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Abstract

We consider Markov decision processes where the values of the parameters are
uncertain. This uncertainty is described by a sequence of nested sets (that is,
each set contains the previous one), each of which corresponds to a probabilistic
guarantee for a different confidence level so that a set of admissible probability
distributions of the unknown parameters is specified. This formulation models the
case where the decision maker is aware of and wants to exploitsome (yet impre-
cise) a-priori information of the distribution of parameters, and arises naturally in
practice where methods to estimate the confidence region of parameters abound.
We propose a decision criterion based ondistributional robustness: the optimal
policy maximizes the expected total reward under the most adversarial probability
distribution over realizations of the uncertain parameters that is admissible (i.e.,
it agrees with the a-priori information). We show that finding the optimal dis-
tributionally robust policy can be reduced to a standard robust MDP where the
parameters belong to asingleuncertainty set, hence it can be computed in poly-
nomial time under mild technical conditions.

1 Introduction

Sequential decision making in stochastic dynamic environments, also called the “planning prob-
lem,” is often modeled using a Markov Decision Process (MDP,cf [1, 2, 3]). In practice,parameter
uncertainty– the deviation of the model parameters from the true ones (rewardr and transition prob-
ability p) – often causes the performance of “optimal” policies to degrade significantly [4]. Many
efforts have been made to reduce such performance variationunder the robust MDP framework
(e.g., [5, 6, 7, 8, 9, 10]). In this context, it is assumed thatthe parameters can be any member of a
known set (termed theuncertainty set), and solutions are ranked based on their performance under
the (respective) worst parameter realizations.

In this paper we extend the robust MDP framework to deal with probabilistic information on uncer-
tain parameters. To motivate the problem, let us consider the following example. Suppose that an
agent (car, plane, robot etc) wants to find a fastest path fromthe source location to the destination. If
the passing time to areaA is uncertain and can be very large, then the solution to robust MDP would
tend to take a detour and avoidA. However, if it is further known that the passing time can be large
only when some unusual event (whose chance is less than, say,10%), such as a storm, happens, and
otherwise the passing time is reasonable, then avoidingA may be overly pessimistic. The statement
“the probability of the (uncertain) passing time being large is at most10%” is important, and should
be incorporated into the decision making paradigm. Indeed,it was observed that since the robust
MDP framework ignores probabilistic information, it can provide conservative solutions [11, 12].

A different approach to embeding prior information is by adopting a Bayesian perspective on the
parameters of the problem; see [11] and references therein.However, a complete Bayesian prior
to the model parameters may be difficult to conjure as the decision maker may not have a reliable
generative model to the uncertainty. For example, in the path planning problem above, the decision
maker may not know how to assign probabilities to the model dynamics when a storm occurs. Our
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approach offers a middle ground between the fully Bayesian approach and the robust approach:
we want the decision maker to be able to use prior informationbut we do not require a complete
Bayesian interpretation.

We adapt the distributionally robust approach to MDPs underparameter uncertainty. The distri-
butionally robust formulation has been extensively studied and broadly applied insingle stageop-
timization problems to effectively incorporates a-prioriprobabilistic information of the unknown
parameters (e.g., [13, 14, 15, 16, 17, 18]). In this framework, the uncertain parameters are regarded
as stochastic, with a distributionµ that is not precisely observed, yet assumed to belong to an a-priori
known setC. The objective is then formulated based on the worst-case analysis over distributions
in C. That is, given a utility functionu(x, ξ) wherex ∈ X is the optimizing variable andξ is the
unknown parameter, distributionally robust optimizationsolvesmaxx∈X

[

infµ∈C Eξ∼µu(x, ξ)
]

. In-
deed, such approach has also been developed in the mathematical finance community, usually in the
static setup [19, 20]. Here the goal is to optimize a so-called coherent risk measure, which is shown
to be equivalent to a distributionally robust formulation.

From a decision theory perspective, the distributionally robust approach coincides with the cele-
brated MaxMin Expected Utility framework [21, 22], which states that if a preference relationship
among actions satisfies certain axioms, then the optimal action maximizes the minimal expected util-
ity with respect to a class of distributions. This approach addresses the famousneglect of probability
cognitive bias[23], i.e., the tendency to completely disregard probability when making a decision
under uncertainty. Two extreme cases of such biases are thenormalcy bias, which roughly speak-
ing, can be states as “since a disaster has never occurred then it never will occur,” and thezero-risk
bias, which stands for the tendency of individuals to prefer small benefits that are certain to large
ones that are uncertain, regardless of the size of the “certain” benefit and the expected magnitude of
the uncertain one. It is easy to see that the nominal approachand the robust approach suffers from
normalcy bias and zero-risk bias, respectively.

We formulate and solve the distributionally robust MDP withrespect to thenested uncertainty set.
The nesting structure implies that there aren different levels of estimation, that is,C1

s ⊆ C2
s ⊆ · · · Cn

s ,
representing the possible parameters of the problem. The probability that the parameters of state
s belong toCi

s is at leastλi. We also require the parameters to be state-wise independent (i.e.,
the uncertainty set is a product set over states). Policies are then ranked based on their expected
performance under the (respective) most adversarial distribution. The main contribution of this paper
is showing that for both the finite horizon case and the discounted reward infinite horizon case, such
optimal policy satisfies a Bellman type equation, and can be solved via backward iteration.

Motivating example. The nested-set formulation is motivated by the “multi-scenario” setup, where
in different scenarios the parameters are subject to different levels of uncertainty. For instance, in
the path planning example, the uncertainty of the passing time ofA can be modeled as a nested-set
with two uncertainty sets: the parameters with at least90% belong to a small uncertainty set corre-
sponding to “no storm,” and guaranteed to belong to a large worst-case uncertainty set representing
“storm” with probability of at most10%. In fact the multi-layer formulations allows the decision
maker to handle more than two scenarios. For example, a planecan encounter scenarios such as
“normal,” “storm,” “big storm,” and even “volcano ashes,” each corresponding to a different level of
parameter uncertainty. One appealing advantage of the nested-set formulation is that it does not re-
quire a precise description of the uncertainty, which leadsto considerable flexibility. For example, if
the uncertainty set of a robust MDP is not precisely known, then one can instead solve distribution-
ally robust MDP with a 2-set formulation where the inner and the outer sets represent, respectively,
an “optimistic” estimation and a “conservative” estimation. Additionally, the nested-set formula-
tion also results from estimating the distributions of parameters via sampling. Such estimation is
often imprecise especially when only a small number of samples is available. Instead, estimating
uncertainty sets with high confidence can be made more accurate, and one can easily sharpen the
approximation by incorporating more layers of confidence sets (i.e, increasen).

2 Preliminaries and Problem Setup

A (finite) MDP is defined as a 6-tuple< T, γ, S, As,p, r > where:T is the possibly infinite decision
horizon;γ ∈ (0, 1] is the discount factor;S is the finite state set;As is the finite action set of states;
p is the transition probability; andr is the expected reward. That is, fors ∈ S anda ∈ As, r(s, a)
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is the expected reward andp(s′|s, a) is the probability to reach states′. Following Puterman [1], we
denote the set of all history-dependent randomized policies byΠHR, and the set of all Markovian
randomized policies byΠMR. We use subscripts to denote the value associated with states, e.g.,rs

denotes the vector form of rewards associated with states, andπs is the (randomized) action chosen
at states for policy π. The elements in vectorps are listed in the following way: the transition
probabilities of the same action are arranged in the same block, and inside each block they are
listed according to the order of the next state. We uses to denote the (random) state followings,
and∆(s) to denote the probability simplex onAs. We use

⊗

to represent cartesian product, e.g.,
p =

⊗

s∈S ps. For a policyπ, we denote the expected (discounted) total-reward under parameters
p, r by u(π,p, r), that is,

u(π,p, r) , E
p

π{

T
∑

i=1

γi−1r(si, ai)}.

In this paper we propose and solvedistributionally robustpolicy under parameter uncertainty, which
incorporates a-prior information of how parameters are distributed. Suppose it is known thatp
and r follows some unknown distributionµ that belongs to a setCS . We evaluate each policy
by its expected performance under the (respective) most adversarial distribution of the uncertain
parameters, and a distributionally robust policy is the optimal policy according to this measure.

Definition 1. A policyπ∗ ∈ πHR is distributionally robustwith respect toCS if it satisfies that for
all π ∈ ΠHR,

inf
µ∈CS

∫

u(π,p, r) dµ(p, r) ≤ inf
µ′∈CS

∫

u(π∗,p, r) dµ′(p, r).

Next we specify the set of admissible distributions of uncertain parametersCS investigated in this
paper. Let0 = λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn = 1, andP1

s ⊆ P2
s ⊆ · · · ⊆ Pn

s for s ∈ S. We use the
following set of distributionsCS for our model.

CS , {µ|µ =
⊗

s∈S

µs; µs ∈ Cs, ∀s ∈ S},

where:Cs , {µs|µs(P
n
s ) = 1; µs(P

i
s) ≥ λi, i = 1, · · · , n − 1}.

(1)

We briefly explain this set of distributions. For a states, the conditionµs(P
n
s ) = 1 means that

the unknown parameters(ps, rs) are restricted to the outermost uncertainty set; and the condition
µs(P

i
s) ≥ λi means that with probability at leastλi, (ps, rs) ∈ P i

s. Thus,P1
s , · · · ,Pn

s provides
probabilistic guarantees of(ps, rs) for n different uncertainty sets (or equivalently confidence lev-
els). Note that

⊗

s∈S µs stands for the product measure generated byµs, which indicates that the
parameters among different states are independent. Throughout this paper we make a standard as-
sumption (cf [5, 6, 8]) thatP i

s is nonempty, convex and compact.

3 Distributionally robust MDPs: The finite-horizon case.

In this section we show how to solve distributionally robustpolicies to MDPs having finitely many
decision stages. We assume that when a state is visited multiple times, each time it can take a
different parameter realization (non-stationary model). Equivalently, this means that multiple visits
to a state can be treated as visiting different states, whichleads to the Assumption 1 without loss
of generality (by adding dummy states). Thus, we can partitionS according to the stage each state
belongs to, and letSt be the set of states belong totth stage. The non-stationary model is proposed
in [5] because the stationary model is generally intractable and a lower-bound on it is given by the
non-stationary model.

Assumption 1. (i) Each state belongs to only one stage; (ii) the terminal reward equals zero; and
(iii) the first stage only contains one statesini.

We next definesequentially robust policiesthrough a backward induction as a policy that is robust
in every step for astandardrobust MDP. We will later shows that sequentially robust policies are
also distributionally robust by choosing the uncertainty set of the robust MDP carefully.

Definition 2. LetT < ∞ and letPs be the uncertainty set of states. Define the following:
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1. For s ∈ ST , thesequentially robust valuẽvT (s) , 0.

2. For s ∈ St wheret < T , thesequentially robust valuẽvt(s) andsequentially robust action
π̃s are defined as

ṽt(s) , max
πs∈∆(s)

{

min
(ps,rs)∈Ps

E
ps

πs
[r(s, a) + γṽt+1(s)]

}

.

π̃s ∈ arg max
πs∈∆(s)

{

min
(ps,rs)∈Ps

E
ps

πs
[r(s, a) + γṽt+1(s)]

}

.

3. A policyπ̃∗ is a sequentially robust policyw.r.t. Ps if ∀s ∈ S, π̃∗
s is a sequentially robust

action.

A standard game theoretic argument implies that sequentially robust actions, and hence sequentially
robust policies, exist. Indeed, from the literature in robust MDP (cf [5, 7, 8]) it is easy to see that a
sequentially robust policy is the solution to the robust MDPwhere the uncertainty set is

⊗

s Ps. The
following theorem, which is the main result of this paper, shows that any sequentially robust policy
(w.r.t. a specific uncertainty set)π∗ is distributionally robust.

Theorem 1. Let T < ∞. Let Assumption 1 hold, and suppose thatπ∗ is a sequentially robust
policy w.r.t.

⊗

s P̂s, where

P̂s = {

n
∑

i=1

(λi − λi−1)(rs(i),ps(i))|(ps(i), rs(i)) ∈ P i
s}.

Then

1. π∗ is a distributionally robust policy with respect toCs; and

2. there existsµ∗ ∈ Cs such that(π∗, µ∗) is a saddle point. That is,

sup
π∈ΠHR

∫

u(π,p, r) dµ∗(p, r) =

∫

u(π∗,p, r) dµ∗(p, r) = inf
µ∈CS

∫

u(π∗,p, r) dµ(p, r).

Therefore, to find the sequentially robust policy, we need only to solve the sequentially robust action.

Theorem 2. Denoteλ0 = 0. For s ∈ St wheret < T , the sequentially robust action is given by

q
∗ = arg max

q∈∆(s)

{

n
∑

i=1

(λi − λi−1) min
(pi

s
,ri

s
)∈Pi

s

[

(ri
s)

⊤
q + (pi

s)
⊤Ṽsq

]

}

, (2)

wherem = |As|, ṽt+1 is the vector form of̃vt+1(s
′) for all s′ ∈ St+1, and

Ṽs ,





ṽt+1e
⊤
1 (m)
:

ṽt+1e
⊤
m(m)



 .

Theorem 2 implies that the computation of the sequentially robust action at a states critically de-
pends on the structure of the setsP i

s. In fact, it can be shown that for “good” uncertainty sets,
computing the sequentially robust action is tractable. This claim is made precise by the following
corollary. We omit the proof that is standard.

Corollary 1. The sequentially robust action for states can be found in polynomial-time, if for each
i = 1, · · · , n, P i

s has a polynomial separation oracle. Here, apolynomial separation oracleof a
convex setH ⊆ R

n is a subroutine that givenx ∈ R
n, reports in polynomial time whetherx ∈ H,

and if the answer is negative, it finds a hyperplane that separatesx andH.

3.1 Proof of Theorem 1

We prove Theorem 1 in this section. The outline of the proof isas follows: We first show that for a
given policy, the expected performance under an admissibleµ depends only on the expected value
of the parameters. Then we show that the set of expected parameters is indeed

⊗

s∈S P̂s. Thus the
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distributionally robust MDP reduces to the robust MDP with
⊗

s∈S P̂s being the uncertainty set.
Finally, by applying results from robust MDPs we prove the theorem. Some of the intermediate
results are stated with proof omitted due to space constraints.

Let ht denote a history up to staget ands(ht) denote the last state of historyht. We useπht
(a)

to represent the probability of choosing an actiona at states(ht), following a policyπ and under a
historyht. A t + 1 stage history, withht followed by actiona and states′ is written as(ht, a, s′).
With an abuse of notation, we denote the expected reward-to-go under a history as:

u(π,p, r, ht) , E
p

π{
T

∑

i=t

γi−tr(si, ai)|(s1, a1 · · · , st) = ht}.

For π ∈ ΠHR and µ ∈ CS(λ), define w(π, µ, ht) , E(p,r)∼µus(π,p, r, h(t)) =
∫

u(π,p, r, h(t))dµ(p, r). Thus,w(π, µ, (sini)) =
∫

u(π,p, r) dµ(p, r) is the minimax objec-
tive. One can show that the following recursion formula forw(·) holds, due to the fact that
µ(p, r) =

⊗

s∈S µs(ps, rs).

Lemma 1. Fix π ∈ ΠHR, µ ∈ CS and a historyht wheret < T , denoter = Eµ(r), p = Eµ(p),
then we have:

w(π, µ, ht) =

∫

∑

a∈As(ht)

πht
(a)

(

r
(

s(ht), a
)

+
∑

s′∈S

γp
(

s′|s(ht), a
)

w
(

π, µ, (ht, a, s′)
)

)

dµs(ht)(ps(ht), rs(ht))

=
∑

a∈As(ht)

πht
(a)

(

r
(

s(ht), a
)

+
∑

s′∈S

γp
(

s′|s(ht), a
)

w
(

π, µ, (ht, a, s′)
)

)

.

From Lemma 1, by backward induction, one can show the following lemma holds, which essentially
means that for any policy, the expected performance under anadmissible distributionµ only depends
on the expected value of the parameters underµ. Thus, the distributionally robust MDP reduces to
a robust MDP.

Lemma 2. Fix π ∈ ΠHR and µ ∈ CS, denotep = Eµ(p) and r = Eµ(r). We have:
w

(

π, µ, (sini)
)

= u(π,p, r).

Next we characterize the set of expected value of the parameters.

Lemma 3. Fix s ∈ S, we have{Eµs
(ps, rs)|µs ∈ Cs} = P̂s.

Note that Lemma 3 implies that{Eµ(p, r)|µ ∈ CS} =
⊗

s∈S P̂s. We complete the proof of the
Theorem 1 using the equivalence of distributionally robustMDPs and robust MDPs where the un-
certainty set is

⊗

s∈S P̂s. Recall that for eachs ∈ S, P̂s is convex and compact. It is well known
that for robust MDPs, a saddle point of the minimax objectiveexists (cf [5, 8]). More precisely,
there existsπ∗ ∈ ΠHR, (p∗, r∗) ∈

⊗

s∈S P̂s such that

sup
π∈ΠHR

u(π,p∗, r∗) = u(π∗,p∗, r∗) = inf
(r,p)∈

N

s∈S
P̂s

u(π∗,p, r).

Moreover, π∗ and (p∗, r∗) can be constructed state-wise:π∗ =
⊗

s∈S π∗
s and (p∗, r∗) =

⊗

s∈S(p∗
s , r

∗
s), and for eachs ∈ St, π∗

s , (p∗
s, r

∗
s) solves the following zero-sum game

max
πs

min
(ps,rs)∈P̂s

E
ps

π

(

r(s, a) + γṽt+1(s)
)

.

It follows that π∗
s is any sequentially robust action, and henceπ∗ can be any sequentially robust

policy. From Lemma 3, there existsµ∗
s ∈ Cs that satisfiesEµ∗

s
(ps, rs) = (p∗

s , r
∗
s). Let µ∗ =

⊗

s∈S µ∗
s. By Lemma 2 we have

sup
π∈ΠHR

w
(

π, µ∗, (sini)
)

= sup
π∈ΠHR

u(π,p∗, r∗);

w
(

π∗, µ∗, (sini)
)

= u
(

π∗,p∗, r∗
)

;

inf
µ∈CS

w
(

π∗, µ, (sini)
)

= inf
(p,r)∈

N

s
P̂s

u(π∗,p, r).
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This leads tosupπ∈ΠHR w
(

π, µ∗, (sini)
)

= w
(

π∗, µ∗, (sini)
)

= infµ∈CS
w

(

π∗, µ, (sini)
)

. Thus,
part (ii) of Theorem 1 holds. Note that part (ii) immediatelyimplies part (i) of Theorem 1.

Remark: Lemma 1 holds for a broader class of distribution sets than wediscussed here. Indeed,
the only requirement ofC for Lemma 1 to hold is the state-wise decomposibility. Therefore, the
results presented in this paper may well extend to distributionally robust MDPs whose parameters
belongs to other interesting sets of distributions, such asa set of parametric distribution (Gaussian,
exponential, binomial etc) with the distribution parameter not precisely determined.

4 Distributionally robust MDP: The discounted reward infini te horizon case.

In this section we show how to compute a distributionally robust policy for infinite horizon MDPs.
Specifically, we generalize the notion of sequentially robust policies to discounted-reward infinite-
horizon MDPs, and show that it is distributionally robust inan appropriate sense.

Definition 3. Let T = ∞ andγ < 1. Denote the uncertainty set bŷP =
⊗

s P̂s. We define the
following:

1. Thesequentially robust valuẽv∞(s) w.r.t. P̂s is the unique solution to the following set of
equations:

ṽ∞(s) = max
πs∈∆(s)

{

min
(ps,rs)∈P̂s

E
ps

πs
[r(s, a) + γṽ∞(s)]

}

, ∀s ∈ S.

2. Thesequentially robust actionw.r.t. P̂s, π̃s, is given by

π̃s ∈ arg max
πs∈∆(s)

{

min
(ps,rs)∈P̂s

E
ps

πs
[r(s, a) + γṽ∞(s)]

}

.

3. A policyπ̃∗ is a sequentially robust policyw.r.t. P̂s if ∀s ∈ S, π̃∗
s is a sequentially robust

action.

The sequentially robust policy is well defined, since the following operatorL : R
|S| → R

|S| is aγ
contraction for‖ · ‖∞ norm.

{Lv}(s) , max
q∈∆(s)

min
(p,r)∈P̂s

[
∑

a∈As

q(a)r(s, a) + γ
∑

a∈As

∑

s′∈S

q(a)p(s′|s, a)v(s′)].

Furthermore, given anyv, applyingL is equivalent to solving a minimax problem, which by Theo-
rem 2 can be efficiently computed. Hence, by applyingL on any initialv0 ∈ R

|S| repeatedly, the
resulting value vector will converge to the sequentially robust valuẽv exponentially fast.

Note that in the infinite horizon case, we cannot model the system as (1) having finitely many states,
and (2) each visited at most once. In contrast, we have to relax either one of these two assumptions,
leading to two different natural formulations. The first formulation, termednon-stationary model,
is to treat the system as having infinitely many states, each visited at most once. Therefore, we
consider an equivalent MDP with an augmented state space, where each augmented state is defined
by a pair(s, t) wheres ∈ S andt, meaning states in the tth horizon. Thus, each augmented state
will be visited at most once, which leads to the following setof distributions.

C̄∞
S , {µ|µ =

⊗

s∈S,t=1,2,···

µs,t; µs,t ∈ Cs, ∀s ∈ S, ∀t = 1, 2, · · · }.

The second formulation, termedstationary model, treats the system as having a finite number of
states, while multiple visits to one state is allowed. That is, if a states is visited for multiple times,
then each time the distribution (of uncertain parameters)µs is the same. Mathematically, we can
adapt the augmented state space as in the non-stationary model, and requires thatµs,t does not
depend ont. Thus, the set of admissible distributions is

C̄S , {µ|µ =
⊗

s∈S,t=1,2,···

µs,t; µs,t = µs; µs ∈ Cs, ∀s ∈ S, ∀t = 1, 2, · · · }.

The next theorem is the main result of this section; it shows that a sequentially robust policy is
distributionally robust to both stationary and non-stationary models.
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Theorem 3. GivenT = ∞ andγ < 1, any sequentially robust policy w.r.t.
⊗

s P̂s whereP̂s =
{
∑n

i=1(λi −λi−1)(rs(i),ps(i))|(ps(i), rs(i)) ∈ P i
s}, is distributionally robust with respect tōC∞

S ,
and with respect tōCS .

Due to space constraints, we omit the proof details. The basic idea for proving thēC∞
S case is to

consider aT̂ -truncated problem, i.e., a finite horizon problem that stops at stageT̂ with a termi-
nation reward̃v∞(·), and show that the optimal strategy for this problem, which is a sequential
robust strategy, coincides with that of the infinite horizonone. Indeed, given any sequential robust
strategyπ∗, one can construct a stationary distributionµ∗ such that(π∗, µ∗) is a saddle point for
supπ∈ΠHR infµ∈C̄∞

S

∫

u(π,p, r) dµ(p, r). The proof toC̄S follows from C̄S ⊂ C̄∞
S andµ∗ ∈ C̄S .

We remark that the decision maker is allowed to take non-stationary strategies, although the distri-
butionally robust solution is proven to be stationary.

Before concluding this section, we briefly compare the stationary model and the non-stationary
model. These two formulations model different setups: if the system, more specifically the distribu-
tion of uncertain parameters, evolves with time, then the non-stationary model is more appropriate;
while if the system is static, then the stationary model is preferable. For any given policy, the worst
expected performance under the non-stationary model provides a lower bound to that of the station-
ary model sincēCS ⊆ C̄∞

S . Thus, one can use the non-stationary model to approximate the stationary
model, when the latter is intractable (e.g., in the finite horizon case; see Nilim and El Ghaoui [5]).
When the horizon approaches infinity, such approximation becomes exact, as we showed in this sec-
tion, the optimal solutions to both formulations coincide,and can be computed by iteratively solving
a minimax problem.

5 Numerical simulations

In this section we illustrate with numerical examples that by incorporating additional probabilistic
information, the distributional robust approach handles uncertainty in a more flexible way, which
often leads to a better performance than the nominal approach and the robust approach.

We consider a path planning problem: an agent wants to exit a4 × 21 maze (shown in Figure 1)
using the least possible time. Starting from the upper-leftcorner, the agent can move up, down, left
and right, but can only exit the grid at the lower-right corner. Here, a white box stands for a normal
place where the agent needs one time unit to pass through. A shaded box represents a “shaky” place.
To be more specific, we consider two setups. The first one is theuncertain cost case, where the
true (yet unknown to the planning agent) time for the agent topass through a “shaky” place equals
x = 1 + ẽ(λ), andẽ(λ) is an exponential distributed random variable with parameterλ. The three
approaches are formulated as follows: the nominal approachtakes the most likely value (i.e.,1) as
the parameter; the robust approach takes[1, 1 + 3/λ] as the uncertainty set; and the distributional
robust approach takes into account the additional information thatPr(x ∈ [1, 1 + log 2/λ]) ≥ 0.5
andPr(x ∈ [1, 1 + 2 log 2/λ]) ≥ 0.75. We vary1/λ, and test these approaches using300 runs for
each parameter set. The results are reported in Figure 2 (a).

Figure 1: The maze for the path planning problem.

The second case is the uncertain transition case: if an agentreaches a “shaky” place, then the
transition becomes unpredictable – in the next step with probability 20% it will make an (unknown)
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jump. The three approaches are set as follows: The nominal approach neglects this random jump.
The robust approach takes a worst-case analysis, i.e., it assumes that with20% the agent will jump
to the spot with the highest cost-to-go. The distributionally robust approach takes into account an
additional information that if a jump happens, the probability that it jumps to a spot that is left to
the current place is no more thanγ. Each policy is tested over300 runs, while the true jump is set
as with probability0.2γ the agent returns to the starting point (“reboot”), with0.2(1 − γ) the agent
stay in the current position for a time unit (“stuck”). The results are reported in Figure 2 (b).

(a) Uncertain cost (b) Uncertain transition
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Figure 2: Simulation results of the path planning problem.

In both the uncertain cost and the uncertain transition probability setups, the distributionally robust
approach outperforms the other two approach over virtuallythe whole range of parameters. This
is well expected, since additional probabilistic information is available to and incorporated by the
distributionally robust approach.

6 Concluding remarks

In this paper we proposed a distributionally robust approach to mitigate the conservatism of the
robust MDP framework and incorporate additional a-prior probabilistic information regarding the
unknown parameters. In particular, we considered the nested-set structured parameter uncertainty
to model a-prior probabilistic information of the parameters. We proposed to find a policy that
achieves maximum expected utility under the worst admissible distribution of the parameters. Such
formulation leads to a policy that is obtained through a Bellman type backward induction, and can
be solved in polynomial time under mild technical conditions.

A different perspective on our work is that we develop a principled approach to the problem of
uncertainty set design in multi-stage decision problems. It has been observed that shrinking the un-
certainty set in single-stage problems leads to better performance. We provide a principled approach
to the problem of uncertainty set selection: the distributionally robust policy is a robust policy w.r.t. a
carefully designed single uncertainty set that depends on the a-priori knowledge.

A natural question is how can we take advantage of the distributionally robust approach and solve
(exactly) a full-blown Bayesian generative model MDP? The problem with taking an increasingly
refined nested uncertainty structure (i.e., increasingn) is that of representation: the equivalent ro-
bust MDP uncertainty set may become too complicated to represent efficiently. Nevertheless, if it is
possible to offer upper and lower bounds on the probability of each nested sets (based on the gener-
ative model), the corresponding distributionally robust policies provide performance bounds on the
optimal policies in the, often intractable, Bayesian model.
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