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Abstract
We consider the problem of identifying an activation pattern in a complex, large-
scale network that is embedded in very noisy measurements. This problem is
relevant to several applications, such as identifying traces of a biochemical spread
by a sensor network, expression levels of genes, and anomalous activity or con-
gestion in the Internet. Extracting such patterns is a challenging task specially
if the network is large (pattern is very high-dimensional) and the noise is so ex-
cessive that it masks the activity at any single node. However, typically there are
statistical dependencies in the network activation process that can be leveraged to
fuse the measurements of multiple nodes and enable reliable extraction of high-
dimensional noisy patterns. In this paper, we analyze an estimator based on the
graph Laplacian eigenbasis, and establish the limits of mean square error recov-
ery of noisy patterns arising from a probabilistic (Gaussian or Ising) model based
on an arbitrary graph structure. We consider both deterministic and probabilistic
network evolution models, and our results indicate that by leveraging the network
interaction structure, it is possible to consistently recover high-dimensional pat-
terns even when the noise variance increases with network size.

1 Introduction
The problem of identifying high-dimensional activation patterns embedded in noise is important for
applications such as contamination monitoring by a sensor network, determining the set of differen-
tially expressed genes, and anomaly detection in networks. Formally, we consider the problem of
identifying a pattern corrupted by noise that is observed at the p nodes of a network:

yi = xi + ζi i ∈ [p] = {1, . . . , p} (1)

Here yi denotes the observation at node i, x = [x1, . . . , xp] ∈ Rp (or {0, 1}p) is the p-dimensional

unknown continuous (or binary) activation pattern, and the noise ζi
iid∼ N (0, σ2), the Gaussian distri-

bution with mean zero and variance σ2. This problem is particularly challenging when the network
is large-scale, and hence x is a high-dimensional pattern embedded in heavy noise. Classical ap-
proaches to this problem in the signal processing and statistics literature involve either thresholding
the measurements at every node, or in the discrete case, matching the observed noisy measurements
with all possible patterns (also known as the scan statistic). The first approach does not work well
when the noise level is too high, rendering the per node activity statistically insignificant. In this
case, multiple hypothesis testing effects imply that the noise variance needs to decrease as the num-
ber of nodes p increase [10, 1] to enable consistent mean square error (MSE) recovery. The second
approach based on the scan statistic is computationally infeasible in high-dimensional settings as the
number of discrete patterns scale exponentially (≥ 2p) in the number of dimensions p.

In practice, network activation patterns tend to be structured due to statistical dependencies in the
network activation process. Thus, it is possible to recover activation patterns in a computationally
and statistically efficient manner in noisy high-dimensional settings by leveraging the structure of
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Figure 1: Threshold of noise variance below which consistent MSE recovery of network activation
patterns is possible. If the activation is independent at each node, noise variance needs to decrease
as network size p increases (in blue). If dependencies in the activation process are harnessed, noise
variance can increase as pγ where 0 < γ < 1 depends on network interactions (in red).

the dependencies between node measurements. In this paper, we study the limits of MSE recovery
of high-dimensional, graph-structured noisy patterns. Specifically, we assume that the patterns x
are generated from a probabilistic model, either Gaussian graphical model (GGM) or Ising (binary),
based on a general graph structureG(V,E), where V denotes the p vertices andE denotes the edges.

Gaussian graphical model: p(x) ∝ exp(−xTΣ−1x)

Ising model: p(x) ∝ exp
(
−
∑

(i,j)∈EWij(xi − xj)2
)
∝ exp(−xTLx)

(2)

In the Ising model, L = D−W denotes the graph Laplacian, where W is the weighted adjacency
matrix and D is the diagonal matrix of node degrees di =

∑
j:(i,j)∈EWij . In the Gaussian graphical

model, L = Σ−1 denotes the inverse covariance matrix whose zero entries indicate the absence of an
edge between the corresponding nodes in the graph. The graphical model implies that all patterns are
not equally likely to occur in the network. Patterns in which the values of nodes that are connected
by an edge agree are more likely, the likelihood being determined by the weights Wij of the edges.
Thus, the graph structure dictates the statistical dependencies in network measurements. We assume
that this graph structure is known, either because it corresponds to the physical topology of the
network or it can be learnt using network measurements [18, 25].

In this paper, we are concerned with the following problem: What is the largest amount of noise that
can be tolerated, as a function of the graph and parameters of the model, while allowing for con-
sistent reconstruction of graph-structured network activation patterns? If the activations at network
nodes are independent of each other, the noise variance (σ2) must decrease with network size p to
ensure consistent MSE recovery [10, 1]. We show that by exploiting the network dependencies, it
is possible to consistently recover high-dimensional patterns when the noise variance is much larger
(can grow with the network size p). See Figure 1.

We characterize the learnability of graph structured patterns based on the eigenspectrum of the
network. To this end, we propose using an estimator based on thresholding the projection of the
network measurements onto the graph Laplacian eigenvectors. This is motivated by the fact that
in the Ising model, unlike the GGM, the Bayes rule and it’s risk have no known closed form. Our
results indicate that the noise threshold is determined by the eigenspectrum of the Laplacian. For
the GGM this procedure reduces to PCA and the noise threshold depends on the eigenvalues of the
covariance matrix, as expected. We show that for simple graph structures, such as hierarchical or
lattice graphs, as well as the random Erdös-Rényi graph, the noise threshold can possibly grow in
the network size p. Thus, leveraging the structure of network interactions can enable extraction of
high-dimensional patterns embedded in heavy noise.

This paper is organized as follows. We discuss related work in Section 2. Limits of MSE recov-
ery for graph-structured patterns are investigated in Section 3 for the binary Ising model, and in
Section 4 for the Gaussian graphical model. In Section 5, we analyze the noise threshold for some
simple deterministic and random graph structures. Simulation results are presented in Section 6, and
concluding discussion in Section 7. Proof sketches are included in the Appendix.
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2 Related work
Given a prior, the Bayes optimal estimators are known to be the posterior mean under MSE, the
Maximum A Posterior (MAP) rule under 0/1 loss, and the posterior centroid under Hamming loss
[8]. However, these estimators and their corresponding risks (expected loss) have no closed form
for the Ising graphical model and are intractable to analyze. The estimator we propose based on the
graph Laplacian eigenbasis is both easy to compute and analyze. Eigenbasis of the graph Laplacian
has been successfully used for problems, such as clustering [20, 24], dimensionality reduction [5],
and semi-supervised learning [4, 3]. The work on graph and manifold regularization [4, 3, 23, 2] is
closely related and assumes that the function of interest is smooth with respect to the graph, which is
essentially equivalent to assuming a graphical model prior of the form in Eq. (2). However, the use
of graph Laplacian is theoretically justified mainly in the embedded setting [6, 21], where the data
points are sampled from or near a low-dimensional manifold, and the graph weights are the distances
between two points as measured by some kernel. To the best of our knowledge, no previous work
studies the noise threshold for consistent MSE recovery of arbitrary graph-structured patterns.

There have been several attempts at constructing multi-scale basis for graphs that can efficiently rep-
resent localized activation patterns, notably diffusion wavelets [9] and treelets [17], however their
approximation capabilities are not well understood. More recently, [22] and [14] independently pro-
posed unbalanced Haar wavelets and characterized their approximation properties for tree-structured
binary patterns. We argue in Section 5.1 that the unbalanced Haar wavelets are a special instance of
graph Laplacian eigenbasis when the underlying graph is hierarchical. On the other hand, a lattice
graph structure yields activations that are globally supported and smooth, and in this case the Lapla-
cian eigenbasis corresponds to the Fourier transform (see Section 5.2). Thus, the graph Laplacian
eigenbasis provides an efficient representation for patterns whose structure is governed by the graph.

3 Denoising binary graph-structured patterns
The binary Ising model is essentially a discrete version of the GGM, however, the Bayes rule and
risk for the Ising model have no known closed form. For binary graph-structured patterns drawn
from an Ising prior, we suggest a different estimator based on projections onto the graph Laplacian
eigenbasis. Let the graph Laplacian L have spectral decomposition, L = UΛUT , and denote the
first k eigenvectors (corresponding to the smallest eigenvalues) of L by U[k]. Define the estimator

x̂k = U[k]U
T
[k]y, (3)

which is a hard thresholding of the projection of network measurements y = [y1, . . . , yp] onto the
graph Laplacian eigenbasis. The following theorem bounds the MSE of this estimator.
Theorem 1. The Bayes MSE of the estimator in Eq. (3) for the observation model in Eq. (1), when
the binary activation patterns are drawn from the Ising prior of Eq. (2) is bounded as

RB :=
1

p
E[‖x̂k − x‖2] ≤ min

(
1,

δ

λk+1

)
+
kσ2

p
+ e−p

where 0 < δ < 2 is a constant and λk+1 is the (k + 1)
th smallest eigenvalue of L.

Through this bias-variance decomposition, we see the eigenspectrum of the graph Laplacian deter-
mines a bound on the MSE for binary graph-structured activations. In practice, k can be chosen
using FDR[1] in the eigendomain or cross-validation.

Remark: Consider the binarized estimator x̂′i = 1x̂i>1/2, i ∈ [p]. Then the results of Theo-
rem 1 also provide an upper bound on the expected Hamming distance of this new estimator since
E[dH(x̂′,x)] = MSE(x̂′) ≤ 4MSE(x̂), by the triangle inequality.

4 Denoising Gaussian graph-structured patterns
If the network activation patterns are generated by a Gaussian graphical model, it is easy to see that
the eigenvalues of the Laplacian (inverse covariance) determine the MSE decay. Consider the GGM
prior as in Eq. (2), then the posterior distribution is

x|y ∼ N
(

(2σ2L + I)−1y,
(
2L + σ−2I

)−1
)
, (4)

where I is the identity matrix. The posterior mean is the Bayes optimal estimator with Bayes MSE,
1
p

∑
i∈[p](2λi+σ−2)−1, where {λi}i∈[p] are the ordered eigenvalues of L. For the GGM, we obtain

a result similar to Theorem 1 for the sake of bounding the performance of the Bayes rule.
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Figure 2: Weight matrices corresponding to hierarchical dependencies between node variables.

Theorem 2. The Bayes MSE of the estimator in Eq. (3) for the observation model in Eq. (1), when
the activation patterns are drawn from the Gaussian graphical model prior of Eq. (2) is bounded as

RB :=
1

p
E[‖x̂k − x‖2] =

1

p

p∑
i=k+1

1

2λi
+
kσ2

p
≤ 1

2λk+1
+
kσ2

p

Hence, the Bayes MSE for the estimator of Eq. (3) under the GGM or Ising prior is bounded above
by 2/λk + σ2k/p+ e−p which is the form used to prove Corollaries 1, 2, 3 in the next section.

5 Noise threshold for some simple graphs
In this section, we discuss the eigenspectrum of some simple graphs and use the MSE bounds derived
in the previous section to analyze the amount of noise that can be tolerated while ensuring consistent
MSE recovery of high-dimensional patterns. In all these examples, we find that the tolerable noise
level scales as σ2 = o(pγ), where γ ∈ (0, 1) characterizes the strength of network interactions.

5.1 Hierarchical structure
Consider that, under an appropriate permutation of rows and columns, the weight matrix W has
the hierarchical block form shown in Figure 2. This corresponds to hierarchical graph structured
dependencies between node variables, where ε` > ε`+1 denote the strength of interactions between
nodes that are in the same block at level ` = 0, 1, . . . , L. It is easy to see that in this case the
eigenvectors u of the graph Laplacian correspond to unbalanced Haar wavelet basis (proposed in
[22, 14]), i.e. u ∝ 1

|c2|1c2 −
1
|c1|1c1 , where c1 and c2 are groups of variables within blocks at the

same level that are merged together at the next level (see [19] for the case of a full dyadic hierarchy).

Lemma 1. For a dyadic hierarchy with L levels, the eigenvectors of the graph Laplacian are the
standard Haar wavelet basis and there are L + 1 unique eigenvalues with the smallest eigenvalue
λ0 = 0, and the `th smallest unique eigenvalue (` ∈ [L]) is 2`−1-fold degenerate and given as

λ` =

L∑
i=L−`+1

2i−1εi + 2L−`εL−`+1.

Using the bound on MSE as given in Theorems 1 and 2, we can now derive the noise threshold that
allows for consistent MSE recovery of high-dimensional patterns as the network size p→∞.

Corollary 1. Consider a graph-structured pattern drawn from an Ising model or the GGM with
weight matrix W of the hierarchical block form as depicted in Figure 2. If ε` = 2−`(1−β) ∀` ≤
γ log2 p+1, for constants γ, β ∈ (0, 1), and ε` = 0 otherwise, then the noise threshold for consistent
MSE recovery (RB = o(1)) is

σ2 = o(pγ).

Thus, if we take advantage of the network interaction structure, it is possible to tolerate noise with
variance that scales with the network size p, whereas without exploiting structure the noise vari-
ance needs to decrease with p, as discussed in the introduction. Larger γ implies stronger network
interactions, and hence larger the noise threshold.

5.2 Regular Lattice structure
Now consider the lattice graph which is constructed by placing vertices in a regular grid on a d
dimensional torus and adding edges of weight 1 to adjacent points. Let p = nd. For d = 1
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this is a cycle which has a circulant weight matrix w, with eigenvalues {2 cos( 2πk
p ) : k ∈ [p]} and

eigenvectors correspond to the discrete Fourier transform [13]. Let i = (i1, ..., id), j = (j1, ..., jd) ∈
[n]d. Then the weight matrix of the lattice in d dimensions is

Wi,j = wi1,j1δi2,j2 ...δid,jd + ...+ wid,jdδi1,j1 ...δid−1,jd−1
(5)

where δ is the Kronecker delta function. This form for W and since all nodes have same degree
gives us a closed form for the eigenvalues of the Laplacian, along with a concentration inequality.
Lemma 2. Let λL• be an eigenvalue of the Laplacian, L, of the lattice graph in d dimensions with
p = nd vertices, chosen uniformly at random. Then

P{λL• ≤ d} ≤ exp{−d/8}. (6)

Hence, we can choose k such that λLk ≥ d and k = dpe−d/8e. So, the risk bound becomes O(2/d+

σ2e−d/8 + e−p), and as we increase dimensions of the lattice the MSE decays linearly.
Corollary 2. Consider a graph-structured pattern drawn from an Ising model or GGM based on a
lattice graph in d dimensions with p = nd vertices. If n is a constant and d = 8γ ln p, for some
constant γ ∈ (0, 1), then the noise threshold for consistent MSE recovery (RB = o(1)) is given as:

σ2 = o(pγ).

Again, the noise variance can increase with the network size p, and larger γ implies stronger network
interactions as each variables interacts with more number of neighbors (d is larger).

5.3 Erdös-Rényi random graph structure
Erdös-Rényi (ER) random graphs are generated by adding edges with weight 1 between any two
vertices within the vertex set V (of size p) with probability qp. It is known that the probability of
edge inclusion (qp) determines large geometric properties of the graph [11]. Real world networks
are generally sparse, so we set qp = p−(1−γ), where γ ∈ (0, 1). Larger γ implies higher probability
of edge inclusion and stronger network interaction structure. Using the degree distribution [7], and
a result from perturbation theory, we bound the quantiles of the eigenspectrum of L.
Lemma 3. Let λ• denote an eigenvalue of L chosen uniformly at random. Let PG be the probability
measure induced by the ER random graph and P• be the uniform distribution over eigenvalues
conditional on the graph. Then, for any αp increasing in p,

PG{P•{λ• ≤ pγ/2− pγ−1} ≥ αpp−γ} = O(1/αp) (7)

Hence, we are able to set the sequence of quantiles for the eigenvalue distribution kp = dαpp1−γe
such that PG{λkp ≤ pγ/2 − pγ−1} = O(1/αp). So, we obtain a bound for the expected Bayes
MSE (with respect to the graph) EG[RB ] ≤ O(p−γ) + σ2O(αpp

−γ) +O(1/αp).
Corollary 3. Consider a graph G drawn from an Erdös-Rényi random graph model with p vertices
and probability of edge inclusion qp = p−(1−γ) for some constant γ ∈ (0, 1). If the latent graph-
structured pattern is drawn from an Ising model or a GGM with the Laplacian of G, then the noise
variance that can be tolerated while ensuring consistent MSE recovery (RB = oPG

(1)) is given as:

σ2 = o(pγ).

6 Experiments
We simulate patterns from the Ising model defined on hierarchical, lattice and ER graphs. Since the
Ising distribution admits a closed form for the distribution of one node conditional on the rest of the
nodes, a Gibbs sampler can be employed. Histograms of the eigenspectrum for the hierarchical tree
graph with a large depth, the lattice graph in high dimensions, and a draw from the ER graph with
many nodes is shown in figures 3(a), 4(a), 5(a) respectively. The eigenspectrum of the lattice and
ER graphs illustrate the concentration of the eigenvalues about the expected degree of each node.

We use iterative eigenvalue solvers to form our estimator and choose the quantile k by minimizing
the bound in Theorem 1. We compute the Bayes MSE (by taking multiple draws) of our estimator
for a noisy sample of node measurements. We observe in all of the models that the eigenmap
estimator is a substantial improvement over Naive (the Bayes estimator that ignores the structure).
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(a) Eigenvalue Histogram for hierarchical tree. (b) Estimator Performance

Figure 3: The eigenvalue histogram for the binary tree, L = 11, β = .1 (left) and the performance
of various estimators (right) with β = 0.05 and σ2 = 4, both with γ = 1.

(a) Eigenvalue Histogram for Lattice. (b) Estimator Performance

Figure 4: The eigenvalue histogram for the lattice with d = 10 and p = 510 (left) and estimator
performances (right) with p = 3d and σ2 = 1. Notice that the eigenvalues concentrate around 2d.

(a) Eigenvalue Histogram for Erdös-Rényi. (b) Estimator Performance

Figure 5: The eigenvalue histogram for a draw from the ER graph with p = 2500 and qp = p−.5

(left) and the estimator performances (right) with qp = p−.75 and σ2 = 4. Notice that the eigenval-
ues are concentrated around pγ where qp = p−(1−γ).

(a) Eigenvalue Histogram for Watts-Strogatz. (b) Estimator Performance

Figure 6: The eigenvalue histogram for a draw from the Watts-Strogatz graph with d = 5 and
p = 45 with 0.25 probability of rewiring (left) and estimator performances (right) with 4d vertices
and σ2 = 4. Notice that the eigenvalues are concentrated around 2d.
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See Figures 3(b), 4(b), 5(b). For the hierarchical model, we also sample from the posterior using a
Gibbs sampler and estimate the posterior mean (Bayes rule under MSE). We find that the posterior
mean is only a slight improvement over the eigenmap estimator (Figure 3(b)), despite it’s difficulty
to compute. Also, a binarized version of these estimators does not substantially change the MSE.
We also simulate graphs from the Watts-Strogatz ‘small world’ model [26], which is known to be an
appropriate model for self-organizing systems such as biological systems and human networks. The
‘small world’ graph is generated by forming the lattice graph described in Section 5.2, then rewiring
each edge with some constant probability to another vertex uniformly at random such that loops
are never created. We observe that the eigenvalues concentrate (more tightly than the lattice graph)
around the expected degree 2d (Figure 6(a)) and note that, like the ER model, the eigenspectrum
converges to a nearly semi-circular distribution [12]. Similarly, the MSE decays in a fashion similar
to the ER model (Figure 6(b)).

7 Discussion
In this paper, we have characterized the improvement in noise threshold, below which consistent
MSE recovery of high-dimensional network activation patterns embedded in heavy noise is possi-
ble, as a function of the network size and parameters governing the statistical dependencies in the
activation process. Our results indicate that by leveraging the network interaction structure, it is
possible to tolerate noise with variance that increases with the size of the network whereas with-
out exploiting dependencies in the node measurements, the noise variance needs to decrease as the
network size grows to accommodate for multiple hypothesis testing effects.

While we have only considered MSE recovery, it is often possible to detect the presence of patterns
in much heavier noise, even though the activation values may not be accurately recovered [16].
Establishing the noise threshold for detection, deriving upper bounds on the noise threshold, and
extensions to graphical models with higher-order interaction terms are some of the directions for
future work. In addition, the thresholding estimator based on the graph Laplacian eigenbasis can
also be used in high-dimensional linear regression or compressed sensing framework to incorporate
structure, in addition to sparsity, of the relevant variables.

Appendix
Proof sketch of Theorem 1: First, we argue that whp, xTLx ≤ δp, where 0 < δ < 2 is a constant.
Let Ω = {x : xTLx ≤ δp} and Ω̄ denotes its complement. By Markov’s inequality, for t > 0,

P{xTLx > C} = P{etx
TLx > etC} ≤ e−tC Eetx

TLx

Let ν denote the uniform distribution over {0, 1}p and N(L) =
∫
ν(dx)e−x

TLx. Then,

EexT (tL)x =
∫
ν(dx)N(L)−1e−x

TLxex
T (tL)x =

∫
ν(dx)e−xT (1−t)Lx

N(L) = N((1−t)L)
N(L) ≤ 2p

where the last step follows since N(L) =
∑
x∈{0,1}p e

−xTLx and L~1 = 0 implying that 1 ≤
N(L), N((1− t)L) ≤ 2p,∀t ∈ (0, 1). This gives us the Chernoff-type bound,

P(Ω̄) ≤ P{xTLx > C} ≤ e−tC2p = e(log 2−tC/p)p ≤ e−p

by setting C = δp and δ = 1+log 2
t . If we choose t < 1+log 2

2 then δ < 2.

Let ui denote the ith eigenvector of the graph Laplacian L, then under this orthonormal basis,

E[‖x̂k − x‖2] ≤ E[

p∑
i=k+1

uTi x
2| Ω] + pP (Ω̄) + kσ2 ≤ sup

x:xTLx≤δp

p∑
i=k+1

uTi x
2 + p e−p + kσ2.

We now establish that supx:xTLx≤δp
∑p
i=k+1(uTi x)2 ≤ pmin(1, δ/λk+1), and the result follows.

Let x̃i = uTi+kx, i ∈ [p − k] and note that xTLx =
∑p
i=1 λi(u

T
i x)2 ≥

∑p
i=k+1 λix̃

2
i , for λi the

ith eigenvalue of L. Consider the primal problem,

max

p−k∑
j=1

x̃2
j such that

p−k∑
j=1

λjx̃
2
j ≤ δp, x̃ ∈ Rp−k
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Note that x contained within the ellipsoid xTLx ≤ δp, x ∈ {0, 1}p implies that x̃ is feasible, so
a solution to the optimization upper bounds supx:xTLx≤δp

∑p
i=k+1(uTi x)2. By forming the dual

problem, we find that the solution, x∗, to the primal problem attains a bound of ||x̃||2 ≤ ||x̃∗||2 =
δp/λk+1. Also, ||x̃||2 ≤ ||x||2 ≤ p, so we obtain the desired bound.

Proof sketch of Theorem 2: Under the same notation as the previous proof, notice that uTi x ∼
N(0, (2λ)−1

i ) independently over i ∈ [p]. Then E||x̃||2 =
∑p
i=k+1(2λi)

−1 and, so, 1
pE||x̂−x||2 =

1
pE||x̃||

2 + 1
pE||U[k]ζ||2 = 1

p

∑p
i=k+1(2λi)

−1 + σ2k/p ≤ (2λk+1)−1 + σ2k/p.

Proof sketch of Corollary 1: Let `∗ = (1 − γ) log2 p. Since εi = 2−i(1−β) ∀i < L − `∗ + 1 and
εi = 0 otherwise, we have for ` ≥ `∗ and since L = log2 p, λ` ≥ 2β(L−`∗)2β−1 = pβγ2β−1, which
is increasing in p. Therefore, we can pick k = 2`

∗
and since 2`

∗
/p = p−γ , the result follows.

Proof sketch of Lemma 2: If v1, ..., vd are a subset of the eigenvectors of w with eigenvalues
λ1, ..., λd, then W (v1 ⊗ ...⊗ vd) = (λ1 + ...+ λd)(v1 ⊗ ...⊗ vd) where ⊗ denotes tensor product.
Noting that the Dii = 2d,∀i ∈ [n]d then we see that the Laplacian L has eigenvalues λLi =

2d − λWi =
∑[d]
j (2 − λwij ) for all i ∈ [n]d. Recall λwk = 2 cos( 2πk

n ) for some k ∈ [n]. Let i be
distributed uniformly over [n]d. Then E[λwij ] = 0, and by Hoeffding’s inequality,

P{
d∑
j=1

(2− λwij )− 2d ≤ −t} ≤ exp{−2t2/16d}

So, using t = d we get that P{
∑d
j=1(2− λwij ) ≤ d} ≤ exp{−d8 } and the result follows.

Proof of Lemma 3: We introduce a random variable • that is uniform over [p]. Note that, con-
ditioned on this random variable, d• ∼ Binomial(p − 1, qp) and Var(d•) ≤ pqp. We decompose
the Laplacian, L = D −W = (d̄I −W) + (D − d̄I), into the expected degree of each vertex
(d̄ = (p− 1)qp), W and the deviations from the expected degree and use the following lemma.
Lemma 4 (Wielandt-Hoffman Theorem). [15, 27] SupposeA = B+C are symmetric p×pmatrices
and denote the ordered eigenvalues by {λAi , λBi }

p
i=1. If ||.||F denotes the Frobenius norm,

p∑
i=1

(λAi − λBi )2 ≤ ||C||2F (8)

Notice that EG||D − d̄I||2F /p = Var(d•) and so EG||λd̄I−W − λL||2/p ≤ pqp = pγ (i). Also, it
is known that for γ ∈ (0, 1) the eigenvalues converge to a semicircular distribution[12] such that
PG{|λW• | ≤ 2

√
pqp(1− qp)} → 1. Since 2

√
pqp(1− qp) ≤ 2pγ/2, we have EG[(λW• )2] ≤ 4pγ

for large enough p (ii). Using triangle inequality,

EG[(λL• − (p− 1)qp)
2] ≤ EG[(λL• − ((p− 1)qp − λW• ))2] + EG[(λW• )2] ≤ 5pγ , (9)

where the last step follows using (i), (ii) and λd̄I−Wi = (p− 1)qp − λWi . By Markov’s inequality,

PG{P•{λL• ≤
pγ

2
− pγ−1} ≥ αpp−γ} ≤

pγ

αp
EG[P•{λL• ≤

pγ

2
− pγ−1}] (10)

for any αp which is an increasing positive function in p. We now analyze the right hand side.

P•{|λL• − (p− 1)qp| ≥ ε} ≤ ε−2E•[(λL• − (p− 1)qp)
2]

Note that P•{λL• ≤ pqp − qp − ε} ≤ P•{|λL• − (p− 1)qp| ≥ ε} and setting ε = pqp/2 = pγ/2,

P•{λL• ≤ pγ/2− pγ−1} ≤ 4p−2γE•[(λL• − (p− 1)qp)
2].

Hence, we are able to complete the lemma, such that for p large enough, using Eqs. (10) and (9)

PG{P•{λL• ≤
pγ

2
− pγ−1} ≥ αpp−γ} ≤

4

αppγ
EG[E•[(λL• − (p− 1)qp)

2]] ≤ 20

αp
. (11)

Proof sketch of Corollary 3: By lemma 3 and appropriately specifying the quantiles,

EGRB ≤ EG
[

2

λkp
+ σ2 kp

p
+ e−p

]
≤
(

2

pγ/2− pγ−1
+ σ2O(αpp

−γ) + e−p
)

+O(
1

αp
) (12)

Note that we have the freedom to choose αp =
√
pγ/σ2 making σ2O(αpp

−γ) = O(
√
σ2/pγ) =

o(1) and O(1/αp) = o(1) if σ2 = o(pγ).
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