
Sparse Inverse Covariance Selection via
Alternating Linearization Methods

Katya Scheinberg
Department of ISE
Lehigh University

katyas@lehigh.edu

Shiqian Ma, Donald Goldfarb
Department of IEOR
Columbia University

{sm2756,goldfarb}@columbia.edu

Abstract

Gaussian graphical models are of great interest in statistical learning. Because the
conditional independencies between different nodes correspond to zero entries in
the inverse covariance matrix of the Gaussian distribution, one can learn the struc-
ture of the graph by estimating a sparse inverse covariance matrix from sample
data, by solving a convex maximum likelihood problem with an ℓ1-regularization
term. In this paper, we propose a first-order method based on an alternating lin-
earization technique that exploits the problem’s special structure; in particular, the
subproblems solved in each iteration have closed-form solutions. Moreover, our
algorithm obtains an ϵ-optimal solution in O(1/ϵ) iterations. Numerical experi-
ments on both synthetic and real data from gene association networks show that a
practical version of this algorithm outperforms other competitive algorithms.

1 Introduction

In multivariate data analysis, graphical models such as Gaussian Markov Random Fields pro-
vide a way to discover meaningful interactions among variables. Let Y = {y(1), . . . , y(n)} be
an n-dimensional random vector following an n-variate Gaussian distribution N (µ,Σ), and let
G = (V,E) be a Markov network representing the conditional independence structure of N (µ,Σ).
Specifically, the set of vertices V = {1, . . . , n} corresponds to the set of variables in Y , and the
edge set E contains an edge (i, j) if and only if y(i) is conditionally dependent on y(j) given all
remaining variables; i.e., the lack of an edge between i and j denotes the conditional indepen-
dence of y(i) and y(j), which corresponds to a zero entry in the inverse covariance matrix Σ−1

([1]). Thus learning the structure of this graphical model is equivalent to the problem of learning the
zero-pattern of Σ−1. To estimate this sparse inverse covariance matrix, one can solve the following
sparse inverse covariance selection (SICS) problem: maxX∈Sn

++
log det(X) − ⟨Σ̂, X⟩ − ρ∥X∥0,

where Sn
++ denotes the set of n × n positive definite matrices, ∥X∥0 is the number of nonzeros in

X , Σ̂ = 1
p

∑p
i=1(Yi − β̂)(Yi − β̂)⊤ is the sample covariance matrix, β̂ = 1

p

∑p
i=1 Yi is the sample

mean and Yi is the i-th random sample of Y . This problem is NP-hard in general due to the com-
binatorial nature of the cardinality term ρ∥X∥0 ([2]). To get a numerically tractable problem, one
can replace the cardinality term ∥X∥0 by ∥X∥1 :=

∑
i,j |Xij |, the envelope of ∥X∥0 over the set

{X ∈ Rn×n : ∥X∥∞ ≤ 1} (see [3]). This results in the convex optimization problem (see e.g.,
[4, 5, 6, 7]):

min
X∈Sn

++

− log det(X) + ⟨Σ̂, X⟩+ ρ∥X∥1. (1)

Note that (1) can be rewritten as minX∈Sn
++

max∥U∥∞≤ρ− log detX + ⟨Σ̂ + U,X⟩, where ∥U∥∞
is the largest absolute value of the entries of U . By exchanging the order of max and min, we obtain

1



the dual problem max∥U∥∞≤ρ minX∈Sn
++
− log detX + ⟨Σ̂ + U,X⟩, which is equivalent to

max
W∈Sn

++

{log detW + n : ∥W − Σ̂∥∞ ≤ ρ}. (2)

Both the primal and dual problems have strictly convex objectives; hence, their optimal solutions
are unique. Given a dual solution W , X = W−1 is primal feasible resulting in the duality gap

gap := ⟨Σ̂,W−1⟩+ ρ∥W−1∥1 − n. (3)

The primal and the dual SICS problems (1) and (2) are semidefinite programming problems and can
be solved via interior point methods (IPMs) in polynomial time. However, the per-iteration com-
putational cost and memory requirements of an IPM are prohibitively high for the SICS problem.
Although an approximate IPM has recently been proposed for the SICS problem [8], most of the
methods developed for it are first-order methods. Banerjee et al. [7] proposed a block coordinate
descent (BCD) method to solve the dual problem (2). Their method updates one row and one column
of W in each iteration by solving a convex quadratic programming problem by an IPM. The glasso
method of Friedman et al. [5] is based on the same BCD approach as in [7], but it solves each sub-
problem as a LASSO problem by yet another coordinate descent (CD) method [9]. Sun et al. [10]
proposed solving the primal problem (1) by using a BCD method. They formulate the subproblem
as a min-max problem and solve it using a prox method proposed by Nemirovski [11]. The SINCO
method proposed by Scheinberg and Rish [12] is a greedy CD method applied to the primal problem.
All of these BCD and CD approaches lack iteration complexity bounds. They also have been shown
to be inferior in practice to gradient based approaches. A projected gradient method for solving
the dual problem (2) that is considered to be state-of-the-art for SICS was proposed by Duchi et al.
[13]. However, there are no iteration complexity results for it either. Variants of Nesterov’s method
[14, 15] have been applied to solve the SICS problem. d’Aspremont et al. [16] applied Nesterov’s
optimal first-order method to solve the primal problem (1) after smoothing the nonsmooth ℓ1 term,
obtaining an iteration complexity bound of O(1/ϵ) for an ϵ-optimal solution, but the implementation
in [16] was very slow and did not produce good results. Lu [17] solved the dual problem (2), which
is a smooth problem, by Nesterov’s algorithm, and improved the iteration complexity to O(1/

√
ϵ).

However, since the practical performance of this algorithm was not attractive, Lu gave a variant
(VSM) of it that exhibited better performance. The iteration complexity of VSM is unknown. Yuan
[18] proposed an alternating direction method based on an augmented Lagrangian framework (see
the ADAL method (8) below). This method also lacks complexity results. The proximal point algo-
rithm proposed by Wang et al. in [19] requires a reformulation of the problem that increases the size
of the problem making it impractical for solving large-scale problems. Also, there is no iteration
complexity bound for this algorithm. The IPM in [8] also requires such a reformulation.

Our contribution. In this paper, we propose an alternating linearization method (ALM) for solving
the primal SICS problem. An advantage of solving the primal problem is that the ℓ1 penalty term in
the objective function directly promotes sparsity in the optimal inverse covariance matrix.

Although developed independently, our method is closely related to Yuan’s method [18]. Both
methods exploit the special form of the primal problem (1) by alternatingly minimizing one of
the terms of the objective function plus an approximation to the other term. The main difference
between the two methods is in the construction of these approximations. As we will show, our
method has a theoretically justified interpretation and is based on an algorithmic framework with
complexity bounds, while no complexity bound is available for Yuan’s method. Also our method
has an intuitive interpretation from a learning perspective. Extensive numerical test results on both
synthetic data and real problems have shown that our ALM algorithm significantly outperforms
other existing algorithms, such as the PSM algorithm proposed by Duchi et al. [13] and the VSM
algorithm proposed by Lu [17]. Note that it is shown in [13] and [17] that PSM and VSM outperform
the BCD method in [7] and glasso in [5].

Organization of the paper. In Section 2 we briefly review alternating linearization methods for
minimizing the sum of two convex functions and establish convergence and iteration complexity
results. We show how to use ALM to solve SICS problems and give intuition from a learning
perspective in Section 3. Finally, we present some numerical results on both synthetic and real data
in Section 4 and compare ALM with PSM algorithm [13] and VSM algorithm [17].

2



2 Alternating Linearization Methods

We consider here the alternating linearization method (ALM) for solving the following problem:

min F (x) ≡ f(x) + g(x), (4)

where f and g are both convex functions. An effective way to solve (4) is to “split” f and g by
introducing a new variable, i.e., to rewrite (4) as

min
x,y
{f(x) + g(y) : x− y = 0}, (5)

and apply an alternating direction augmented Lagrangian method to it. Given a penalty parameter
1/µ, at the k-th iteration, the augmented Lagrangian method minimizes the augmented Lagrangian
function

L(x, y;λ) := f(x) + g(y)− ⟨λ, x− y⟩+ 1

2µ
∥x− y∥22,

with respect to x and y, i.e., it solves the subproblem

(xk, yk) := argmin
x,y
L(x, y;λk), (6)

and updates the Lagrange multiplier λ via:

λk+1 := λk − (xk − yk)/µ. (7)

Since minimizing L(x, y;λ) with respect to x and y jointly is usually difficult, while doing so with
respect to x and y alternatingly can often be done efficiently, the following alternating direction
version of the augmented Lagrangian method (ADAL) is often advocated (see, e.g., [20, 21]): xk+1 := argminx L(x, yk;λk)

yk+1 := argminy L(xk+1, y;λk)
λk+1 := λk − (xk+1 − yk+1)/µ.

(8)

If we also update λ after we solve the subproblem with respect to x, we get the following symmetric
version of the ADAL method.

xk+1 := argminx L(x, yk;λk
y)

λk+1
x := λk

y − (xk+1 − yk)/µ
yk+1 := argminy L(xk+1, y;λk+1

x )
λk+1
y := λk+1

x − (xk+1 − yk+1)/µ.

(9)

Algorithm (9) has certain theoretical advantages when f and g are smooth. In this case, from the
first-order optimality conditions for the two subproblems in (9), we have that:

λk+1
x = ∇f(xk+1) and λk+1

y = −∇g(yk+1). (10)

Substituting these relations into (9), we obtain the following equivalent algorithm for solving (4),
which we refer to as the alternating linearization minimization (ALM) algorithm.

Algorithm 1 Alternating linearization method (ALM) for smooth problem
Input: x0 = y0

for k = 0, 1, · · · do
1. Solve xk+1 := argminx Qg(x, y

k) ≡ f(x) + g(yk) +
⟨
∇g(yk), x− yk

⟩
+ 1

2µ∥x− yk∥22;
2. Solve yk+1 := argminy Qf (x

k+1, y) ≡ f(xk+1) +
⟨
∇f(xk+1), y − xk+1

⟩
+ 1

2µ∥y −
xk+1∥22 + g(y);

end for

Algorithm 1 can be viewed in the following way: at each iteration we construct a quadratic approxi-
mation of the function g(x) at the current iterate yk and minimize the sum of this approximation and
f(x). The approximation is based on linearizing g(x) (hence the name ALM) and adding a “prox”
term 1

2µ∥x− yk∥22. When µ is small enough (µ ≤ 1/L(g), where L(g) is the Lipschitz constant for

3



∇g) this quadratic function, g(yk)+
⟨
∇g(yk), x− yk

⟩
+ 1

2µ∥x−yk∥22 is an upper approximation to
g(x), which means that the reduction in the value of F (x) achieved by minimizing Qg(x, y

k) in Step
1 is not smaller than the reduction achieved in the value of Qg(x, y

k) itself. Similarly, in Step 2 we
build an upper approximation to f(x) at xk+1, f(xk+1)+

⟨
∇f(xk+1), y − xk+1

⟩
+ 1

2µ∥y−x
k+1∥22,

and minimize the sum Qf (x
k+1, y) of it and g(y).

Let us now assume that f(x) is in the class C1,1 with Lipschitz constant L(f), while g(x) is simply
convex. Then from the first-order optimality conditions for the second minimization in (9), we have
−λk+1

y ∈ ∂g(yk+1), the subdifferential of g(y) at y = yk+1. Hence, replacing ∇g(yk) in the
definition of Qg(x, y

k) by −λk+1
y in (9), we obtain the following modified version of (9).

Algorithm 2 Alternating linearization method with skipping step
Input: x0 = y0

for k = 0, 1, · · · do
1. Solve xk+1 := argminx Q(x, yk) ≡ f(x) + g(yk)−

⟨
λk, x− yk

⟩
+ 1

2µ∥x− yk∥22;
2. If F (xk+1) > Q(xk+1, yk) then xk+1 := yk.
3. Solve yk+1 := argminy Qf (x

k+1, y);
4. λk+1 = ∇f(xk+1)− (xk+1 − yk+1)/µ.

end for

Algorithm 2 is identical to the symmetric ADAL algorithm (9) as long as F (xk+1) ≤ Q(xk+1, yk)
at each iteration (and to Algorithm 1 if g(x) is in C1,1 and µ ≤ 1/max{L(f), L(g)}). If this con-
dition fails, then the algorithm simply sets xk+1 ← yk. Algorithm 2 has the following convergence
property and iteration complexity bound. For a proof see the Appendix.
Theorem 2.1. Assume∇f is Lipschitz continuous with constant L(f). For β/L(f) ≤ µ ≤ 1/L(f)
where 0 < β ≤ 1, Algorithm 2 satisfies

F (yk)− F (x∗) ≤ ∥x
0 − x∗∥2

2µ(k + kn)
,∀k, (11)

where x∗ is an optimal solution of (4) and kn is the number of iterations until the k − th for which
F (xk+1) ≤ Q(xk+1, yk). Thus Algorithm 2 produces a sequence which converges to the optimal
solution in function value, and the number of iterations needed is O(1/ϵ) for an ϵ-optimal solution.

If g(x) is also a smooth function in the class C1,1 with Lipschitz constant L(g) ≤ 1/µ, then Theorem
2.1 also applies to Algorithm 1 since in this case kn = k (i.e., no “skipping” occurs). Note that the
iteration complexity bound in Theorem 2.1 can be improved. Nesterov [15, 22] proved that one can
obtain an optimal iteration complexity bound of O(1/

√
ϵ), using only first-order information. His

acceleration technique is based on using a linear combination of previous iterates to obtain a point
where the approximation is built. This technique has been exploited and extended by Tseng [23],
Beck and Teboulle [24], Goldfarb et al. [25] and many others. A similar technique can be adopted
to derive a fast version of Algorithm 2 that has an improved complexity bound of O(1/

√
ϵ), while

keeping the computational effort in each iteration almost unchanged. However, we do not present
this method here, since when applied to the SICS problem, it did not work as well as Algorithm 2.

3 ALM for SICS

The SICS problem

min
X∈Sn

++

F (X) ≡ f(X) + g(X), (12)

where f(X) = − log det(X) + ⟨Σ̂, X⟩ and g(X) = ρ∥X∥1, is of the same form as (4). However,
in this case neither f(X) nor g(X) have Lipschitz continuous gradients. Moreover, f(X) is only
defined for positive definite matrices while g(X) is defined everywhere. These properties of the
objective function make the SICS problem especially challenging for optimization methods. Nev-
ertheless, we can still apply (9) to solve the problem directly. Moreover, we can apply Algorithm 2
and obtain the complexity bound in Theorem 2.1 as follows.

4



The log det(X) term in f(X) implicitly requires that X ∈ Sn
++ and the gradient of f(X), which

is given by −X−1 + Σ̂, is not Lipschitz continuous in Sn
++. Fortunately, as proved in Proposition

3.1 in [17], the optimal solution of (12) X∗ ≽ αI , where α = 1
∥Σ̂∥+nρ

. Therefore, if we define
C := {X ∈ Sn : X ≽ α

2 I}, the SICS problem (12) can be formulated as:

min
X,Y
{f(X) + g(Y ) : X − Y = 0, X ∈ C, Y ∈ C}. (13)

We can include constraints X ∈ C in Step 1 and Y ∈ C in Step 3 of Algorithm 2. Theorem 2.1
can then be applied as discussed in [25]. However, a difficulty now arises when performing the
minimization in Y . Without the constraint Y ∈ C, only a matrix shrinkage operation is needed,
but with this additional constraint the problem becomes harder to solve. Minimization in X with or
without the constraint X ∈ C is accomplished by performing an SVD. Hence the constraint can be
easily imposed.

Instead of imposing constraint Y ∈ C we can obtain feasible solutions by a line search on µ. We
know that the constraint X ≽ α

2 I is not tight at the solution. Hence if we start the algorithm with
X ≽ αI and restrict the step size µ to be sufficiently small then the iterates of the method will
remain in C.

Note however, that the bound on the Lipschitz constant of the gradient of f(X) is 1/α2 and hence
can be very large. It is not practical to restrict µ in the algorithm to be smaller than α2, since µ
determines the step size at each iteration. Hence, for a practical approach we can only claim that the
theoretical convergence rate bound holds in only a small neighborhood of the optimal solution. We
now present a practical version of our algorithm applied to the SICS problem.

Algorithm 3 Alternating linearization method (ALM) for SICS
Input: X0 = Y 0, µ0.
for k = 0, 1, · · · do

0. Pick µk+1 ≤ µk.
1. Solve Xk+1 := argminX∈C f(X) + g(Y k)− ⟨Λk, X − Y k⟩+ 1

2µk+1
∥X − Y k∥2F ;

2. If g(Xk+1) > g(Y k)− ⟨Λk, Xk+1 − Y k⟩+ 1
2µk+1

∥Xk+1 − Y k∥2F , then Xk+1 := Y k.
3. Solve Y k+1 := argminY f(Xk+1) + ⟨∇f(Xk+1), Y −Xk+1⟩+ 1

2µk+1
∥Y −Xk+1∥2F +

g(Y );
4. Λk+1 = ∇f(Xk+1)− (Xk+1 − Y k+1)/µk+1.

end for

We now show how to solve the two optimization problems in Algorithm 3. The first-order optimality
conditions for Step 1 in Algorithm 3, ignoring the constraint X ∈ C are:

∇f(X)− Λk + (X − Y k)/µk+1 = 0. (14)

Consider V Diag(d)V ⊤ - the spectral decomposition of Y k + µk+1(Λ
k − Σ̂) and let

γi =

(
di +

√
d2i + 4µk+1

)
/2, i = 1, . . . , n. (15)

Since ∇f(X) = −X−1 + Σ̂, it is easy to verify that Xk+1 := V Diag(γ)V ⊤ satisfies (14). When
the constraint X ∈ C is imposed, the optimal solution changes to Xk+1 := V Diag(γ)V ⊤ with
γi = max

{
α/2,

(
di +

√
d2i + 4µk+1

)
/2
}
, i = 1, . . . , n. We observe that solving (14) requires

approximately the same effort (O(n3)) as is required to compute ∇f(Xk+1). Moreover, from the
solution to (14), ∇f(Xk+1) is obtained with only a negligible amount of additional effort, since
(Xk+1)−1 := V Diag(γ)−1V ⊤.

The first-order optimality conditions for Step 2 in Algorithm 3 are:

0 ∈ ∇f(Xk+1) + (Y −Xk+1)/µk+1 + ∂g(Y ). (16)

Since g(Y ) = ρ∥Y ∥1, it is well known that the solution to (16) is given by

Y k+1 = shrink(Xk+1 − µk+1(Σ̂− (Xk+1)−1), µk+1ρ),

5



where the “shrinkage operator” shrink(Z, ρ) updates each element Zij of the matrix Z by the for-
mula shrink(Z, ρ)ij = sgn(Zij) ·max{|Zij | − ρ, 0}.

The O(n3) complexity of Step 1, which requires a spectral decomposition, dominates the O(n2)
complexity of Step 2 which requires a simple shrinkage. There is no closed-form solution for the
subproblem corresponding to Y when the constraint Y ∈ C is imposed. Hence, we neither impose
this constraint explicitly nor do so by a line search on µk, since in practice this degrades the perfor-
mance of the algorithm substantially. Thus, the resulting iterates Y k may not be positive definite,
while the iterates Xk remain so. Eventually due to the convergence of Y k and Xk, the Y k iterates
become positive definite and the constraint Y ∈ C is satisfied.

Let us now remark on the learning based intuition behind Algorithm 3. We recall that −Λk ∈
∂g(Y k). The two steps of the algorithm can be written as

Xk+1 := arg min
X∈C
{f(X) +

1

2µk+1
∥X − (Y k + µk+1Λ

k)∥2F } (17)

and

Y k+1 := argmin
Y
{g(Y ) +

1

2µk+1
∥Y − (Xk+1 − µk+1(Σ̂− (Xk+1)−1))∥2F }. (18)

The SICS problem is trying to optimize two conflicting objectives: on the one hand it tries to find a
covariance matrix X−1 that best fits the observed data, i.e., is as close to Σ̂ as possible, and on the
other hand it tries to obtain a sparse matrix X . The proposed algorithm address these two objectives
in an alternating manner. Given an initial “guess” of the sparse matrix Y k we update this guess
by a subgradient descent step of length µk+1: Y k + µk+1Λ

k. Recall that −Λk ∈ ∂g(Y k). Then
problem (17) seeks a solution X that optimizes the first objective (best fit of the data) while adding
a regularization term which imposes a Gaussian prior on X whose mean is the current guess for the
sparse matrix: Y k+µk+1Λ

k. The solution to (17) gives us a guess for the inverse covariance Xk+1.
We again update it by taking a gradient descent step: Xk+1−µk+1(Σ̂− (Xk+1)−1). Then problem
(18) seeks a sparse solution Y while also imposing a Gaussian prior on Y whose mean is the guess
for the inverse covariance matrix Xk+1 − µk+1(Σ̂ − (Xk+1)−1). Hence the sequence of Xk’s is
a sequence of positive definite inverse covariance matrices that converge to a sparse matrix, while
the sequence of Y k’s is a sequence of sparse matrices that converges to a positive definite inverse
covariance matrix.

An important question is how to pick µk+1. Theory tells us that if we pick a small enough value,
then we can obtain the complexity bounds. However, in practice this value is too small. We discuss
the simple strategy that we use in the next section.

4 Numerical Experiments

In this section, we present numerical results on both synthetic and real data to demonstrate the
efficiency of our SICS ALM algorithm. Our codes for ALM were written in MATLAB. All nu-
merical experiments were run in MATLAB 7.3.0 on a Dell Precision 670 workstation with an Intel
Xeon(TM) 3.4GHZ CPU and 6GB of RAM.

Since −Λk ∈ ∂g(Y k), ∥Λk∥∞ ≤ ρ; hence Σ̂− Λk is a feasible solution to the dual problem (2) as
long as it is positive definite. Thus the duality gap at the k-th iteration is given by:

Dgap := − log det(Xk) + ⟨Σ̂, Xk⟩+ ρ∥Xk∥1 − log det(Σ̂− Λk)− n. (19)

We define the relative duality gap as: Rel.gap := Dgap/(1+ |pobj|+ |dobj|), where pobj and dobj
are respectively the objective function values of the primal problem (12) at point Xk, and the dual
problem (2) at Σ̂ − Λk. Defining dk(ϕ(x)) ≡ max{1, ϕ(xk), ϕ(xk−1)}, we measure the relative
changes of objective function value F (X) and the iterates X and Y as follows:

Frel :=
|F (Xk)− F (Xk−1)|

dk(|F (X)|)
, Xrel :=

∥Xk −Xk−1∥F
dk(∥X∥F )

, Y rel :=
∥Y k − Y k−1∥F

d(∥Y ∥F )
.

We terminate ALM when either

(i) Dgap ≤ ϵgap or (ii) max{Frel,Xrel, Y rel} ≤ ϵrel. (20)

6



Note that in (19), computing log det(Xk) is easy since the spectral decomposition of Xk is already
available (see (14) and (15)), but computing log det(Σ̂ − Λk) requires another expensive spectral
decomposition. Thus, in practice, we only check (20)(i) every Ngap iterations. We check (20)(ii) at
every iteration since this is inexpensive.

A continuation strategy for updating µ is also crucial to ALM. In our experiments, we adopted the
following update rule. After every Nµ iterations, we set µ := max{µ ·ηµ, µ̄}; i.e., we simply reduce
µ by a constant factor ηµ every Nµ iterations until a desired lower bound on µ is achieved.

We compare ALM (i.e., Algorithm 3 with the above stopping criteria and µ updates), with the
projected subgradient method (PSM) proposed by Duchi et al. in [13] and implemented by Mark
Schmidt 1 and the smoothing method (VSM) 2 proposed by Lu in [17], which are considered to be
the state-of-the-art algorithms for solving SICS problems. The per-iteration complexity of all three
algorithms is roughly the same; hence a comparison of the number of iterations is meaningful. The
parameters used in PSM and VSM are set at their default values. We used the following parameter
values in ALM: ϵgap = 10−3, ϵrel = 10−8, Ngap = 20, Nµ = 20, µ̄ = max{µ0η

8
µ, 10

−6}, ηµ =
1/3, where µ0 is the initial µ which is set according to ρ; specifically, in our experiments, µ0 =
100/ρ, if ρ < 0.5, µ0 = ρ if 0.5 ≤ ρ ≤ 10, and µ0 = ρ/100 if ρ > 10.

4.1 Experiments on synthetic data

We randomly created test problems using a procedure proposed by Scheinberg and Rish in [12].
Similar procedures were used by Wang et al. in [19] and Li and Toh in [8]. For a given dimension n,
we first created a sparse matrix U ∈ Rn×n with nonzero entries equal to -1 or 1 with equal proba-
bility. Then we computed S := (U ∗ U⊤)−1 as the true covariance matrix. Hence, S−1 was sparse.
We then drew p = 5n iid vectors, Y1, . . . , Yp, from the Gaussian distribution N (0, S) by using the
mvnrnd function in MATLAB, and computed a sample covariance matrix Σ̂ := 1

p

∑p
i=1 YiY

⊤
i .

We compared ALM with PSM [13] and VSM [17] on these randomly created data with different
ρ. The PSM code was terminated using its default stopping criteria, which included (20)(i) with
ϵgap = 10−3. VSM was also terminated when Dgap ≤ 10−3. Since PSM and VSM solve the
dual problem (2), the duality gap which is given by (3) is available without any additional spectral
decompositions. The results are shown in Table 1. All CPU times reported are in seconds.

Table 1: Comparison of ALM, PSM and VSM on synthetic data
ALM PSM VSM

n iter Dgap Rel.gap CPU iter Dgap Rel.gap CPU iter Dgap Rel.gap CPU
ρ = 0.1

200 300 8.70e-4 1.51e-6 13 1682 9.99e-4 1.74e-6 38 857 9.97e-4 1.73e-6 37
500 220 5.55e-4 4.10e-7 84 861 9.98e-4 7.38e-7 205 946 9.98e-4 7.38e-7 377
1000 180 9.92e-4 3.91e-7 433 292 9.91e-4 3.91e-7 446 741 9.97e-4 3.94e-7 1928
1500 199 1.73e-3 4.86e-7 1405 419 9.76e-4 2.74e-7 1975 802 9.98e-4 2.80e-7 6340
2000 200 6.13e-5 1.35e-8 3110 349 1.12e-3 2.46e-7 3759 915 1.00e-3 2.20e-7 16085

ρ = 0.5
200 140 9.80e-4 1.15e-6 6 6106 1.00e-3 1.18e-6 137 1000 9.99e-4 1.18e-6 43
500 100 1.69e-4 7.59e-8 39 903 9.90e-4 4.46e-7 212 1067 9.99e-4 4.50e-7 425
1000 100 9.28e-4 2.12e-7 247 489 9.80e-4 2.24e-7 749 1039 9.95e-4 2.27e-7 2709
1500 140 2.17e-4 3.39e-8 1014 746 9.96e-4 1.55e-7 3514 1191 9.96e-4 1.55e-7 9405
2000 160 4.70e-4 5.60e-8 2529 613 9.96e-4 1.18e-7 6519 1640 9.99e-4 1.19e-7 28779

ρ = 1.0
200 180 4.63e-4 4.63e-7 8 7536 1.00e-3 1.00e-6 171 1296 9.96e-4 9.96e-7 57
500 140 4.14e-4 1.56e-7 55 2099 9.96e-4 3.76e-7 495 1015 9.97e-4 3.76e-7 406
1000 160 3.19e-4 6.07e-8 394 774 9.83e-4 1.87e-7 1172 1310 9.97e-4 1.90e-7 3426
1500 180 8.28e-4 1.07e-7 1304 1088 9.88e-4 1.27e-7 5100 1484 9.96e-4 1.28e-7 11749
2000 240 9.58e-4 9.37e-8 3794 1158 9.35e-4 9.15e-8 12310 2132 9.99e-4 9.77e-8 37406

From Table 1 we see that on these randomly created SICS problems, ALM outperforms PSM and
VSM in both accuracy and CPU time with the performance gap increasing as ρ increases. For
example, for ρ = 1.0 and n = 2000, ALM achieves Dgap = 9.58e − 4 in about 1 hour and 15
minutes, while PSM and VSM need about 3 hours and 25 minutes and 10 hours and 23 minutes,
respectively, to achieve similar accuracy.

1The MATLAB can be downloaded from http://www.cs.ubc.ca/∼schmidtm/Software/PQN.html
2The MATLAB code can be downloaded from http://www.math.sfu.ca/∼zhaosong

7



4.2 Experiments on real data

We tested ALM on real data from gene expression networks using the five data sets from [8] provided
to us by Kim-Chuan Toh: (1) Lymph node status; (2) Estrogen receptor; (3) Arabidopsis thaliana;
(4) Leukemia; (5) Hereditary breast cancer. See [8] and references therein for the descriptions of
these data sets. Table 2 presents our test results. As suggested in [8], we set ρ = 0.5. From Table 2
we see that ALM is much faster and provided more accurate solutions than PSM and VSM.

Table 2: Comparison of ALM, PSM and VSM on real data

ALM PSM VSM
prob. n iter Dgap Rel.gap CPU iter Dgap Rel.gap CPU iter Dgap Rel.gap CPU
(1) 587 60 9.41e-6 5.78e-9 35 178 9.22e-4 5.67e-7 64 467 9.78e-4 6.01e-7 273
(2) 692 80 6.13e-5 3.32e-8 73 969 9.94e-4 5.38e-7 531 953 9.52e-4 5.16e-7 884
(3) 834 100 7.26e-5 3.27e-8 150 723 1.00e-3 4.50e-7 662 1097 7.31e-4 3.30e-7 1668
(4) 1255 120 6.69e-4 1.97e-7 549 1405 9.89e-4 2.91e-7 4041 1740 9.36e-4 2.76e-7 8568
(5) 1869 160 5.59e-4 1.18e-7 2158 1639 9.96e-4 2.10e-7 14505 3587 9.93e-4 2.09e-7 52978

4.3 Solution Sparsity

In this section, we compare the sparsity patterns of the solutions produced by ALM, PSM and VSM.
For ALM, the sparsity of the solution is given by the sparsity of Y . Since PSM and VSM solve
the dual problem, the primal solution X , obtained by inverting the dual solution W , is never sparse
due to floating point errors. Thus it is not fair to measure the sparsity of X or a truncated version
of X . Instead, we measure the sparsity of solutions produced by PSM and VSM by appealing
to complementary slackness. Specifically, the (i, j)-th element of the inverse covariance matrix
is deemed to be nonzero if and only if |Wij − Σ̂ij | = ρ. We give results for a random problem
(n = 500) and the first real data set in Table 3. For each value of ρ, the first three rows show
the number of nonzeros in the solution and the last three rows show the number of entries that are
nonzero in the solution produced by one of the methods but are zero in the solution produced by
the other method. The sparsity of the ground truth inverse covariance matrix of the synthetic data
is 6.76%. From Table 3 we can see that when ρ is relatively large (ρ ≥ 0.5), all three algorithms

Table 3: Comparison of sparsity of solutions produced by ALM, PSM and VSM
ρ 100 50 10 5 1 0.5 0.1 0.05 0.01

synthetic problem data
ALM 700 2810 11844 15324 28758 37510 63000 75566 106882
PSM 700 2810 11844 15324 28758 37510 63000 75566 106870
VSM 700 2810 11844 15324 28758 37510 63000 75568 106876

ALM vs PSM 0 0 0 0 0 0 0 2 14
PSM vs VSM 0 0 0 0 0 0 0 0 8
VSM vs ALM 0 0 0 0 0 0 0 2 2

real problem data
ALM 587 587 587 587 587 4617 37613 65959 142053
PSM 587 587 587 587 587 4617 37615 65957 142051
VSM 587 587 587 587 587 4617 37613 65959 142051

ALM vs PSM 0 0 0 0 0 0 0 2 2
PSM vs VSM 0 0 0 0 0 0 2 0 0
VSM vs ALM 0 0 0 0 0 0 0 0 0

produce solutions with exactly the same sparsity patterns. Only when ρ is very small, are there slight
differences. We note that the ROC curves depicting the trade-off between the number of true positive
elements recovered versus the number of false positive elements as a function of the regularization
parameter ρ are also almost identical for the three methods.

Acknowledgements

We would like to thank Professor Kim-Chuan Toh for providing the data set used in Section 4.2. The
research reported here was supported in part by NSF Grants DMS 06-06712 and DMS 10-16571,
ONR Grant N00014-08-1-1118 and DOE Grant DE-FG02-08ER25856.

8



References
[1] S. Lauritzen. Graphical Models. Oxford University Press, 1996.

[2] B. K. Natarajan. Sparse approximate solutions to linear systems. SIAM Journal on Computing, 24:227–
234, 1995.

[3] J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms II: Advanced
Theory and Bundle Methods. Springer-Verlag, New York, 1993.

[4] M. Yuan and Y. Lin. Model selection and estimation in the Gaussian graphical model. Biometrika,
94(1):19–35, 2007.

[5] J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the graphical lasso.
Biostatistics, 2007.

[6] M. Wainwright, P. Ravikumar, and J. Lafferty. High-dimensional graphical model selection using ℓ1-
regularized logistic regression. NIPS, 19:1465–1472, 2007.

[7] O. Banerjee, L. El Ghaoui, and A. d’Aspremont. Model selection through sparse maximum likelihood
estimation for multivariate gaussian for binary data. Journal of Machine Learning Research, 9:485–516,
2008.

[8] L. Li and K.-C. Toh. An inexact interior point method for l1-regularized sparse covariance selection.
preprint, 2010.

[9] R. Tibshirani. Regression shrinkage and selection via the lasso. J. Royal. Statist. Soc B., 58(1):267–288,
1996.

[10] L. Sun, R. Patel, J. Liu, K. Chen, T. Wu, J. Li, E. Reiman, and J. Ye. Mining brain region connectivity for
alzheimer’s disease study via sparse inverse covariance estimation. KDD’09, 2009.

[11] A. Nemirovski. Prox-method with rate of convergence O(1/t) for variational inequalities with Lipschitz
continuous monotone operators and smooth convex-concave saddle point problems. SIAM Journal on
Optimization, 15(1):229–251, 2005.

[12] K. Scheinberg and I. Rish. Sinco - a greedy coordinate ascent method for sparse in-
verse covariance selection problem. 2009. Preprint available at http://www.optimization-
online.org/DB HTML/2009/07/2359.html.

[13] J. Duchi, S. Gould, and D. Koller. Projected subgradient methods for learning sparse Gaussian. Confer-
ence on Uncertainty in Artificial Intelligence (UAI 2008), 2008.

[14] Y. E. Nesterov. Smooth minimization for non-smooth functions. Math. Program. Ser. A, 103:127–152,
2005.

[15] Y. E. Nesterov. Introductory lectures on convex optimization. 87:xviii+236, 2004. A basic course.

[16] A. D’Aspremont, O. Banerjee, and L. El Ghaoui. First-order methods for sparse covariance selection.
SIAM Journal on Matrix Analysis and its Applications, 30(1):56–66, 2008.

[17] Z. Lu. Smooth optimization approach for sparse covariance selection. SIAM J. Optim., 19(4):1807–1827,
2009.

[18] X. Yuan. Alternating direction methods for sparse covariance selection. 2009. Preprint available at
http://www.optimization-online.org/DB HTML/2009/09/2390.html.

[19] C. Wang, D. Sun, and K.-C. Toh. Solving log-determinant optimization problems by a Newton-CG primal
proximal point algorithm. preprint, 2009.

[20] M. Fortin and R. Glowinski. Augmented Lagrangian methods: applications to the numerical solution of
boundary-value problems. North-Holland Pub. Co., 1983.

[21] R. Glowinski and P. Le Tallec. Augmented Lagrangian and Operator-Splitting Methods in Nonlinear
Mechanics. SIAM, Philadelphia, Pennsylvania, 1989.

[22] Y. E. Nesterov. A method for unconstrained convex minimization problem with the rate of convergence
O(1/k2). Dokl. Akad. Nauk SSSR, 269:543–547, 1983.

[23] P. Tseng. On accelerated proximal gradient methods for convex-concave optimization. submitted to SIAM
J. Optim., 2008.

[24] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM J. Imaging Sciences, 2(1):183–202, 2009.

[25] D. Goldfarb, S. Ma, and K. Scheinberg. Fast alternating linearization methods for minimizing the sum of
two convex functions. Technical report, Department of IEOR, Columbia University, 2010.

9


