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Abstract

We consider Markov decision processes where the valuesgbdhameters are
uncertain. This uncertainty is described by a sequence stedesets (that is,
each set contains the previous one), each of which corrésgora probabilistic
guarantee for a different confidence level so that a set ofisgilole probability
distributions of the unknown parameters is specified. Tdnisitilation models the
case where the decision maker is aware of and wants to esploié (yet impre-
cise) a-priori information of the distribution of paramesteand arises naturally in
practice where methods to estimate the confidence regioarahpeters abound.
We propose a decision criterion baseddistributional robustnessthe optimal
policy maximizes the expected total reward under the mostraarial probability
distribution over realizations of the uncertain paran®that is admissible (i.e.,
it agrees with the a-priori information). We show that firglithe optimal dis-
tributionally robust policy can be reduced to a standardisotMDP where the
parameters belong tosingle uncertainty set, hence it can be computed in poly-
nomial time under mild technical conditions.

1 Introduction

Sequential decision making in stochastic dynamic envimmisy also called the “planning prob-
lem,” is often modeled using a Markov Decision Process (ML, 2, 3]). In practiceparameter
uncertainty- the deviation of the model parameters from the true ones(de- and transition prob-
ability p) — often causes the performance of “optimal” policies torddg significantly [4]. Many
efforts have been made to reduce such performance variatidar the robust MDP framework
(e.g., [5, 6, 7, 8,9, 10]). In this context, it is assumed thatparameters can be any member of a
known set (termed thencertainty sét and solutions are ranked based on their performance under
the (respective) worst parameter realizations.

In this paper we extend the robust MDP framework to deal wittbpbilistic information on uncer-
tain parameters. To motivate the problem, let us considefdlowing example. Suppose that an
agent (car, plane, robot etc) wants to find a fastest path finermource location to the destination. If
the passing time to ar@is uncertain and can be very large, then the solution to tdD$ would
tend to take a detour and avald However, if it is further known that the passing time candrgé
only when some unusual event (whose chance is less thari(0§ay,such as a storm, happens, and
otherwise the passing time is reasonable, then avoilintay be overly pessimistic. The statement
“the probability of the (uncertain) passing time being &igat mosi 0%” is important, and should
be incorporated into the decision making paradigm. Indéedas observed that since the robust
MDP framework ignores probabilistic information, it caropide conservative solutions [11, 12].

A different approach to embeding prior information is by ptileg a Bayesian perspective on the
parameters of the problem; see [11] and references thekmmever, a complete Bayesian prior
to the model parameters may be difficult to conjure as thesadetimaker may not have a reliable
generative model to the uncertainty. For example, in thk pnning problem above, the decision
maker may not know how to assign probabilities to the modabdyics when a storm occurs. Our



approach offers a middle ground between the fully Bayesfgraach and the robust approach:
we want the decision maker to be able to use prior informdtistnwe do not require a complete
Bayesian interpretation.

We adapt the distributionally robust approach to MDPs ump@dgameter uncertainty. The distri-
butionally robust formulation has been extensively stddiad broadly applied isingle stageop-
timization problems to effectively incorporates a-priprobabilistic information of the unknown
parameters (e.g., [13, 14, 15, 16, 17, 18]). In this framé&nbie uncertain parameters are regarded
as stochastic, with a distributignthat is not precisely observed, yet assumed to belong tquaios-
known setC. The objective is then formulated based on the worst-caalysia over distributions
in C. That is, given a utility functionu(z, £) wherez € X is the optimizing variable angd is the
unknown parameter, distributionally robust optimizatoivesmax, c x [inf,tec Eeopu(z, 5)]. In-
deed, such approach has also been developed in the mattefiaince community, usually in the
static setup [19, 20]. Here the goal is to optimize a so-datsherent risk measuyevhich is shown
to be equivalent to a distributionally robust formulation.

From a decision theory perspective, the distributionatlipust approach coincides with the cele-
brated MaxMin Expected Utility framework [21, 22], whictegts that if a preference relationship
among actions satisfies certain axioms, then the optimialactaximizes the minimal expected util-
ity with respect to a class of distributions. This approadtirasses the famoungglect of probability
cognitive biag23], i.e., the tendency to completely disregard probgbilihen making a decision
under uncertainty. Two extreme cases of such biases arethgalcy biaswhich roughly speak-
ing, can be states as “since a disaster has never occurred ttexver will occur,” and theero-risk
bias which stands for the tendency of individuals to prefer $iahefits that are certain to large
ones that are uncertain, regardless of the size of the foélanefit and the expected magnitude of
the uncertain one. It is easy to see that the nominal app@aatithe robust approach suffers from
normalcy bias and zero-risk bias, respectively.

We formulate and solve the distributionally robust MDP wi#ispect to th@ested uncertainty set
The nesting structure implies that there awdifferent levels of estimation, thati€! C C2 C ---C™,
representing the possible parameters of the problem. Tdieapility that the parameters of state
s belong toC! is at least\;. We also require the parameters to be state-wise indepefiden
the uncertainty set is a product set over states). Policesh&n ranked based on their expected
performance under the (respective) most adversariaitulision. The main contribution of this paper
is showing that for both the finite horizon case and the distedireward infinite horizon case, such
optimal policy satisfies a Bellman type equation, and carobesd via backward iteration.

Motivating example. The nested-set formulation is motivated by the “multi-so@f setup, where

in different scenarios the parameters are subject to diftdevels of uncertainty. For instance, in
the path planning example, the uncertainty of the passing tif2( can be modeled as a nested-set
with two uncertainty sets: the parameters with at 885t belong to a small uncertainty set corre-
sponding to “no storm,” and guaranteed to belong to a largstaase uncertainty set representing
“storm” with probability of at mostl0%. In fact the multi-layer formulations allows the decision
maker to handle more than two scenarios. For example, a plmencounter scenarios such as
“normal,” “storm,” “big storm,” and even “volcano ashesdah corresponding to a different level of
parameter uncertainty. One appealing advantage of thediest formulation is that it does not re-
quire a precise description of the uncertainty, which leag®nsiderable flexibility. For example, if
the uncertainty set of a robust MDP is not precisely knowantbne can instead solve distribution-
ally robust MDP with a 2-set formulation where the inner amel duter sets represent, respectively,
an “optimistic” estimation and a “conservative” estimatioAdditionally, the nested-set formula-
tion also results from estimating the distributions of paeters via sampling. Such estimation is
often imprecise especially when only a small number of samd available. Instead, estimating
uncertainty sets with high confidence can be made more aeguanad one can easily sharpen the
approximation by incorporating more layers of confidende §e=, increase).

2 Preliminaries and Problem Setup

A (finite) MDP is defined as a 6-tuple T, v, S, As, p, r > whereT' is the possibly infinite decision
horizon;y € (0, 1] is the discount factor$ is the finite state setd is the finite action set of state
p is the transition probability; anclis the expected reward. That is, fore S anda € A, 7(s, a)



is the expected reward aps’|s, ) is the probability to reach staté. Following Puterman [1], we
denote the set of all history-dependent randomized psliojdI” *, and the set of all Markovian
randomized policies bl #. We use subscriptto denote the value associated with state.g. r,
denotes the vector form of rewards associated with staadr, is the (randomized) action chosen
at states for policy 7. The elements in vectqgs, are listed in the following way: the transition
probabilities of the same action are arranged in the samekbklnd inside each block they are
listed according to the order of the next state. We suis@ denote the (random) state followirg
andA(s) to denote the probability simplex a#;. We useQ) to represent cartesian product, e.g.,
P = &,cs Ps- Forapolicyr, we denote the expected (discounted) total-reward undenpsers
p, r by u(m, p,r), thatis,

T
u(m, p,r) £ EE{Z viflr(si, ai)}-
i=1

In this paper we propose and sollistributionally robusipolicy under parameter uncertainty, which
incorporates a-prior information of how parameters aréritisted. Suppose it is known that
andr follows some unknown distributiop that belongs to a sets. We evaluate each policy
by its expected performance under the (respective) mostradwal distribution of the uncertain
parameters, and a distributionally robust policy is therogt policy according to this measure.

Definition 1. A policy* € 71 is distributionally robustwvith respect taCs if it satisfies that for
all m € TIAE,

inf /U(mp,r)du(p,r)ﬁ inf /U(W*,p,r)du’(p,r)-
neCs weCs

Next we specify the set of admissible distributions of utaiarparameter€gs investigated in this
paper. LeD = \g < A\ < A <--- <\, = 1,andPl C P2 C ... C P fors € S. We use the
following set of distribution€ s for our model.

Cs 2 {ulp = ns; ps € Cs, Vs € S},
ses (1)

whereCy & {pg|us(P?) = 15 ps(PH) > Ny i =1,--- ,n—1}.

We briefly explain this set of distributions. For a statethe conditionus(P?) = 1 means that
the unknown parametefp,, r;) are restricted to the outermost uncertainty set; and thditon
us(PY) > X\; means that with probability at least, (ps,rs) € Pi. Thus,Pl, .. P provides
probabilistic guarantees ¢p, r,) for n different uncertainty sets (or equivalently confidence lev
els). Note thaty), ¢ 115 stands for the product measure generateg hywhich indicates that the
parameters among different states are independent. Thootithis paper we make a standard as-
sumption (cf [5, 6, 8]) thaP! is nonempty, convex and compact.

3 Distributionally robust MDPs: The finite-horizon case.

In this section we show how to solve distributionally robpsticies to MDPs having finitely many
decision stages. We assume that when a state is visitedpiguitines, each time it can take a
different parameter realizationgn-stationary modgl Equivalently, this means that multiple visits
to a state can be treated as visiting different states, wiigtts to the Assumption 1 without loss
of generality (by adding dummy states). Thus, we can pautiti according to the stage each state
belongs to, and le; be the set of states belong#é stage. The non-stationary model is proposed
in [5] because the stationary model is generally intraetaold a lower-bound on it is given by the
non-stationary model.

Assumption 1. (i) Each state belongs to only one stage; (ii) the terminataed equals zero; and
(iii) the first stage only contains one stat®.

We next definesequentially robust policiethrough a backward induction as a policy that is robust
in every step for astandardrobust MDP. We will later shows that sequentially robusigiet are
also distributionally robust by choosing the uncertairgyaf the robust MDP carefully.

Definition 2. LetT < oo and letP; be the uncertainty set of state Define the following:



1. Fors € St, thesequentially robust valugr(s) = 0.

2. Fors € S; wheret < T, thesequentially robust valug (s) andsequentially robust action
7, are defined as

o) & g { i, BE0) + ()]}

T € arg max { min _ EP:[r(s,a) + 7o s }
gﬂ’sEA(s) (Ps,rs)EP: [( ) 7t+1(_)]

3. A policy7* is asequentially robust policw.r.t. Ps if Vs € S, 7 is a sequentially robust
action.

A standard game theoretic argument implies that sequintiddust actions, and hence sequentially
robust policies, exist. Indeed, from the literature in retdMDP (cf [5, 7, 8]) it is easy to see that a
sequentially robust policy is the solution to the robust Mitiere the uncertainty set¢g), P,. The
following theorem, which is the main result of this papewshk that any sequentially robust policy
(w.r.t. a specific uncertainty set) is distributionally robust.

Theorem 1. LetT < oco. Let Assumption 1 hold, and suppose théatis a sequentially robust
policy w.r.t. &, Ps, where

Py = {Z(/\l — Aim1)(r5(2), ps (D)) |(Ps (6), 15(0)) € Py}
i=1
Then

1. =* is a distributionally robust policy with respect th; and

2. there existg* € C, such that{z*, u*) is a saddle point. That s,

sup [ u(r,p.r) di (p.x) = [l po)du*(px) = inf [ (s, pux) ),
nellHE pneCs
Therefore, to find the sequentially robust policy, we nedg tmsolve the sequentially robust action.
Theorem 2. Denote)y = 0. For s € S; wheret < T', the sequentially robust action is given by

n

o =arg max, { ;(Ai i) i ()T (L) V] b 2)
wherem = | Ag|, v+41 is the vector form ofi; ., (s’) for all s’ € S;14, and
7 a Vitie] (m)
o {’t+1é;(m)

Theorem 2 implies that the computation of the sequentialbust action at a statecritically de-
pends on the structure of the s&®. In fact, it can be shown that for “good” uncertainty sets,
computing the sequentially robust action is tractable.sTaim is made precise by the following
corollary. We omit the proof that is standard.

Corollary 1. The sequentially robust action for statean be found in polynomial-time, if for each
i =1,---,n, P! has a polynomial separation oracle. Herepalynomial separation oraclef a
convex set{ C R™ is a subroutine that giver € R, reports in polynomial time whether € H,
and if the answer is negative, it finds a hyperplane that ssjeax and .

3.1 Proof of Theorem 1

We prove Theorem 1 in this section. The outline of the proafsisollows: We first show that for a
given policy, the expected performance under an admisgilolepends only on the expected value

of the parameters. Then we show that the set of expected pteesiis indee®), ¢ P,. Thus the

4



distributionally robust MDP reduces to the robust MDP w@&h, _ ¢ P, being the uncertainty set.
Finally, by applying results from robust MDPs we prove thedtem. Some of the intermediate
results are stated with proof omitted due to space consdrain

Let h, denote a history up to stageands(h,) denote the last state of histoky. We usery, (a)
to represent the probability of choosing an actiosit states(h,), following a policyr and under a
historyh;. At + 1 stage history, withh, followed by actiona and states’ is written as(hy, a, ).
With an abuse of notation, we denote the expected rewagi-tmder a history as:

T
U(']T,p,r, ht) £ ]EE{Z vi_tr(sh ai)|(817 ay - - 1St) = ht}
1=t
For 7 € THE and u € Cs()), define w(m, p,he) 2 Epoeopts(m,p,1,h(t) =
Ju(m,p,r, h(t)du(p,r). Thus,w(m,u, (s™) = [u(r,p,r)du(p,r) is the minimax objec-
tive. One can show that the following recursmn formula fof-) holds, due to the fact that
u(p,r) = ®seS ts(Ps, Ts).

Lemma 1. Fix 7 € II#%, , € Cg and a historyh; wheret < T, denoter = E,(r), p = E,(p),
then we have:

wruh) = [ 30w @) (r(s(hu),a) + 3 (s Is(he)s @) (s (hes0:5) ) ity (Pats Fsc)

aeAs(ht) s'esS
= > m@(F(s(h),0) + 3 B(s'Is(he), )w(m s (s, ) ).
aEAS(ht) s'eS

From Lemma 1, by backward induction, one can show the foliguémma holds, which essentially
means that for any policy, the expected performance undadiaissible distributiop only depends
on the expected value of the parameters upderhus, the distributionally robust MDP reduces to
a robust MDP.

Lemma2. Fix 7 € I andp € Cg, denotep = E,(p) andT = E,(r). We have:
w(m, pu, (s™)) = u(r,p,T).

Next we characterize the set of expected value of the pasamet

Lemma 3. Fix s € S, we have(E,,_ (ps, rs)|ps € Cs} = Ps.

Note that Lemma 3 implies thdtE, (p, )|y € Cs} = @, 5 P,. We complete the proof of the
Theorem 1 using the equivalence of distributionally roBdBtPs and robust MDPs where the un-
certainty set igY), ¢ P,. Recall that for each € S, P, is convex and compact. Itis well known
that for robust MDPs, a saddle point of the minimax objecéxests (cf [5, 8]). More precisely,
there existsr* € II7'7, (p*,1*) € ®, .4 Ps such that

sup u(m,p*,r*) =u(r",p*,r) = inf  w(7*,p,r).
TEllHR (rP)EQ.cs Ps
Moreover, 7* and (p*,r*) can be constructed state-wiser* = @, g7 and (p*,r*) =

®,cq(Pi,rs), and for eachs € Sy, 7%, (p, ri) solves the foIIowmg zero-sum game

max min _ EP(r(s,a) + v0i41(s)).
Ts (pyyre)€Ps

It follows that 7 is any sequentially robust action, and hemcecan be any sequentially robust
policy. From Lemma 3, there exisig; € C, that satisfiesE,- (ps,rs) = (pi,r). Letp* =
X ,eq i By Lemma 2 we have

sup ’LU(T([L ”“) sup u(m, p*,r*);

nellHR TellHE

w(m”, 1, ““) u(m”, p*,r");

f , , 1n1 f *7 , .
ulencsw( i (5) = (p,r)16n®s755u<ﬂ- P.r)



This leads tasup . cprr w(m, 1%, (s™)) = w(x*, p*, (s™)) = inf,ec, w(m*, 1, (s™)). Thus,
part (ii) of Theorem 1 holds. Note that part (ii) immediatetyplies part (i) of Theorem 1.

Remark: Lemma 1 holds for a broader class of distribution sets thanliseussed here. Indeed,
the only requirement of for Lemma 1 to hold is the state-wise decomposibility. Thane the
results presented in this paper may well extend to disidbatly robust MDPs whose parameters
belongs to other interesting sets of distributions, such set of parametric distribution (Gaussian,
exponential, binomial etc) with the distribution paranmetet precisely determined.

4 Distributionally robust MDP: The discounted reward infini te horizon case.

In this section we show how to compute a distributionallyusttpolicy for infinite horizon MDPs.
Specifically, we generalize the notion of sequentially sitpolicies to discounted-reward infinite-
horizon MDPs, and show that it is distributionally robustimappropriate sense.

Definition 3. LetT = oo andy < 1. Denote the uncertainty set By = ®S755. We define the
following:

1. Thesequentially robust valug,, (s) w.r.t. P, is the unique solution to the following set of
equations:

Uoo(8) = max { min  EP:[r(s,a) +'yf;00(§)]}, Vs e S.
TEA(S) L (para)€Ps

2. Thesequentially robust action.r.t. P, 7, is given by

Ts € arg max { min EES[T(S,Q)+’7’L~)OO(§)]}.
WSGA(S) (psvrs)eﬁs °

3. A policy7* is a sequentially robust policw.r.t. P if Vs € S, 7% is a sequentially robust
action.

The sequentially robust policy is well defined, since théofeing operatorZ : RISl — RISl is a~
contraction for| - ||, norm.

{Lv}(s) 2 max  min [Y qla)r(s,a) +7 Y S ala)p(s']s. a)u(s')].
AEA) (pr)€Ps 4 a€A, s'€S
Furthermore, given any, applyingL is equivalent to solving a minimax problem, which by Theo-
rem 2 can be efficiently computed. Hence, by applyihgn any initialv® € RI°! repeatedly, the
resulting value vector will converge to the sequentiallyust valuev exponentially fast.

Note that in the infinite horizon case, we cannot model thiesyss (1) having finitely many states,
and (2) each visited at most once. In contrast, we have tr edflaer one of these two assumptions,
leading to two different natural formulations. The firstrfarlation, termedhon-stationary model

is to treat the system as having infinitely many states, e&ited at most once. Therefore, we
consider an equivalent MDP with an augmented state spa@¥evelach augmented state is defined
by a pair(s,t) wheres € S andt, meaning state in thet'" horizon. Thus, each augmented state
will be visited at most once, which leads to the following skdlistributions.

C,g’oé{ﬂ'M: ® Hs,t5 st 6687VS€S7 Vt:1721}
SESt=1,2,---
The second formulation, termextiationary modeltreats the system as having a finite number of
states, while multiple visits to one state is allowed. Tkatfia states is visited for multiple times,
then each time the distribution (of uncertain parametegsp the same. Mathematically, we can
adapt the augmented state space as in the non-stationasi,raod requires that, ; does not
depend ort. Thus, the set of admissible distributions is

ésé{ulﬂ: ® Ms,t; /Ls7t:/LS;M3€CS,VS€S7 Vt:172a}
seS,t=1,2,--

The next theorem is the main result of this section; it shdved & sequentially robust policy is
distributionally robust to both stationary and non-stadicy models.



Theorem 3. leenT oo and~y < 1, any sequentially robust policy w.r.tQ), P, whereP, =
{300 (X = A1) (xs (), ps (9)) [(ps (i), w5 (7)) € Pi}, is distributionally robust with respect g,
and with respect Q5.

Due to space constraints, we omit the proof details. Thechdsa for proving the:go case is to

consider al-truncated problem, i.e., a finite horizon problem that stapstagel” with a termi-
nation rewardv(-), and show that the optimal strategy for this problem, whila isequential
robust strategy, coincides with that of the infinite horizoe. Indeed, given any sequential robust
strategyr™, one can construct a stationary distributijghsuch that(z*, ¢*) is a saddle point for
SUD e R infﬂeggo [ u(m,p,r)du(p,r). The proof toCs follows fromCs C CZ andu* € Cs.

We remark that the decision maker is allowed to take nonestaty strategies, although the distri-
butionally robust solution is proven to be stationary.

Before concluding this section, we briefly compare the stetiy model and the non-stationary
model. These two formulations model different setups: éfgkistem, more specifically the distribu-
tion of uncertain parameters, evolves with time, then the-stationary model is more appropriate;
while if the system is static, then the stationary model efgnable. For any given policy, the worst
expected performance under the non-stationary modelgee\d lower bound to that of the station-
ary model sinc€gs C CZ°. Thus, one can use the non-stationary model to approxitmatationary
model, when the latter is intractable (e.g., in the finiteizam case; see Nilim and El Ghaoui [5]).
When the horizon approaches infinity, such approximati@obees exact, as we showed in this sec-
tion, the optimal solutions to both formulations coincided can be computed by iteratively solving
a minimax problem.

5 Numerical simulations

In this section we illustrate with numerical examples thairizorporating additional probabilistic
information, the distributional robust approach handlesautainty in a more flexible way, which
often leads to a better performance than the nominal appraraa the robust approach.

We consider a path planning problem: an agent wants to ekik&1 maze (shown in Figure 1)
using the least possible time. Starting from the upperelefher, the agent can move up, down, left
and right, but can only exit the grid at the lower-right carri¢ere, a white box stands for a normal
place where the agent needs one time unit to pass througradedtbox represents a “shaky” place.
To be more specific, we consider two setups. The first one isiticertain cost case, where the
true (yet unknown to the planning agent) time for the agemiaiss through a “shaky” place equals
x =1+ é(\), ande()\) is an exponential distributed random variable with paramkt The three
approaches are formulated as follows: the nominal apprtzdas the most likely value (i.el) as
the parameter; the robust approach takes + 3/\] as the uncertainty set; and the distributional
robust approach takes into account the additional infaonabatPr(z € [1,1+ log2/A]) > 0.5
andPr(z € [1,14 2log2/A]) > 0.75. We varyl/\, and test these approaches using runs for
each parameter set. The results are reported in Figure 2 (a).

Figure 1: The maze for the path planning problem.

The second case is the uncertain transition case: if an ageohes a “shaky” place, then the
transition becomes unpredictable — in the next step witbabodity 20% it will make an (unknown)



jump. The three approaches are set as follows: The nomipabaph neglects this random jump.
The robust approach takes a worst-case analysis, i.estitrees that witl20% the agent will jump

to the spot with the highest cost-to-go. The distributibnedbust approach takes into account an
additional information that if a jump happens, the prohigbthat it jumps to a spot that is left to
the current place is no more than Each policy is tested ove&00 runs, while the true jump is set
as with probability0.2+ the agent returns to the starting point (“reboot”), witB(1 — ~) the agent
stay in the current position for a time unit (“stuck”). Thesuéts are reported in Figure 2 (b).

(a) Uncertain cost (b) Uncertain transition
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Figure 2: Simulation results of the path planning problem.

In both the uncertain cost and the uncertain transition gty setups, the distributionally robust
approach outperforms the other two approach over virtithlywhole range of parameters. This
is well expected, since additional probabilistic inforioatis available to and incorporated by the
distributionally robust approach.

6 Concluding remarks

In this paper we proposed a distributionally robust appndacmitigate the conservatism of the
robust MDP framework and incorporate additional a-priavhabilistic information regarding the
unknown parameters. In particular, we considered the desgestructured parameter uncertainty
to model a-prior probabilistic information of the paramete We proposed to find a policy that
achieves maximum expected utility under the worst adnisssiistribution of the parameters. Such
formulation leads to a policy that is obtained through a malh type backward induction, and can
be solved in polynomial time under mild technical conditson

A different perspective on our work is that we develop a pgled approach to the problem of
uncertainty set design in multi-stage decision problefnisa$ been observed that shrinking the un-
certainty set in single-stage problems leads to betteopmence. We provide a principled approach
to the problem of uncertainty set selection: the distritmaily robust policy is a robust policy w.r.t. a
carefully designed single uncertainty set that dependh@a-priori knowledge.

A natural question is how can we take advantage of the digtoibally robust approach and solve
(exactly) a full-blown Bayesian generative model MDP? Thebem with taking an increasingly
refined nested uncertainty structure (i.e., increasing that of representation: the equivalent ro-
bust MDP uncertainty set may become too complicated to septefficiently. Nevertheless, if it is
possible to offer upper and lower bounds on the probabifigach nested sets (based on the gener-
ative model), the corresponding distributionally robustigies provide performance bounds on the
optimal policies in the, often intractable, Bayesian model
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