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Abstract

A method for computing the rarity of latent fingerprints regented by minutiae
is given. It allows determining the probability of finding aatah for an evidence
print in a database of known prints. The probability of random correspondence
between evidence and database is determined in three pratateps. In the
registration steghe latent print is aligned by finding its core point; whictdsne
using a procedure based on a machine learning approach tageaussian pro-
cesses. In thevidence probability evaluation stepgenerative model based on
Bayesian networks is used to determine the probability efevidence; it takes
into account both the dependency of each minutia on nearbytiag and the
confidence of their presence in the evidence. Irstecific probability of random
correspondence steajpe evidence probability is used to determine the prokgbili
of match among for a given tolerance; the last evaluation is similar to ththb
day correspondence probability for a specific birthday. @eeerative model is
validated using a goodness-of-fit test evaluated with adstahdatabase of finger-
prints. The probability of random correspondence for ssEviatent fingerprints
are evaluated for varying numbers of minutiae.

1 Introduction

In many forensic domains it is necessary to characterizeltigeee to which a given piece of ev-
idence is unique. For instance in the case of DNA a probghitidtement is made after a match
has been confirmed between the evidence and the known, thabh#émce that a randomly selected
person would have the same DNA pattern is 1 in 24,000,000 wisi@ description of rarity of
the evidence/known [1]. In the case of fingerprint evideregd is uncertainty at two levels: the
similarity between the evidence and the known and the rafityhe known. This paper explores
the evaluation of the rarity of a fingerprint as charactetiag a given set of features. Recent court
challenges have highlighted the need for statistical rebezn this problem especially if it is stated
that a high degree of similarity is present between the eideand the known [2].

A statistical measure of the weight of evidence in forensica likelihood ratio (LR) defined as
follows [3]. It is the ratio between the joint probabilityaththe evidence and known come from the
same source, and the joint probability that the two come twadifferent sources. If the underlying
distributions are Gaussian the LR can be simplified as thdymtoof two exponential factors: the
first is a significance test of the null hypothesis of identityd the second measures rarity. Since
evaluation of the joint probability is difficult for fingerimts, which are characterized by variable sets
of minutia points with each point itself expressed as a 3etapspatial co-ordinates and an angle, the
LR computation is usually replaced by one wherein a sintyigor kernel) function is introduced
between the evidence and the known and the likelihood raticomputed for the similarity [4,
5]. While such efforts concern the significance of the nulldtyesis of identity, fingerprint rarity
continues to be a difficult problem and has never been sol¥éis paper describes a systematic
approach for the computation of the rarity of fingerprintairobust and reliable manner.



The process involves several individual steps. Due to mgrguality of fingerprints collected from
the crime scene, called latent prints, a registration E®d¢e needed to determine which area of
finger skin the print comes from; Section 2 describes the i€aassian processes to predict core
points by which prints can be aligned. In Section 3 a genaratiodel based on Bayesian networks
is proposed to model the distribution of minutiae as welllees dependencies between them. To
measure rarity, a metric for assessing the probability nfloan correspondence of a specific print
againstn samples is defined in Section 4. The model is validated usiggoainess-of-fit test in
Section 5. Some examples of evaluation of rarity are givedeiction 6.

2 Fingerprint Registration

The fingerprint collected from the crime scene is usually@ésmall portion of the complete fin-
gerprint. So the feature set extracted from the print onlyta@ios relative spatial relationship. It's
obvious that feature sets with same relative spatial oalatiip can lead to different rarity if they
come from the different areas of the fingertip. To solve thabpem, we first predict the core points
and then align the fingerprints by overlapping their corentsoiln biometrics and fingerprint anal-
ysis, core point refers to the center area of a fingerprintpractice, the core point corresponds
to the center of the north most loop type singularity. Fordipgints that do not contain loop or
whorl singularities, the core is usually associated withghint of maxima ridge line curvature[6].
The most popular approaches proposed for core point deteigtithe Poincare Index (PI) which
is developed by [7, 8, 9]. Another commonly used method [$Q] sine map based method that
is realized by multi-resolution analysis. The methods Base Fourier expansion[11], fingerprint
structures [12] and multi-scale analysis [13] are also psep. All of these methods require that the
fingerprints are complete and the core points can be seer ipriits. But this is not the case for
all the fingerprints. Latent prints are usually small pagidnts and do not contain core points. So
there’s no way to detect them by above computational visaset approaches.

We proposes a core point prediction approach that turnsptioislem into a regression problem.
Since the ridge flow directions reveal the intrinsic feasupéridge topologies, and thus have crit-
ical impact on core point prediction. The orientation mapes #sed to predict the core points. A
fingerprint field orientation map is defined as a collectiortved-dimensional direction fields. It
represents the directions of ridge flows in regular spacasgrThe gradients of gray intensity
of enhanced fingerprints are estimated to obtain reliallgeriorientation [9]. Given an orienta-
tion map of a fingerprint, the core point is predicted usingi€san processes. Gaussian processes
dispense with the parametric model and instead define a Ipitipalistribution over functions di-
rectly. It provides more flexibility and better predictiohhe advantage of Gaussian process model
also comes from the probabilistic formulation[14]. Ingted representing the core point as a sin-
gle value, the predication of the core point from Gaussiatgss model takes the form of a full
predictive distribution.

Suppose we have a training geof N fingerprints,D = {(g;,v:)|i = 1,..., N}, whereg denotes
the orientation map of a fingerprint print apdienotes the output which is the core point. In order
to predict the core points, Gaussian process model withreduexponential covariance function is
applied. The regression model with Gaussian noise is giyen b
y=f(g)te 1)

wheref(g) is the value of the process or functigfx) atg ande is a random noise variable whose
value is chosen independent for each observation. We camtié noise processes that have a
Gaussian distribution, so that the Gaussian likelihood&e point is given by

p(ylf(g)) = N(£,0%1) )
whereo? is the variance of the noise. From the definition of a Gauspragess, the Gaussian
process prior is given by a Gaussian whose mean is zero andewdavariance is defined by a
covariance functiort(g, g’) so that

f(g) ~GP(0,k(g.g)) ®)
The squared exponential covariance function is used hesacify the covariance between pairs of
variables, parameterized By andf,.

0
ke.g) = b1 exp(— g — &) ©)
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where the hyperparametetsandd, are optimized by maximizing of the log likelihogdy|6:, 62)

Suppose the orientation map of a input fingerprint is giveghyThe Gaussian predictive distribu-
tion of core pointy* can be evaluated by conditioning the joint Gaussian prisirihution on the
observation(G,y), whereG = (gi,...,gn) " andy = (y1,...,yn) " . The predictive distribution

is given by
p(y*1g", G, y) = N(m(y™),cov(y™)) (5)
where
m(y*) = k(g",G)[K + oI 'y (6)
cov(y*) = k(g*,g") + 0> —k(g", @) [K + 0°I] 'k(G, g") )

whereK is the Gram matrix whose elements are giverkby;, g;).

Note that for some fingerprints such as latent fingerpriniecied from crime scene, their locations
in the complete print are unknown. So agiyyonly represents the orientation map of the print in one
possible location. In order to predict the core point in tberect location, we list all the possible
print locations corresponding to the different transkasi@nd rotations. The orientation maps of
them are defined a§ = {g|i = 1,...,m}. Using (5), we obtain the predictive distributions
p(y*|g;, G,y) for all theg?. The core poing* should maximizey(y*|g;, G,y) with respect tq}.
Thus the core point of the fingerprint is given by

7 =k(giax,G)K + Iy ®)

whereg?, 4 y is the orientation map where the maximum predictive prdigluf core point can be
obtained, given by

gy ax = argmax p(m(y*)|g*, G,y) ()]
-

After the core points are determined, the fingerprints caaligeed by overlapping their core points.
This is done by presenting the features in the Cartesiardowaies where the origin is the core point.
Note that the minutia features mentioned in following setdihave been aligned first.

3 A Generative Model for Fingerprints

In order to estimate rarity, statistical models need to beldped to represent the distribution of
fingerprint features. Previous generative models for fipigets involve different assumptions: uni-
form distribution of minutia locations and directions [E8]d minutiae are independent of each other
[16, 17]. However, minutiae that are spatially close tentawee similar directions with each other
[18]. Moreover, fingerprint ridges flow smoothly with verypel orientation change. The variance of
the minutia directions in different regions of the fingenpare dependent on both their locations and
location variance [19, 20]. These observations on the digrery between minutiae need to be ac-
counted for in eliciting reliable statistical models. Theposed model incorporates the distribution
of minutiae and the dependency relationship between them.

Minutiae are the most commonly used features for reprasgfitigerprints. They correspond to
ridge endings and ridge bifurcations. Each minutia is regméed by its location and direction. The
direction is determined by the ridge at the location. Autboiingerprint matching algorithms use
minutiae as the salient features [21], since they are staidare reliably extracted. Each minutia is
represented as = (s, ) wheres = (x1, z2) is its location and its direction.

In order to capture the distribution of minutiae as well as dependencies between them, we first
propose a method to define a unique sequence for a given satutiae. Suppose that a fingerprint
containsN minutiae. The sequence starts with the minstiavhose location is closest to the core
point. Each remaining minutig,, is the spatially closest to the centroid defined by the arétitn
mean of the location coordinates of all the previous miratia . . . x,,_1. Given this sequence, the
fingerprint can be represented by a minutia sequétce (xi,...,xy). The sequence is robust
to the variance of the minutiae because the next minutiadgldd by the all the previous minu-
tiae. Given the observation that spatially closer minusisemore strongly related, we only model
the dependence betwegn and its nearest minutia amoR¢, . .., x,—1}. Although not all the
dependence is taken into account, this is a good trade-boffdem model accuracy and computa-
tional complexity. Figure 1(a) presents an example wheres determined because its distance to
the centroid of{xy,...,x4} is minimal. Figure 1(b) shows the minutia sequence and thmeitiai
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(a) Minutiae sequencing(b) Minutiae dependency.

Figure 1: Minutia dependency modeling: (a) given minufiae, . . ., x4} with centroide, the next
minutia x5 is the one closest to, and (b) following this procedure dependency between seven
minutiae are represented by arrows.

Figure 2: Bayesian network representing conditional ddpeaies shown in Figure 1, whexe =
(s;,07). Note that there is a link between andx. while there is none betweeg andx;.

dependencies (arrows) for the same configuration of mieuBased on the characteristic of finger-
print minutiae studied in [18, 19, 20], we know that the miawdirection is related to its location
and the neighboring minutiae. The minutia location is ctadal independent of the location of
the neighboring minutiae given their directions. To addrée probabilistic relationships of the
minutiae, Bayesian networks are used to represent thébdistms of the minutia features in finger-
prints. Figure 2 shows the Bayesian network for the distidiouof the minutia set given in Figure
1. The nodes,, and#,, represent the location and direction of minutiaz. For each conditional
distribution, a directed link is added to the graph from tbees corresponding to the variables on
which the distribution is conditioned. In general, for aegifingerprint, the joint distribution over
its minutia sefX is given by

N
p(X) = p(Sl)p(91 |Sl) H p(sn)p(9n|sna Sw(n)a aw(n)) (10)
n=2

wheres,;(,) andf,,,,) are the location and direction of the minutiawhich has the minimal spatial
distance to the minutia,,. Sov(n) is given by

Y(n) = argmin ||x,, — x| (11)

i€[l,n—1]

To compute above joint probability, there are three prdighdensity functions need to be esti-
mated: distribution of the location of minutig&s), joint distribution of the location and direction
of minutiaef (s, #), and conditional distribution of minutia direction givets location, and the lo-
cation and direction of the nearest minufi@, [s,, sy (n), Oy (n))-

It is known that minutiae tend to form clusters [18] and miaetin different regions of the finger-

print are observed to be associated with different regpeeic minutia directions. A mixture of

Gaussian is a natural approach to model the minutia locagii@n by (12). Since minutia orienta-
tion is a periodic variable, itis modeled by the von Misesribsition which itself is derived from the

Gaussian. The minutia represented by its location andtbrets modeled by the mixture of joint

Gaussian and von-Mises distribution [22] give by (13). @ius location and the nearest minutia,
the minutia direction has the mixture of von-Mises densiteg by (14).

K
f(S) = Z T(-kl'/\[(slluk'l72kl) (12)

ki1=1



Z 71792 |Mk2a k)Y (9|Vk2, Kks) (13)

ko=1

K3
FOnlsnsSpin), Opn)) = D 7oy V(On|Viy, ity ) (14)
k3=1

whereK; is the number of mixture components,, are non-negative component weights that sum
to one N (s|ux, Xk ) is the bivariate Gaussian probability density function afintiae with meanu,
and covariance matriX, andV(0|vy, ) is the von-Mises probability density function of minutia
orientation with mean angle, and precision (inverse variance), . Bayesian information criterion
is used to estimat&’; and other parameters are learned by EM algorithm.

4 Evaluation of Rarity of a Fingerprint

The general probability of random correspondence (PRCheamodified to give the probability
of matching the specific evidence within a database @ems, where the match is within some
tolerance in feature space [23]. The metric of rarity is §fe@PRC, the probability that data
with valuex coincides with an element in a set ofsamples, within specified tolerance. Since
we are trying to match a specific value this probability depends on the probability »f Let

Y = [y1,...,yn] represent a set ef random variables. A binary-valued random variabiedicates
that if one sampley; exists in a set ofi random samples so that the valueygfis the same as
within a tolerance:. By noting the independence &fandy;, the specificaPRC is then given by
the marginal probability

p(z =1[x) = szf1|xY p(Y) (15)

wherep(Y) is the joint probability of the n |nd|V|duaIs.

To compute specifiePRC, we first define correspondence or match, between twoatiaénas fol-
lows. Letx, = (s4,6,) andx;, = (s, 0,) be a pair of minutiae. The minutiae are said to correspond
if for tolerancee = [e;, 9],

IS0 — 85 [|< €5 A [6a — 6] < cg (16)

where||s, — sp|| is the Euclidean distance between the minutia locationenTthe match between
two fingerprints is defined as existing at leaspairs of matched minutiae between two fingerprints.
The tolerances andm depend on practical applications.

To deal with the largely varying quality in latent fingergsnit is also important to consider the
minutia confidence in specifietPRC measurement. The confidence of the minxjias defined as
(ds, ,do, ), whered,  is the confidence of location ant}, is the confidence of direction. Given
the minutiax,, = (s,,6,) and its confidences, the probability density functions cat®ns’ and
direction#’ can be modeled using Gaussian and von-Mises distributi@ndiy

c(s'|sn,ds, ) = N(5|sn, ds_nl) @an

c(0'16n, do,,) = V(0'|0n, dp,) (18)

where the variance of the location distribution (Gaussigaiie inverse of the location confidence
and the concentration parameter of the direction distiobuvon-Mises) is the direction confidence.

Let f be a randomly sampled fingerprint which has minutiadset= {x}, ..., x},}. Let X andX’
be the sets afi minutiae randomly picked frorX andX’,wherem < N andm < M. Using (10),

the probability that there is a one-to-one correspondentgeenX andX' is given by

Pe(X) = pe(s1,01) [ [ pe(sn)pe(Onlsn Sy, Ousn)) (19)

n=2

e(Sn, 0n) // // s'|sn, ds, )e(60' |0, dg,, ) f (s, 0)ds’d0’ dsdf (20)

s/ 0 |x—x'|<e

where



pls)= [ [ lsnd)rs)asas (21)

s |s—s’|<es

De (9n|Sn, Sw(n), Gw(n)) = / / C(el‘en, d@n )f(9|sn, Sw(n), 9¢(n))d9/d9 (22)
0’ |0—0'|<eq
Finally, the specifimPRCs can be computed by
pe(X, i, m) =1 — (1 = pe(X, )"~ (23)

whereX represents the minutia set of given fingerprint, andX, ) is the probability thatn pairs
of minutiae are matched between the given fingerprint anddoraly chosen fingerprint from
fingerprints.

N ()
pe(X, 1) = p(m/ <m> pe(X; 24
(m = 32 w5, ) 2o pX) (24)
whereM contains all possible numbers of minutiae in one fingerinongn fingerprints p(m’) is
the probability of a random fingerprint havimg' minutiae, minutia seK; = (Xi1y X2y ey Xigny ) 1S
the subset oX andpe(f(i) is the joint probability of minutia se&X; given by (19). Gibbs sampling
is used to approximate the integral involved in the proligishlculation.

5 Model Validation

In order to validate the proposed methods, core point ptiedievas first tested. Goodness-of-fit
tests were performed on the proposed generative modelsdatabases were used, one is NIST4,
and the other is NIST27. NIST4 contains 8-bit gray scale imsanf randomly selected fingerprints.
Each print ha§12 x 512 pixels. The entire database contains fingerprints taken 2000 different
fingers with 2 impression of the same finger. NIST27 contatenit fingerprints from crime scenes
and their matching rolled fingerprint mates. There are 2&htecases separated into three quality
categories of good, bad, and ugly.

5.1 Core Point Prediction

The Gaussian process models for core point prediction aireetl on NIST4 and tested on NIST27.
The orientation maps are extracted by conventional gr&dli@sed approach. The fingerprint images
are first divided into equal-sized blocks &f x N pixels, whereN is the average width of a pair
of ridge and valley. The value @¥ is 8 in NIST4 and varies in NIST27. The gradient vectors are
calculated by taking the partial derivatives of image istgnat each pixel in Cartesian coordinates.
The ridge orientation is perpendicular to the dominant igratchngle in the local block. The training
set consists of the orientation maps of the fingerprints hadtorresponding core points which are
marked manually. The core point prediction is applied oeergroups of latent prints in different
quality. Figure 3 shows the results of core point prediciod subsequent latent print localization
given two latent fingerprints from NIST27. Table 1 shows tbmparison of prediction precisions of
Gaussian Processes (GP) based approach and the widelyaisearB Index (PI) [8]. The test latent
prints are extracted and enhanced manually. The true canesyud the latent prints are picked from
the matching 10-prints. Correct prediction is determingcdmparing the location and direction
distances between predicted and true core points with thelibld parameters setit = 16 pixels,
and7, = 7/6. Good quality set contairs images that mostly contain the core points. Both bad
and ugly quality sets contab images that have small size and usually do not include cdarego
Among the precisions of good quality latent prints, two agmhes are close. Precisions of bad
and ugly quality show distinct difference between two mdthand indicate that GP based method
provides core point prediction even though the core poiatsrot be seen in the latent prints. The
GP based method also results in higher overall predictienigions.

5.2 Goodness-of-fit

The validation of the proposed generative model is by me&agyoodness-of-fit test which deter-
mines as to how well a sample of data agrees with the proposeeirdistribution. The chi-square
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(a) Latent print localization of case “g90”(b) Latent print localization of case “g69”.

Figure 3: Latent print localization: Left side images are ldient fingerprints (rectangles) collected
from crime scenes. Right side images contain the predictesgoints (crosses) and true core points
(rounds) with the orientation maps of the latent prints.

Table 1: Comparison of prediction precisions of Pl and GRb8approaches.

Poincare Index Gaussian Processes
Good 90.6% 93.1%
Bad 68.2% 87.1%
Ugly 46.6% 72.7%
Overall 68.6% 84.5%

statistical hypothesis test was applied [24]. Three diffietests were conducted for : (i) distribu-
tion of minutia location (12), (ii) joint distribution of miutia location and orientation (13), and (iii)
distributions of minutia dependency (14). For minutia kima, we partitioned the minutia location
space intal6 non-overlapping blocks. For minutia location and orieiotatwe partitioned the fea-
ture space intd6 x 4 non-overlapping blocks. For minutia dependency, the tait@an space is
divided into9 non-overlapping blocks. The blocks are combined with asfjadlocks until both
observed and expected numbers of minutiae in the block aateyrthan or equal t6. The test
statistic used here is a chi-square random varigbldefined by the following equation.

. FE.)2
X2 _ Z (Oz E.Ez)

whereQ; is the observed minutia count for thih block, andF); is the expected minutia count for
the ith block. Thep-value, the probability of observing a sample statistic xseene as the test
statistic, associated with each test statigtids then calculated based on the chi-square distribution
and compared to the significance level. For the NIST 4 datasethose significance level equal to
0.01. 4000 fingerprints are used to train the generative modelsgsed in Sections 3.

(25)

To test the models for minutia location, and minutia locatmd orientation, the numbers of finger-
prints with p-values above (corresponding to accept the model) and helomesponding to reject
the model) the significance level are computed. Of46@0 fingerprints,3387 are accepted and
613 are rejected for minutia location model, a3l 6 are accepted aritk4 are rejected for minutia
location and orientation model. To test the model for mmutependency, we first collect all the
linked minutia pairs in the minutia sequences produced #0600 fingerprints. Then these minutia
pairs are separated by the binned locations of both min(diag 32) and orientation of the leading
minutia (4). Finally, the minutia dependency models candsted on the corresponding minutia
pair sets. Of thel096 data sets3558 are accepted aniB8 are rejected. The results imply that the
proposed generative models offer reasonable and accuratdifigerprints.

Table 2: Results from the Chi-square tests for testing tlveligess of fit of three generative models.

Generative models | Dataset sizes Model accepted Model rejected
f(s) 4000 3387 613
f(s,0) 4000 3216 784
J(Onlsn; Spn), Opn)) 4096 3558 538




(a) Latent case “b115". (b) Latent case “g73”.

Figure 4. Two latent cases: The left images are the crimeesphntographs containing the latent
fingerprints and minutiae. The right images are the pregsetlatent prints with aligned minutiae
with predicted core points.

Table 3: Specifi@PRCs for the latent fingerprints “b115” and “g73”, where= 100, 000.

Latent Print “b115” Latent Print “g73”
N p(X) | N[m ]| p(n,X)
2 0.73 4 1
4 1 9.04x107° 8 [ 311 x107™
16| 8 [246x107™ | 39|12 2.56 x 10~%°
12 ] 6.13 x 10731 241 3.10 x 1072
16 [ 1.82 x 1077 39751 x107™

6 Fingerprint Rarity measurement on Latent Prints

The method for assessing fingerprint rarity using the vedidanodel is demonstrated here. Figure 4
shows two latent fingerprints randomly picked from NIST2heTirst latent print “b115” contains
16 minutiae and the second “g73” contaBminutiae. The confidences of minutiae are manually
assigned by visual inspection. The speciflfRC of the two latent prints are given by Table 3. The
specificnPRCs are calculated through varying numbers of matchingitimpairs ¢»), assuming
that the number of fingerprinta]) is 100, 000. The tolerance is set at = 10 pixels andey = 7/8.

The experiment shows that the values of specifi)RC are largely dependent on the given latent
fingerprint. For the latent print that contains more mineitie whose minutiae are more common in
minutia population, the probability that the latent prihges minutiae with a random fingerprint

is more. It is obvious to note that, wheh decreases, the probability of random correspondence
increases. Moreover, the values of specifRRC provide a strong argument for the values of latent
fingerprint evidences.

7 Summary

This work is the first attempt of offering a systematic metbmdneasure the rarity of fingerprints.
In order to align the prints, a Gaussian processes basedagbpis proposed to predict the core
points. It is proven that this approach can predict coretgaihether the prints contain the core
points or not. Furthermore, a generative model is proposedddel the distribution of minutiae
as well as the dependency between them. Bayesian netwarkssad to perform inference and
learning by visualizing the structures of the generativelet® Finally, the rarity of a fingerprint
is able to calculated. To further improve the accuracy, tienconfidences are taken into account
for specificnPRC calculation. Goodness of fit tests shows that the propgeeerative offers an
accurate fingerprint representation. We perform the spedifRC computation on NIST27 dataset.
Itis shown that the proposed method is capable of estim#imgarity of real-life latent fingerprints.
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