions with respect to the norms
‖ · ‖f1 , . . . , ‖ · ‖fT over a set S and let ‖ · ‖f∗i be the respective dual norms. Let f0(0) = 0,
and x1, . . . ,xT be an arbitrary sequence of vectors in Rd. Assume that algorithm in Fig. 1 is run
on this sequence with the functions fi. Then, for any u ∈ S, and any λ > 0 we have

T∑
t=1

ηtz
>
t

(
1

λ
wt − u

)
≤ fT (λu)

λ
+

T∑
t=1

(
η2t ‖zt‖2f∗t

2λβt
+

1

λ
(f∗t (θt)− f∗t−1(θt))

)
.

This Lemma can appear difficult to interpret, but we now show that it is straightforward to use
the lemma to recover known bounds of different online learning algorithms. In particular we
can state the following Corollary that holds for any convex loss ` that upper bounds the 0/1 loss.

1: Input: A series of strongly convex
functions f1, . . . , fT .

2: Initialize: θ1 = 0
3: for t = 1, 2, . . . , T do
4: Receive xt

5: Setwt = ∇f∗t (θt)
6: Predict ŷt = sign(w>t xt)
7: Receive yt
8: if `t(wt) > 0 then
9: zt = ∂`t(wt)

10: θt+1 = θt − ηtzt
11: else
12: θt+1 = θt
13: end if
14: end for

Figure 1: Prediction algorithm

Corollary 1. Define B =
∑T
t=1(f∗t (θt)− f∗t−1(θt)). Under

the hypothesis of Lemma 1, if ` is convex and it upper bounds
the 0/1 loss, and ηt = η, then for any u ∈ S the algorithm
in Fig. 1 has the following bound on the maximum number of
mistakes M ,

M ≤
T∑
t=1

`t(u) +
fT (u)

η
+ η

T∑
t=1

‖zt‖2f∗t
2βt

+
B

η
. (1)

Moreover if ft(x) ≤ ft+1(x),∀x ∈ S, t = 0, . . . , T −1 then
B ≤ 0.

A similar bound has been recently presented in [9] as a re-
gret bound. Yet, there are two differences. First, our analysis
bounds the number of mistakes, a more natural quantity in
classification setting, rather than of a general loss function.
Second, we retain the additional term B which may be nega-
tive, and thus possibly provide a better bound. Moreover, to

choose the optimal tuning of η we should know quantities that are unknown to the learner. We could
use adaptive regularization methods, as the one proposed in [16, 18], but in this way we would lose
the possibility to prove mistake bounds for second order algorithms, like the ones in [1, 5]. In the
next Section we show how to obtain bounds with an automatic tuning, using additional assumption-
ion on the loss function.

3.1 Better bounds for linear losses

The hinge loss, `(u,xt, yt) = max(1 − ytu>xt, 0), is a very popular evaluation metric in classi-
fication. It has been used, for example, in Support Vector Machines [7] as well as in many online
learning algorithms [3]. It has also been extended to the multiclass case [3]. Often mistake bounds
are expressed in terms of the hinge loss. One reason is that it is a tighter upper bound of the 0/1 loss
compared to other losses, as the squared hinge loss. However, this loss is particularly interesting for
us, because it allows an automatic tuning of the bound in (1). In particular it is easy to verify that it
satisfies the following condition

`(u,xt, yt) ≥ 1 + u>∂`t(wt), ∀u ∈ S,wt : `t(wt) > 0 . (2)
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Thanks to this condition we can state the following Corollary for any loss satisfying (2).
Corollary 2. Under the hypothesis of Lemma 1, if fT (λu) ≤ λ2fT (u), and ` satisfies (2), then for
any u ∈ S, and any λ > 0 we have∑

t∈M∪U
ηt ≤ L+ λfT (u) +

1

λ

(
B +

∑
t∈M∪U

(
η2t
2βt
‖zt‖2f∗t − ηtw

>
t zt

))
,

where L =
∑
t∈M∪U ηt`t(u), and B =

∑T
t=1(f∗t (θt) − f∗t−1(θt)). In particular, choosing the

optimal λ, we obtain∑
t∈M∪U

ηt ≤ L+
√

2fT (u)

√√√√2B +
∑

t∈M∪U

(
η2t
βt
‖zt‖2f∗t − 2ηtw>t zt

)
. (3)

The intuition and motivation behind this Corollary is that a classification algorithm should be inde-
pendent of the particular scaling of the hyperplane. In other words,wt and αwt (with α > 0) make
exactly the same predictions, because only the sign of the prediction matters. Exactly this indepen-
dence in a scale factor allows us to improve the mistake bound (1) to the bound of (3). Hence, when
(2) holds, the update of the algorithm becomes somehow independent from the scale factor, and we
have the better bound. Finally, note that when the hinge loss is used, the vector θt is updated as in
an aggressive version of the Perceptron algorithm, with a possible variable learning rate.

4 New Bounds for Existing Algorithms

We now show the versatility of our framework, proving better bounds for some known first order
and second order algorithms.

4.1 An Aggressive p-norm Algorithm

We can use the algorithm in Fig. 1 to obtain an aggressive version of the p-norm algorithm [11]. Set
ft(u) = 1

2(q−1)‖u‖
2
q , that is 1-strongly convex w.r.t. the norm ‖ · ‖q . The dual norm of ‖ · ‖q is

‖ · ‖p, where 1/p + 1/q = 1. Moreover set ηt = 1 in mistake error rounds, so using the second
bound of Corollary 2, and defining R such that ‖xt‖2p ≤ R2, we have

M ≤ L+

√
‖u‖2q
q − 1

√ ∑
t∈M∪U

(
η2t ‖xt‖2p + 2ηtytw>t xt

)
−
∑
t∈U

ηt

≤ L+

√
‖u‖2q
q − 1

√
MR2 +

∑
t∈U

(
η2t ‖xt‖2p + 2ηtytw>t xt

)
−
∑
t∈U

ηt .

Solving for M we have

M ≤ L+
1

2(q − 1)
‖u‖2qR2 +R

‖u‖q√
q − 1

√
1

4(q − 1)
‖u‖2qR2 + L+D −

∑
t∈U

ηt, (4)

where L =
∑
t∈M∪U ηt`t(u), and D =

∑
t∈U

(
η2t ‖xt‖2p+2ηtytw

>
t xt

R2 − ηt
)

. We have still the

freedom to set ηt in margin error rounds. If we set ηt = 0, the algorithm of Fig. 1 becomes the
p-norm algorithm and we recover its best bound [11]. However if 0 ≤ ηt ≤ min

(
R2−2ytw>t xt

‖xt‖2p
, 1
)

we have thatD is negative, and L ≤
∑
t∈M∪U `t(u). Hence the aggressive updates gives us a better

bound, thanks to last term that is subtracted to the bound.

In the particular case of p = q = 2 we recover the Perceptron algorithm. In particular the minimum
of D, under the constraint ηt ≤ 1, can be found setting ηt = min

(
R2/2−ytw>t xt

‖xt‖2 , 1
)

. If R is equal

to
√

2, we recover the PA-I update rule, when C = 1. However note that the mistake bound in (4) is
better than the one proved for PA-I in [3] and the ones in [16]. Hence the bound (4) provides the first
theoretical justification to the good performance of the PA-I, and it can be seen as a general evidence
supporting the aggressive updates versus the conservative ones.
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4.2 Second Order Algorithms

Figure 2: NLP Data: the number of
words vs. the word-rank on two sen-
timent data sets.

We show now how to derive in a simple way the bound of the
SOP [1] and the one of AROW [5]. Set ft(x) = 1

2x
>Atx,

where At = At−1 +
xtx

>
t

r , r > 0 and A0 = I . The functions
ft are 1-strongly convex w.r.t. the norms ‖x‖2ft = x>Atx.
The dual functions of ft(x), f∗t (x), are equal to 1

2x
>A−1t x,

while ‖x‖2f∗t is x>A−1t x. Denote by χt = x>t A
−1
t−1xt and

mt = ytx
>
t A
−1
t−1θt. With these definitions it easy to see

that the conservative version of the algorithm corresponds di-
rectly to SOP. The aggressive version corresponds to AROW,
with a minor difference. In fact, the prediction of the algo-
rithm in Fig. 1 specialized in this case is ytw>t xt = mt

r
r+χt

,
on the other hand AROW predicts with mt. The sign of the
predictions is the same, but here the aggressive version is up-
dating when mt

r
r+χt

≤ 1, while AROW updates if mt ≤ 1.

To derive the bound, observe that using Woodbury matrix

identity we have f∗t (θt) − f∗t−1(θt) = − (x>t A
−1
t−1θt)

2

2(r+x>t A
−1
t−1xt)

= − m2
t

2(r+χt)
. Using the second bound

in Corollary 2, and setting ηt = 1 we have

M + U ≤ L+
√
u>ATu

√√√√ ∑
t∈M∪U

(
x>t A

−1
t xt + 2ytw>t xt −

m2
t

r + χt

)

≤ L+

√
‖u‖2 +

1

r

∑
t∈M∪U

(u>xt)2

√√√√r log(det(AT )) +
∑

t∈M∪U

(
2ytw>t xt −

m2
t

r + χt

)

≤ L+

√
r‖u‖2 +

∑
t∈M∪U

(u>xt)2

√
log(det(AT )) +

∑
t∈M∪U

mt(2r −mt)

r(r + χt)
.

This bound recovers the SOP’s one in the conservative case, and improves slightly the one of AROW
for the aggressive case. It would be possible to improve the AROW bound even more, setting ηt to a
value different from 1 in margin error rounds. We leave the details for a longer version of this paper.

4.3 Diagonal updates for AROW

Both CW and AROW has an efficient version that use diagonal matrices instead of full ones. In this
case the complexity of the algorithm becomes linear in dimension. Here we prove a mistake bound
for the diagonal version of AROW, using Corollary 2. We denote Dt = diag{At}, where At is
defined as in SOP and AROW, and ft(x) = 1

2x
>Dtx. Setting ηt = 1, and using the second bound

in Corollary 2 and Lemma 12 in [9], we have1

M + U ≤
∑

t∈M∪U
`t(u) +

√√√√uTDTu

(
r

d∑
i=1

log

(∑
t∈M∪U x

2
t,i

r
+ 1

)
+ 2U

)

=
∑

t∈M∪U
`t(u) +

√√√√‖u‖2 +
1

r

d∑
i=1

u2
i

∑
t∈M∪U

x2
t,i

√√√√r

d∑
i=1

log

(∑
t∈M∪U x

2
t,i

r
+ 1

)
+ 2U .

The presence of a mistake bound allows us to theoretically analyze the cases where this algorithm
could be advantageous respect to a simple Perceptron. In particular, for NLP data the features are
binary and it is often the case that most of the features are zero most of the time. On the other hand,

1We did not optimize the constant multiplying U in the bound.
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these “rare” features are usually the most informative ones (e.g. [8]). Fig. 2 shows the number of
times each feature (word) appears in two sentiment datasets vs the word rank. Clearly there are few
very frequent words and many rate words. These exact properties were used to originally derive the
CW algorithm. Our analysis justifies this derivation. Concretely, the above considerations leads us
to think that the optimal hyperplane u will be such that

d∑
i=1

u2
i

∑
t∈M∪U

x2
t,i ≈

∑
i∈I

u2
i

∑
t∈M∪U

x2
t,i ≤

∑
i∈I

u2
i s ≈ s‖u‖2

where I is the set of the informative and rare features and s is the maximum number of times these
features appear in the sequence. In general each time that

∑d
i=1 u

2
i

∑
t∈M∪U x

2
t,i ≤ s‖u‖2 with

s small enough, it is possible to show that, with an optimal tuning of r, this bound is better of the
Perceptron’s one. In particular, using a proof similar to the one in [1], in the conservative version of
this algorithm, it is enough to have s < MR2

2d , and to set r = sMR2

MR2−2sd .

5 A New Adaptive Second Order Algorithm

We now introduce a new algorithm with an update rule that interpolates from adaptive-second-order-
information to fixed-second-order-information. We start from the first bound in Corollary 2. We set
ft(x) = 1

2x
>Atx, whereAt = At−1+

xtx
>
t

rt
, andA0 = I . This is similar to the regularization used

in AROW and SOP, but here we have rt > 0 changing over time. Again, denote χt = x>t A
−1
t−1xt,

and set ηt = 1. With this choices, we obtain the bound

M + U ≤
∑

t∈M∪U
`t(u) +

λ‖u‖2

2
+

∑
t∈M∪U

(
λ(u>xt)

2

2rt
+

χtrt
2λ(rt + χt)

− mt(2rt −mt)

2λ(rt + χt)

)
,

that holds for any λ > 0 and any choice of rt > 0. We would like to choose rt at each step to
minimize the bound, in particular to have a small value of the sum λ(u>xt)

2

rt
+ χtrt

λ(rt+χt)
. Altough

we do not know the values of (u>xt)
2 and λ, still we can have a good trade-off setting rt = χt

bχt−1
when χt ≥ 1

b and rt = +∞ otherwise. Here b is a parameter. With this choice we have that
χtrt
rt+χt

= 1
b , and (u>xt)

2

rt
= χt(u

>xt)
2b

rt+χt
, when χt ≥ 1

b . Hence we have

M + U − λ‖u‖2

2
−

∑
t∈M∪U

`t(u)

≤
∑

t:bχt>1

(
λbχt(u

>xt)
2

2(rt + χt)
+

1

2λb

)
+

1

2λ

∑
t:bχt≤1

χt −
∑

t∈M∪U

mt(2rt −mt)

2λ(rt + χt)

≤ λb
∑

t:bχt>1

χt‖u‖2R2

2(rt + χt)
+

1

2λ

∑
t∈M∪U

min

(
1

b
, χt

)
−

∑
t∈M∪U

mt(2rt −mt)

2λ(rt + χt)

≤ 1

2
λbR2‖u‖2 log det(AT ) +

1

2λ

∑
t∈M∪U

min

(
1

b
, χt

)
−

∑
t∈M∪U

mt(2rt −mt)

2λ(rt + χt)
,

where in the last inequality we used an extension of Lemma 4 in [5] to varying values of rt. Tuning
λ we have

M + U ≤
∑

t∈M∪U
`t(u) + ‖u‖R

√
1

bR2
+ log det(AT )

√ ∑
t∈M∪U

(
min (1, bχt)−

bmt(2rt −mt)

rt + χt

)
.

This algorithm interpolates between a second order algorithm with adaptive second order informa-
tion, like AROW, and one with a fixed second order information. Even the bound is in between
these two worlds. In particular the matrix At is updated only if χt ≥ 1

b , preventing its eigenvalues
from growing too much, as in AROW/SOP. We thus call this algorithm NAROW, since its is a new
adaptive algorithm, which narrows the range of possible eigenvalues of the matrix At. We illustrate
empirically its properties in the next section.
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Figure 3: Top: Four sequences used for training, the colors represents the ordering in the sequence from blue
to yellow, to red. Middle: cumulative number of mistakes of four algorithms on data with no labels noise.
Bottom: results when training using data with 10% label-noise.

6 Experiments

We illustrate the characteristics of our algorithm NAROW using a synthetic data generated in a
similar manner of previous work [4]. We repeat its properties for completeness. We generated 5, 000
points in R20 where the first two coordinates were drawn from a 45◦ rotated Gaussian distribution
with standard deviation 1 and 10. The remaining 18 coordinates were drawn from independent
Gaussian distributions N (0, 8.5). Each point’s label depended on the first two coordinates using
a separator parallel to the long axis of the ellipsoid, yielding a linearly separable set. Finally, we
ordered the training set in four different ways: from easy examples to hard examples (measured by
the signed distance to the separating-hyperplane), from hard examples to easy examples, ordered by
their signed value of the first feature, and by the signed value of the third (noisy) feature - that is by
xi × y for i = 1 and i = 3 - respectively. An illustration of these ordering appears in the top row of
Fig. 3, the colors code the ordering of points from blue via yellow to red (last points). We evaluated
four algorithms: version I of the passive-aggressive (PA-I) algorithm [3], AROW [5], AdaGrad [9]
and NAROW. All algorithms, except AdaGrad, have one parameter to be tuned, while AdaGrad has
two. These parameters were chosen on a single random set, and the plots summarizes the results
averaged over 100 repetitions.

The second row of Fig. 3 summarizes the cumulative number of mistakes averaged over 100 repe-
titions and the third row shows the cumulative number of mistakes where 10% artificial label noise
was used. (Mistakes are counted using the unnoisy labels.)

Focusing on the left plot, we observe that all the second order algorithms outperform the single
first order algorithm - PA-I. All algorithms make few mistakes when receiving the first half of the
data - the easy examples. Then all algorithms start to make more mistakes - PA-I the most, then
AdaGrad and closely following NAROW, and AROW the least. In other words, AROW was able to
converge faster to the target separating hyperplane just using “easy” examples which are far from
the separating hyperplane, then NAROW and AdaGrad, with PA-I being the worst in this aspect.

The second plot from the left, showing the results for ordering the examples from hard to easy. All
algorithms follow a general trend of making mistakes in a linear rate and then stop making mistakes
when the data is easy and there are many possible classifiers that can predict correctly. Clearly,
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AROW and NAROW stop making mistakes first, then AdaGrad and PA-I last. A similar trend can
be found in the noisy dataset, with each algorithm making relatively more mistakes.

The third and fourth columns tell a similar story, although the plots in the third column summarize
results when the instances are ordered using the first feature (which is informative with the second)
and the plots in the fourth column summarize when the instances are ordered using the third unin-
formative feature. In both cases, all algorithms do not make many mistakes in the beginning, then at
some point, close to the middle of the input sequence, they start making many mistakes for a while,
and then they converge. In terms of total performance: PA-I makes more mistakes, then AdaGrad,
AROW and NAROW. However, NAROW starts to make many mistakes before the other algorithms
and takes more “examples” to converge until it stopped making mistakes. This phenomena is further
shown in the bottom plots where label noise is injected.

We hypothesize that this relation is due to the fact that NAROW does not let the eigenvalues of the
matrix A to grow unbounded. Since its inverse is proportional to the effective learning rate, it means
that it does not allow the learning rate to drop too low as opposed to AROW and even to some extent
AdaGrad.

7 Conclusion
We presented a framework for online convex classification, specializing it for particular losses, as the
hinge loss. This general tool allows to design theoretical motivated online classification algorithms
and to prove their relative mistake bound. In particular it supports the analysis of aggressive updates.
Our framework also provided a missing bound for AROW for diagonal matrices. We have shown
its utility proving better bounds for known online algorithms, and proposing a new algorithm, called
NAROW. This is a hybrid between adaptive second order algorithms, like AROW and SOP, and a
static second order one. We have validated it using synthetic datasets, showing its robustness to the
malicious orderings of the sample, comparing it with other state-of-art algorithms. Future work will
focus on exploring the new possibilities offered by our framework and on testing NAROW on real
world data.
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A Appendix
Proof of Lemma 1. Define by f∗t the Fenchel dual of ft, and ∆t = f∗t (θt+1) − f∗t−1(θt). We have∑T
t=1 ∆t = f∗T (θT+1)− f∗0 (θ1) = f∗T (θT+1). Moreover we have that ∆t = f∗t (θt+1)− f∗t (θt) +

f∗t (θt)− f∗t−1(θt) ≤ f∗t (θt)− f∗t−1(θt)− ηtz>t ∇f∗t (θt) +
η2t
2βt
‖zt‖2f∗t , where we used Theorem 6

in [13]. Moreover using the Fenchel-Young inequality, we have that 1
λ

∑T
t=1 ∆t = 1

λf
∗
T (θT+1) ≥

u>θT+1 − 1
λfT (λu) = −

∑T
t=1 ηtu

>zt − 1
λfT (λu). Hence putting all togheter we have

−
T∑
t=1

ηtu
>zt −

1

λ
fT (λu) ≤ 1

λ

T∑
t=1

∆t ≤
1

λ

T∑
t=1

(f∗t (θt)− f∗t−1(θt)− ηtw>t zt +
η2t
2βt
‖zt‖2f∗t ),

where we used the definition of wt in Algorithm 1.

Proof of Corollary 1. By convexity, `(wt,xt, yt) − `(u,xt, yt) ≤ z>t (wt − u), so setting λ = 1
in Lemma 1 we have the stated bound. For the additional statement, using Lemma 12 in [16] and
ft(x) ≤ ft+1(x) we have that f∗t (x) ≥ f∗t+1(x), so B ≤ 0. The additional statement on B is
proved using Lemma 12 in [16]. Using it, we have that ft(x) ≤ ft+1(x) implies that f∗t (x) ≥
f∗t+1(x), so we have that B ≤ 0.

Proof of Corollary 2. Lemma 1, the condition on the loss (2), and the hypothesis on fT gives us
T∑
t=1

ηt(1− `t(u)) ≤ −
T∑
t=1

ηtu
>zt ≤ λfT (u) +

1

λ

T∑
t=1

(
η2t ‖zt‖2f∗t

2βt
+B − ηtz>t wt

)
.

Note that λ is free, so choosing its optimal value we get the second bound.
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