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Abstract

We consider the problem of learning a local metric to enhance the performance of
nearest neighbor classification. Conventional metric learning methods attempt to
separate data distributions in a purely discriminative manner; here we show how
to take advantage of information from parametric generative models. We focus
on the bias in the information-theoretic error arising from finite sampling effects,
and find an appropriate local metric that maximally reduces the bias based upon
knowledge from generative models. As a byproduct, the asymptotic theoretical
analysis in this work relates metric learning with dimensionality reduction, which
was not understood from previous discriminative approaches. Empirical exper-
iments show that this learned local metric enhances the discriminative nearest
neighbor performance on various datasets using simple class conditional gener-
ative models.

1 Introduction

The classic dichotomy between generative and discriminative methods for classification in machine
learning can be clearly seen in two distinct performance regimes as the number of training examples
is varied [12, 18]. Generative models—which employ models first to find the underlying distribu-
tion p(x|y) for discrete class label y and input data x ∈ RD—typically outperform discriminative
methods when the number of training examples is small, due to smaller variance in the generative
models which compensates for any possible bias in the models. On the other hand, more flexible
discriminative methods—which are interested in a direct measure of p(y|x)—can accurately cap-
ture the true posterior structure p(y|x) when the number of training examples is large. Thus, given
enough training examples, the best performing classification algorithms have typically employed
purely discriminative methods.

However, due to the curse of dimensionality when D is large, the number of data examples may
not be sufficient for discriminative methods to approach their asymptotic performance limits. In this
case, it may be possible to improve discriminative methods by exploiting knowledge of generative
models. There has been recent work on hybrid models showing some improvement [14, 15, 20], but
mainly the generative models have been improved through the discriminative formulation. In this
work, we consider a very simple discriminative classifier, the nearest neighbor classifier, where the
class label of an unknown datum is chosen according to the class label of the nearest known datum.
The choice of a metric to define nearest is then crucial, and we show how this metric can be locally
defined based upon knowledge of generative models.

Previous work on metric learning for nearest neighbor classification has focused on a purely discrim-
inative approach. The metric is parameterized by a global quadratic form which is then optimized
on the training data to maximize pairwise separation between dissimilar points, and to minimize the
pairwise separation of similar points [3, 9, 10, 21, 26]. Here, we show how the problem of learning
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a metric can be related to reducing the theoretical bias of the nearest neighbor classifier. Though
the performance of the nearest neighbor classifier has good theoretical guarantees in the limit of
infinite data, finite sampling effects can introduce a bias which can be minimized by the choice of an
appropriate metric. By directly trying to reduce this bias at each point, we will see the classification
error is significantly reduced compared to the global class-separating metric.

We show how to choose such a metric by analyzing the probability distribution on nearest neighbors,
provided we know the underlying generative models. Analyses of nearest neighbor distributions
have been discussed before [11, 19, 24, 25], but we take a simpler approach and derive the metric-
dependent term in the bias directly. We then show that minimizing this bias results in a semi-definite
programming optimization that can be solved analytically, resulting in a locally optimal metric. In
related work, Fukunaga et al. considered optimizing a metric function in a generative setting [7, 8],
but the resulting derivation was inaccurate and does not improve nearest neighbor performance.
Jaakkola et al. first showed how a generative model can be used to derive a special kernel, called the
Fisher kernel [12], which can be related to a distance function. Unfortunately, the Fisher kernel is
quite generic, and need not necessarily improve nearest neighbor performance.

Our generative approach also provides a theoretical relationship between metric learning and the
dimensionality reduction problem. In order to find better projections for classification, research
on dimensionality reduction using labeled training data has utilized information-theoretic measures
such as Bhattacharrya divergence [6] and mutual information [2, 17]. We argue how these prob-
lems can be connected with metric learning for nearest neighbor classification within the general
framework of F-divergences. We will also explain how dimensionality reduction is entirely different
from metric learning in the generative approach, whereas in the discriminative setting, it is simply a
special case of metric learning where particular directions are shrunk to zero.

The remainder of the paper is organized as follows. In section 2, we motivate by comparing the met-
ric dependency of the discriminative and generative approaches for nearest neighbor classification.
After we derive the bias due to finite sampling in section 3, we show, in section 4, how minimizing
this bias results in a local metric learning algorithm. In section 5, we explain how metric learning
should be understood in a generative perspective, in particular, its relationship with dimensionality
reduction. Experiments on various datasets are presented in section 6, comparing our experimental
results with other well-known algorithms. Finally, in section 7, we conclude with a discussion of
future work and possible extensions.

2 Metric and Nearest Neighbor Classification

In recent work, determining a good metric for nearest neighbor classification is believed to be cru-
cial. However, traditional generative analysis of this problem has simply ignored the metric issue
with good reason, as we will see in section 2.2. In this section, we explain the apparent contra-
diction between two different approaches to this issue, and briefly describe how the resolution of
this contradiction will lead to a metric learning method that is both theoretically and practically
plausible.

2.1 Metric Learning for Nearest Neighbor Classification

A nearest neighbor classifier determines the label of an unknown datum according to the label of
its nearest neighbor. In general, the meaning of the term nearest is defined along with the notion
of distance in data space. One common choice for this distance is the Mahalanobis distance with
a positive definite square matrix A ∈ RD×D where D is the dimensionality of data space. In this
case, the distance between two points x1 and x2 is defined as

d(x1,x2) =
√

(x1 − x2)TA(x1 − x2) , (1)

and the nearest datum xNN is one having minimal distance to the test point among labeled training
data in {xi}Ni=1

In this classification task, the results are highly dependent on the choice of matrix A, and prior work
has attempted to improve the performance by a better choice of A. This recent work has assumed
the following common heuristic: the training data in different classes should be separated in a new
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metric space. Given training data, a global A is optimized such that directions separating different
class data are extended, and directions binding same class data together are shrunk [3, 9, 10, 21, 26].

However, in terms of the test results, these conventional methods do not improve the performance
dramatically, which will be shown in our later experiments on large datasets, and we show why only
small improvements arise in our theoretical analysis.

2.2 Theoretical Performance of Nearest Neighbor Classifier

Contrary to recent metric learning approaches, a simple theoretical analysis using a generative model
displays no sensitivity to the choice of the metric. We consider i.i.d. samples generated from two
different distributions p1(x) and p2(x) over the vector space x ∈ RD. With infinite samples, the
probability of misclassification using a nearest neighbor classifier can be obtained:

EAsymp =
∫

p1(x)p2(x)
p1(x) + p2(x)

dx, (2)

which is better known by its relationship to an upper bound, twice the optimal Bayes error [4, 7, 8].

By looking at the asymptotic error in a linearly transformed z-space, we can show that Eq. (2) is
invariant to the change of metric. If we consider a linear transformation z = LT x using a full
rank matrix L, and the distribution qc(z) for c ∈ {1, 2} in z-space satisfying pc(x)dx = qc(z)dz
and accompanying measure change dz = |L|dx, we see EAsymp in z-space is unchanged. Since
any positive definite A can be decomposed as A = LLT , we can say the asymptotic error remains
constant even as the metric shrinks or expands any spatial directions in data space.

This difference in behavior in terms of metric dependence can be understood as a special property
that arises from infinite data. When we do not have infinite samples, the expectation of error is
biased in that it deviates from the asymptotic error, and the bias is dependent on the metric. From
a theoretical perspective, the asymptotic error is the theoretical limit of expected error, and the bias
reduces as the number of samples increase. Since this difference is not considered in previous
research, the aforementioned metric will not exhibit performance improvements when the sample
number is large.

In the next section, we look at the performance bias associated with finite sampling directly and find
a metric that minimizes the bias from the asymptotic theoretical error.

3 Performance Bias due to Finite Sampling

Here, we obtain the expectation of nearest neighbor classification error from the distribution of
nearest neighbors in different classes. As we consider finite number of samples, the nearest neighbor
from a point x0 appears at a finite distance dN > 0. This non-zero distance gives rise to the
performance difference from its theoretical limit (2). A twice-differentiable distribution p(x) is
considered and approximated to second order near a test point x0:

p(x) ' p(x0) +∇p(x)|Tx=x0
(x− x0) +

1
2

(x− x0)T∇∇p(x)
∣∣
x=x0

(x− x0) (3)

with the gradient ∇p(x) and Hessian matrix ∇∇p(x) defined by taking derivatives with respect to
x.

Now, under the condition that the nearest neighbor appears at the distance dN from the test point,
the expectation of the probability p(xNN ) at a nearest neighbor point is derived by averaging the
probability over the D-dimensional hypersphere of radius dN , as in Fig. 1. After averaging, the
gradient term disappears, and the resulting expectation is the sum of the probability at x0 and a
residual term containing the Laplacian of p. We replace this expected probability by p̃(x0).

ExNN

[
p(xNN )

∣∣∣dN ,x0

]
= p(x0) +

1
2
ExNN

[
(x− x0)T∇∇p(x)(x− x0)

∣∣∣‖x− x0‖2 = d2
N

]
= p(x0) +

d2
N

2D
· ∇2p|x=x0 ≡ p̃(x0) (4)
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Figure 1: The nearest neighbor xNN appears at a finite distance dN from x0 due to finite sampling.
Given the data distribution p(x), the average probability density function over the surface of a D
dimensional hypersphere is p̃(x0) = p(x0) + d2

N

4D∇
2p|x=x0 for small dN .

where the scalar Laplacian∇2p(x) is given by the sum of the eigenvalues of the Hessian∇∇p(x).

If we look at the expected error, it is the expectation of the probability that the test point and its
neighbor are labeled differently. In other words, the expectation error ENN is the expectation of
e(x,xNN ) = p(C1|x)p(C2|xNN ) + p(C2|x)p(C1|xNN ) over both the distribution of x and the
distribution of nearest neighbor xNN for a given x:

ENN = Ex

[
ExNN

[
e(x,xNN )

∣∣∣x]] (5)

We then replace the posteriors p(C|x) and p(C|xNN ) as pc(x)/(p1(x) + p2(x)) and
pc(xNN )/(p1(xNN ) + p2(xNN )) respectively, and approximate the expectation of the posterior
ExNN

[
p(C|xNN )

∣∣∣dN ,x
]

at a fixed distance dN from test point x using p̃c(x)/(p̃1(x) + p̃2(x)). If

we expandENN with respect to dN , and take the expectation using the decomposition, ExNN

[
f
]

=

EdN

[
ExNN

[
f
∣∣∣dN

]]
, then the expected error is given to leading order by

ENN '
∫

p1p2

p1 + p2
dx +

EdN
[d2

N ]
4D

∫
1

(p1 + p2)2
[
p2
1∇2p2 + p2

2∇2p1 − p1p2(∇2p1 +∇2p2)
]
dx (6)

WhenEdN
[d2

N ]→ 0 with an infinite number of samples, this error converges to the asymptotic limit
in Eq. (2) as expected. The residual term can be considered as the finite sampling bias of the error
discussed earlier. Under the coordinate transformation z = LT x and the distributions p(x) on x and
q(z) on z, we see that this bias term is dependent upon the choice of a metric A = LLT .

1
(q1 + q2)2

[
q21∇2q2 + q22∇2q1 − q1q2

(
∇2q1 +∇2q2

) ]
dz (7)

=
1

(p1 + p2)2
tr
[
A−1

(
p2
1∇∇p2 + p2

2∇∇p1 − p1p2 (∇∇p1 +∇∇p2)
)]
dx

which is derived using p(x)dx = q(z)dz and |L|∇2q = tr[A−1∇∇p]. Expectation of squared
distance EdN

[d2
N ] is related to the determinant |A|, which will be fixed to 1. Thus, finding the

metric that minimizes the quantity given in Eq. (7) at each point is equivalent to minimizing the
metric-dependent bias in Eq. (6).
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4 Reducing Deviation from the Asymptotic Performance

Finding the local metric that minimizes the bias can be formulated as a semi-definite programming
(SDP) problem of minimizing squared residual with respect to a positive semi-definite metric A:

min
A

(tr[A−1B])2 s.t. |A| = 1, A � 0 (8)

where the matrix B at each point is

B = p2
1∇∇p2 + p2

2∇∇p1 − p1p2(∇∇p1 +∇∇p2). (9)

This is a simple SDP having an analytical solution where the solution shares the eigenvectors with
B. Let Λ+ ∈ Rd+×d+ and Λ− ∈ Rd−×d− be the diagonal matrices containing the positive and
negative eigenvalues of B respectively. If U+ ∈ RD×d+ contains the eigenvectors corresponding to
the eigenvalues in Λ+ and U− ∈ RD×d− contains the eigenvectors corresponding to the eigenvalues
in Λ−, we use the solution given by

Aopt = [U+ U−]
(
d+Λ+ 0

0 −d−Λ−

)
[U+ U−]T (10)

The solution Aopt is a local metric since we assumed that the nearest neighbor was close to the test
point satisfying Eq. (3). In principle, distances should then be defined as geodesic distances using
this local metric on a Riemannian manifold. However, this is computationally difficult, so we use
the surrogate distance A = γI + Aopt and treat γ as a regularization parameter that is learned in
addition to the local metric Aopt.

The multiway extension of this problem is straightforward. The asymptotic error with C-class dis-
tributions can be extended to 1

C

∑C
c=1

∫ (
pc

∑
j 6=i pj

)
/
(∑

i pi

)
dx using the posteriors of each

class, and it replaces B in Eq. (9) by the extended matrix:

B =
C∑

i=1

∇2pi

∑
j 6=i

p2
j − pi

∑
j 6=i

pj

 . (11)

5 Metric Learning in Generative Models

Traditional metric learning methods can be understood as being purely discriminative. In contrast to
our method that directly considers the expected error, those methods are focused on maximizing the
separation of data belonging to different classes. In general, their motivations are compared to the
supervised dimensionality reduction methods, which try to find a low dimensional space where the
separation between classes is maximized. Their dimensionality reduction is not that different from
metric learning, but often as a special case where metric in particular directions is forced to be zero.

In the generative approach, however, the relationship between dimensionality reduction and metric
learning is different. As in the discriminative case, dimensionality reduction in generative models
tries to obtain class separation in a transformed space. It assumes particular parametric distributions
(typically Gaussians), and uses a criterion to maximize the separation [2, 6, 16, 17]. One general
form of these criteria is the F-divergence (also known as Csiszer’s general measure of divergence),
that can be defined with respect to a convex function φ(t) for t ∈ R [13]:

F (p1(x), p2(x)) =
∫
p1(x) φ

(
p2(x)
p1(x)

)
dx. (12)

The examples of using this divergence include the Bhattacharyya divergence
∫√

p1(x)p2(x)dx

when φ(t) =
√
t and the KL-divergence −

∫
p1(x) log

(
p2(x)
p1(x)

)
dx when φ(t) = − log(t). Using

mutual information between data and labels can be understood as an extension of KL-divergence.
The well known Linear Discriminant Analysis is a special example of Bhattacharyya criterion when
we assume two-class Gaussians sharing the same covariance matrices.

Unlike dimensionality reduction, we cannot use these criteria for metric learning because any F-
divergence is metric-invariant. The asymptotic error Eq. (2) is related to one particular F-divergence
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Figure 2: Optimal local metrics are shown on the left for three example Gaussian distributions in
a 5-dimensional space. The projected 2-dimensional distributions are represented as ellipses (one
standard deviation from the mean), while the remaining 3 dimensions have an isotropic distribution.
The local p̃/p of the three classes are plotted on the right using a Euclidean metric I and for the
optimal metric Aopt. The solution Aopt tries to keep the ratio p̃/p over the different classes as
similar as possible when the distance dN is varied.

by EAsymp = 1 − F (p1, p2) with a convex function φ(t) = 1/(1 + t). Therefore, in generative
models, the metric learning problem is qualitatively different from the dimensionality reduction
problem in this aspect. One interpretation is that the F-measure can be understood as a measure
of dimensionality reduction in an asymptotic situation. In this case, the role of metric learning can
be defined to move the expected F-measure toward the asymptotic F-measure by appropriate metric
adaptation.

Finally, we provide an alternative understanding on the problem of reducing Eq. (7). By reformulat-
ing Eq. (9) into (p2 − p1)(p2∇2p1 − p1∇2p2), we can see that the optimal metric tries to minimize
the difference between ∇

2p1
p1

and ∇
2p2
p2

. If ∇
2p1
p1
≈ ∇

2p2
p2

, this also implies

p̃1

p1
≈ p̃2

p2
(13)

for p̃ = p+ d2
N

2D∇
2p, the average probability at a distance dN in (4). Thus, the algorithm tries to keep

the ratio of the average probabilities p̃1/p̃2 at a distance dN to be as similar as possible to the ratio of
probabilities p1/p2 at the test point. This means that the expected nearest neighbor classification at
a distance dN will be least biased due to finite sampling. Fig. 2 shows how the learned local metric
Aopt varies at a point x for a 3-class Gaussian example, and how the ratio of p̃/p is kept as similar
as possible.

6 Experiments

We apply our algorithm for learning a local metric to synthetic and various real datasets and see
how well it improves nearest neighbor classification performance. Simple standard Gaussian dis-
tributions are used to learn the generative model, with parameters including the mean vector µ and
covariance matrix Σ for each class. The Hessian of a Gaussian distribution is then given by the
expression:

∇∇p(x) = p(x)
[
Σ−1(x− µ)(x− µ)T Σ−1 − Σ−1

]
(14)

This expression is then used to learn the optimal local metric. We compare the performance of
our method (GLML—Generative Local Metric Learning) with recent metric learning discrimina-
tive methods which report state-of-the-art performance on a number of datasets. These include
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Information-Theoretic Metric Learning (ITML)1 [3], Boost Metric2 (BM) [21], and Largest Margin
Nearest Neighbor (LMNN)3 [26]. We used the implementations downloaded from the correspond-
ing authors’ websites. We also compare with a local metric given by the Fisher kernel [12] assuming
a single Gaussian for the generative model and using the location parameter to derive the Fisher in-
formation matrix. The metric from the Fisher kernel was not originally intended for nearest neighbor
classification, but it is the only other reported algorithm that learns a local metric from generative
models.

For the synthetic dataset, we generated data from two-class random Gaussian distributions having
two fixed means. The covariance matrices are generated from random orthogonal eigenvectors and
random eigenvalues. Experiments were performed varying the input dimensionality, and the classi-
fication accuracies are shown in Fig. 3.(a) along with the results of the other algorithms. We used
500 test points and an equal number of training examples. The experiments were performed with
20 different realizations and the results were averaged. As the dimensionality grows, the original
nearest neighbor performance degrades because of the high dimensionality. However, we see that
the proposed local metric highly outperforms the discriminative nearest neighbor performance in a
high dimensional space appropriately. We note that this example is ideal for GLML, and it shows
much improvement compared to the other methods.

The other experiments consist of the following benchmark datasets: UCI machine learning reposi-
tory4 datasets (Ionosphere, Wine), and the IDA benchmark repository5 (German, Image, Waveform,
Twonorm). We also used the USPS handwritten digits and the TI46 speech dataset. For the USPS
data, we resized the images to 8× 8 pixels and trained on the 64-dimensional pixel vector data. For
the TI46 dataset, the examples consist of spoken sounds pronounced by 8 different men and 8 dif-
ferent women. We chose the pronunciation of ten digits (“zero” to “nine”), and performed a 10 class
digit classification task. 10 different filters in the Fourier domain were used as features to preprocess
the acoustic data. The experiments were done on 20 data sampling realizations for Twonorm and
TI46, 10 for USPS, 200 for Wine, and 100 for the others.

Except the synthetic data in Fig. 3.(a), the data consist of various number of training data per class.
The regularization parameter γ value is chosen by cross-regularization on a subset of the training
data, then fixed for testing. The covariance matrix of the learned Gaussian distributions is also
regularized by setting Σ = Σ̂ + αI where Σ̂ is the estimated covariance. The parameter α is set
prior to each experiment.

From the results shown in Fig. 3, our local metric algorithm generally outperforms most of the other
metrics across most of the datasets. On quite a number of datasets, many of the other methods
do not outperform the original Euclidean nearest neighbor classifier. This is because on some of
these datasets, performance cannot be improved using a global metric. On the other hand, the local
metric derived from simple Gaussian distributions always shows a performance gain over the naive
nearest neighbor classifier. In contrast, using Bayes rule with these simple Gaussian generative
models often results in very poor performance. The computational time using a local metric is also
very competitive, since the underlying SDP optimization has a simple spectral solution. This is in
contrast to other methods which numerically solve for a global metric using an SDP over the data
points.

7 Conclusions

In our study, we showed how a local metric for nearest neighbor classification can be learned using
generative models. Our experiments show improvement over competitive methods on a number
of experimental datasets. The learning algorithm is derived from an analysis of the asymptotic
performance of the nearest neighbor classifier, such that the optimal metric minimizes the bias of the
expected performance of the classifier. This connection to generative models is very powerful, and
can easily be extended to include missing data—one of the large advantages of generative models

1http://userweb.cs.utexas.edu/ pjain/itml/
2http://code.google.com/p/boosting/
3http://www.cse.wustl.edu/ kilian/Downloads/LMNN.html
4http://archive.ics.uci.edu/ml/
5http://www.fml.tuebingen.mpg.de/Members/raetsch/benchmark
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Figure 3: (a) Gaussian synthetic data with different dimensionality. As number of dimensions gets
large, most methods degrade except GLML and LMNN. GLML continues to improve vastly over
other methods. (b)∼(h) are the experiments on benchmark datasets varying the number of training
data per class. (i) TI46 is the speech dataset pronounced by 8 men and 8 women. The Fisher kernel
and BM are omitted for (f)∼(i) and (h)∼(i) respectively, since their performances are much worse
than the naive nearest neighbor classifier.

in machine learning. Here we used simple Gaussians for the generative models, but this could be
also easily extended to include other possibilities such as mixture models, hidden Markov models,
or other dynamic generative models.

The kernelization of this work is straightforward, and the extension to the k-nearest neighbor setting
using the theoretical distribution of k-th nearest neighbors is an interesting future direction. Another
possible future avenue of work is to combine dimensionality reduction and metric learning using
this framework.
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