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Abstract

We provide some insights into how task correlations in multi-task Gaussian pro-
cess (GP) regression affect the generalization error and the learning curve. We
analyze the asymmetric two-tasks case, where a secondary task is to help the learn-
ing of a primary task. Within this setting, we give bounds on the generalization
error and the learning curve of the primary task. Our approach admits intuitive
understandings of the multi-task GP by relating it to single-task GPs. For the
case of one-dimensional input-space under optimal sampling with data only for
the secondary task, the limitations of multi-task GP can be quantified explicitly.

1 Introduction

Gaussian processes (GPs) (see e.g., [1]) have been applied to many practical problems. In recent
years, a number of models for multi-task learning with GPs have been proposed to allow different
tasks to leverage on one another [2–5]. While it is generally assumed that learning multiple tasks
together is beneficial, we are not aware of any work that quantifies such benefits, other than PAC-
based theoretical analysis for multi-task learning [6–8]. Following the tradition of the theoretical
works on GPs in machine learning, our goal is to quantify the benefits using average-case analysis.

We concentrate on the asymmetric two-tasks case, where the secondary task is to help the learning
of the primary task. Within this setting, the main parameters are (1) the degree of “relatedness” ρ
between the two tasks, and (2) the ratio πS of total training data for the secondary task. While higher
|ρ| and lower πS is clearly more beneficial to the primary task, the extent and manner that this is
so has not been clear. To address this, we measure the benefits using generalization error, learning
curve and optimal error, and investigate the influence of ρ and πS on these quantities.

We will give non-trivial lower and upper bounds on the generalization error and the learning curve.
Both types of bounds are important in providing assurance on the quality of predictions: an upper
bound provides an estimate of the amount of training data needed to attain a minimum performance
level, while a lower bound provides an understanding of the limitations of the model [9]. Our
approach relates multi-task GPs to single-task GPs and admits intuitive understandings of multi-task
GPs. For one-dimensional input-space under optimal sampling with data only for the secondary task,
we show the limit to which error for the primary task can be reduced. This dispels any misconception
that abundant data for the secondary task can remedy no data for the primary task.

2 Preliminaries and problem statement

2.1 Multi-task GP regression model and setup

The multi-task Gaussian process regression model in [5] learns M related functions {fm}Mm=1 by
placing a zero mean GP prior which directly induces correlations between tasks. Let ym be an

1



observation of the mth function at x. Then the model is given by

〈fm(x)fm′(x′)〉 def= Kf
mm′kx(x,x′) ym ∼ N (fm(x), σ2

m), (1)

where kx is a covariance function over inputs, and Kf is a positive semi-definite matrix of inter-task
similarities, and σ2

m is the noise variance for the mth task.

The current focus is on the two tasks case, where the secondary task S is to help improve the
performance of the primary task T ; this is the asymmetric multi-task learning as coined in [10]. We
fixKf to be a correlation matrix, and let the variance be explained fully by kx (the converse has been
done in [5]). Thus Kf is fully specified by the correlation ρ ∈ [−1, 1] between the two tasks. We
further fix the noise variances of the two tasks to be the same, say σ2

n. For the training data, there are
nT (resp. nS) observations at locations XT (resp. XS) for task T (resp. S). We use n def= nT + nS
for the total number of observations, πS

def= nS/n for the proportion of observations for task S, and
also X def= XT ∪XS . The aim is to infer the noise-free response fT∗ for task T at x∗. See Figure 1.

The covariance matrix of the noisy training data is K(ρ) + σ2
nI , where

K(ρ) def=

(
Kx
TT ρKx

TS
ρKx

ST Kx
SS

)
; (2)

and Kx
TT (resp. Kx

SS) is the matrix of covariances (due to kx) between locations in XT (resp. XS);
Kx
TS is the matrix of cross-covariances from locations in XT to locations in XS ; and Kx

ST is Kx
TS

transposed. The posterior variance at x∗ for task T is

σ2
T (x∗, ρ, σ2

n, XT , XS) = k∗∗ − kT
∗ (K(ρ) + σ2

nI)−1k∗, where kT
∗

def=
(
(kx
T∗)

T ρ(kx
S∗)

T
)

; (3)

and k∗∗ is the prior variance at x∗, and kx
T∗ (resp. kx

S∗) is the vector of covariances (due to kx)
between locations in XT (resp. XS) and x∗. Where appropriate and clear from context, we will
suppress some of the parameters in σ2

T (x∗, ρ, σ2
n, XT , XS), or use X for (XT , XS). Note that

σ2
T (ρ) = σ2

T (−ρ), so that σ2
T (1) is the same as σ2

T (−1); for brevity, we only write the former.

If the GP prior is correctly specified, then the posterior variance (3) is also the generalization error at
x∗ [1, §7.3]. The latter is defined as 〈(f?T (x∗)− f̄T (x∗))2〉f?

T
, where f̄T (x∗) is the posterior mean

at x∗ for task T , and the expectation is taken over the distribution from which the true function f?T
is drawn. In this paper, in order to distinguish succinctly from the generalization error introduced
in the next section, we use posterior variance to mean the generalization error at x∗. Note that the
actual y-values observed at X do not effect the posterior variance at any test location.

Problem statement Given the above setting, the aim is to investigate how training observations
for task S can benefit the predictions for task T . We measure the benefits using generalization error,
learning curve and optimal error, and investigate how these quantities vary with ρ and πS .

2.2 Generalization errors, learning curves and optimal errors

We outline the general approach to obtain the generalization error and the learning curve [1, §7.3]
under our setting, where we have two tasks and are concerned with the primary task T . Let p(x)
be the probability density, common to both tasks, from which test and training locations are drawn,
and assume that the GP prior is correctly specified. The generalization error for task T is obtained
by averaging the posterior variance for task T over x∗, and the learning curve for task T is obtained
by averaging the generalization error over training sets X:

generalization error: εT (ρ, σ2
n, XT , XS) def=

∫
σ2
T (x∗, ρ, σ2

n, XT , XS)p(x∗)dx∗ (4)

learning curve: εavg
T (ρ, σ2

n, πS , n) def=
∫
εT (ρ, σ2

n, XT , XS)p(X)dX, (5)
where the training locations inX are drawn i.i.d, that is, p(X) factorizes completely into a product of
p(x)s. Besides averaging εT to obtain the learning curve, one may also use the optimal experimental
design methodology and minimize εT over X to find the optimal generalization error [11, chap. II]:

optimal error: εopt
T (ρ, σ2

n, πS , n) def= minX εT (ρ, σ2
n, XT , XS). (6)

Both εT (0, σ2
n, XT , XS) and εT (1, σ2

n, XT , XS) reduce to single-task GP cases; the former discards
training observations at XS , while the latter includes them. Similar analogues to single-task GP
cases for εavg

T (0, σ2
n, πS , n) and εavg

T (1, σ2
n, πS , n), and εopt

T (0, σ2
n, πS , n) and εopt

T (1, σ2
n, πS , n) can be

obtained. Note that εavg
T and εopt

T are well-defined since πSn = nS ∈ N0 by the definition of πS .
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Figure 1: The two tasks S and T have
task correlation ρ. The data setXT (resp.
XS) for task T (resp. S) consists of the
•s (resp. s). The test location x∗ for
task T is denoted by ~.
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Figure 2: The posterior variances of each test location
within [0, 1] given data •s at 1/3 and 2/3 for task T , and
s at 1/5, 1/2 and 4/5 for task S.

2.3 Eigen-analysis

We now state known results of eigen-analysis used in this paper. Let κ̄ def= κ1 > κ2 > . . . and
φ1(·), φ2(·), . . . be the eigenvalues and eigenfunctions of the covariance function kx under the
measure p(x)dx: they satisfy the integral equation

∫
kx(x,x′)φi(x)p(x)dx = κiφi(x′). Let

λ̄ def= λ1 > λ2 > . . . > λnS
def= ¯
λ be the eigenvalues of Kx

SS . If the locations in XS are sampled
from p(x), then κi = limnS→∞ λi/nS , i = 1 . . . nS ; see e.g., [1, §4.3.2] and [12, Theorem 3.4].
However, for finite nS used in practice, the estimate λi/nS for κi is better for the larger eigenvalues
than for the smaller ones. Additionally, in one-dimension with uniform p(x) on the unit interval,
if kx satisfies the Sacks-Ylvisaker conditions of order r, then κi ∝ (πi)−2r−2 in the limit i → ∞
[11, Proposition IV.10, Remark IV.2]. Broadly speaking, an order r process is exactly r times mean
square differentiable. For example, the stationary Ornstein-Uhlenbeck process is of order r = 0.

3 Generalization error

In this section, we derive expressions for the generalization error (and the bounds thereon) for the
two-tasks case in terms of the single-task one. To illustrate and further motivate the problem, Fig-
ure 2 plots the posterior variance σ2

T (x∗, ρ) as a function of x∗ given two observations for task T
and three observations for task S. We roughly follow [13, Fig. 2], and use squared exponential co-
variance function with length-scale 0.11 and noise variance σ2

n = 0.05. Six solid curves are plotted,
corresponding, from top to bottom, to ρ2 = 0, 1/8, 1/4, 1/2, 3/4 and 1. The two dashed curves en-
veloping each solid curve are the lower and upper bounds derived in this section; the dashed curves
are hardly visible because the bounds are rather tight. The dotted line is the prior noise variance.

Similar to the case of single-task learning, each training point creates a depression on the σ2
T (x∗, ρ)

surface [9, 13]. However, while each training point for task T creates a “full” depression that reaches
the prior noise variance (horizontal dotted line at 0.05), the depression created by each training
point for task S depends on ρ, “deeper” depressions for larger ρ2. From the figure, and also from
definition, it is clear that the following trivial bounds on σ2

T (x∗, ρ) hold:
Proposition 1. For all x∗, σ2

T (x∗, 1) 6 σ2
T (x∗, ρ) 6 σ2

T (x∗, 0).

Integrating wrt to x∗ then gives the following corollary:
Corollary 2. εT (1, σ2

n, XT , XS) 6 εT (ρ, σ2
n, XT , XS) 6 εT (0, σ2

n, XT , XS).

Sections 3.2 and 3.3 derive lower and upper bounds that are tighter than the above trivial bounds.
Prior to the bounds, we consider a degenerate case to illustrate the limitations of multi-task learning.

3.1 The degenerate case of no training data for primary task

It is clear that if there is no training data for the secondary task, that is, if XS = ∅, then σ2
T (x∗1) =

σ2
T (x∗, ρ) = σ2

T (x∗0) for all x∗ and ρ. In the converse case where there is no training data for the
primary task, that is, XT = ∅, we instead have the following proposition:
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Proposition 3. For all x∗, σ2
T (x∗, ρ, ∅, XS) = ρ2σ2

T (x∗, 1, ∅, XS) + (1− ρ2)k∗∗.

Proof. σ2
T (x∗, ρ, ∅, XS) = k∗∗ − ρ2(kx

S∗)
T(Kx

SS + σ2
nI)−1kx

S∗

= (1− ρ2)k∗∗ + ρ2
[
k∗∗ − (kx

S∗)
T(Kx

SS + σ2
nI)−1kx

S∗
]

= (1− ρ2)k∗∗ + ρ2σ2
T (x∗, 1, ∅, XS).

Hence the posterior variance is a weighted average of the prior variance k∗∗ and the posterior vari-
ance at perfect correlation. When the cardinality ofXS increases under infill asymptotics [14, §3.3],

limnS→∞ σ2
T (x∗, 1, ∅, XS) = 0 =⇒ limnS→∞ σ2

T (x∗, ρ, ∅, XS) = (1− ρ2)k∗∗. (7)

This is the limit for the posterior variance at any test location for task T , if one has training data only
for the secondary task S. This is because a correlation of ρ between the tasks prevents any training
location for task S from having correlation higher than ρ with a test location for task T . Suppose
correlations in the input-space are given by an isotropic covariance function kx(|x − x′|). If we
translate correlations into distances between data locations, then any training location from task S
is beyond a certain radius from any test location for task T . In contrast, a training location from task
T may lay arbitrarily close to a test location for task T , subject to the constraints of noise.

We obtain the generalization error in this degenerate case, by integrating Proposition 3 wrt p(x∗)dx∗
and using the fact that the mean prior variance is given by the sum of the process eigenvalues.
Corollary 4. εT (ρ, σ2

n, ∅, XS) = ρ2εT (1, σ2
n, ∅, XS) + (1− ρ2)

∑∞
i=1 κi.

3.2 A lower bound

When XT 6= ∅, the correlations between locations in XT and locations in XS complicate the situa-
tion. However, since σ2

T (ρ) is a continuous and monotonically decreasing function of ρ, there exists
an α ∈ [0, 1], which depends on ρ, x∗ and X , such that σ2

T (ρ) = ασ2
T (1) + (1 − α)σ2

T (0). That
α depends on x∗ obstructs further analysis. The next proposition gives a lower bound

¯
σ2
T (ρ) of the

same form satisfying σ2
T (1) 6

¯
σ2
T (ρ) 6 σ2

T (ρ), where the mixing proportion is independent of x∗.
Proposition 5. Let

¯
σ2
T (x∗, ρ) def= ρ2σ2

T (x∗, 1) + (1− ρ2)σ2
T (x∗, 0). Then for all x∗:

(a)
¯
σ2
T (x∗, ρ) 6 σ2

T (x∗, ρ)

(b) σ2
T (x∗, ρ)−

¯
σ2
T (x∗, ρ) 6 ρ2(σ2

T (x∗, 0)− σ2
T (x∗, 1))

(c) arg maxρ2
[
σ2
T (x∗, ρ)−

¯
σ2
T (x∗, ρ)

]
> 1/2.

The proofs are in supplementary material §S.2. The lower bound
¯
σ2
T (ρ) depends explicitly on ρ2.

It depends implicitly on πS , which is the proportion of observations for task S, through the gap
between σ2

T (1) and σ2
T (0). If there is no training data for the primary task, i.e., if πS = 1, the

bound reduces to Proposition 3, and becomes exact for all values of ρ. If πS = 0, the bound is also
exact. For πS 6∈ {0, 1}, the bound is exact when ρ ∈ {−1, 0, 1}. As from Figure 2 and later from
our simulation results in section 5.3, this bound is rather tight. Part (b) of the proposition states the
tightness of the bound: it is no more than factor ρ2 of the gap between the trivial bounds σ2

T (0) and
σ2
T (1). Part (c) of the proposition says that the bound is least tight for a value of ρ2 greater than 1/2.

We provide an intuition on Proposition 5a. Let f̄1 (resp. f̄0) be the posterior mean of the single-task
GP when ρ = 1 (resp. ρ = 0). Contrasted with the multi-task predictor f̄T , f̄1 directly involves the
noisy observations for task T atXS , so it has more information on task T . Hence, predicting f̄1(x∗)
gives the trivial lower bound σ2

T (1) on σ2
T (ρ). The tighter bound

¯
σ2
T (ρ) is obtained by “throwing

away” information and predicting f̄1(x∗) with probability ρ2 and f̄0(x∗) with probability (1− ρ2).

Finally, the next corollary is readily obtained from Proposition 5a by integrating wrt p(x∗)dx∗. This
is possible because ρ is independent of x∗.
Corollary 6. Let

¯
εT (ρ, σ2

n, XT , XS) def= ρ2εT (1, σ2
n, XT , XS) + (1− ρ2)εT (0, σ2

n, XT , XS). Then

¯
εT (ρ, σ2

n, XT , XS) 6 εT (ρ, σ2
n, XT , XS).

3.3 An upper bound via equivalent isotropic noise at XS

The following question motivates our upper bound: if the training locations inXS had been observed
for task T rather than for task S, what is the variance σ̃2

n of the equivalent isotropic noise at XS so
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that the posterior variance remains the same? To answer this question, we first refine the definition
of σ2

T (·) to include a different noise variance parameter s2 for the XS observations:

σ2
T (x∗, ρ, σ2

n, s
2, XT , XS) def= k∗∗ − kT

∗

[
K(ρ) +

(
σ2
nI 0

0 s2I

)]
−1

k∗; (8)

cf. (3). We may suppress the parameters x∗, XT and XS when writing σ2
T (·). The variance σ̃2

n of
the equivalent isotropic noise is a function of x∗ defined by the equation

σ2
T (x∗, 1, σ2

n, σ̃
2
n) = σ2

T (x∗ρ, σ2
n, σ

2
n). (9)

For any x∗ there is always a σ̃2
n that satisfies the equation because the difference

∆(ρ, σ2
n, s

2) def= σ2
T (ρ, σ2

n, σ
2
n)− σ2

T (1, σ2
n, s

2) (10)
is a continuous and monotonically decreasing function of s2. To make progress, we seek an upper
bound σ̄2

n for σ̃2
n that is independent of the choice of x∗: ∆(ρ, σ2

n, σ̄
2
n) 6 0 for all test locations. Of

interest is the tight upper bound ¯̄σ2
n, which is the minimum possible σ̄2

n, given in the next proposition.
Proposition 7. Let λ̄ be the maximum eigenvalue ofKx

SS , β def= ρ−2 − 1 and ¯̄σ2
n

def= β(λ̄+σ2
n)+σ2

n.
Then for all x∗, σ2

T (x∗, ρ, σ2
n, σ

2
n) 6 σ2

T (x∗, 1, σ2
n, ¯̄σ

2
n). The bound is tight in this sense: for any

σ̄2
n, if ∀x∗ σ2

T (x∗, ρ, σ2
n, σ

2
n) 6 σ2

T (x∗, 1, σ2
n, σ̄

2
n), then ∀x∗ σ2

T (x∗, ρ, σ2
n, ¯̄σ

2
n) 6 σ2

T (x∗, 1, σ2
n, σ̄

2
n).

Proof sketch. Matrix K(ρ) may be factorized as

K(ρ) =
(
I 0
0 ρI

)(
Kx
TT Kx

TS
Kx
ST ρ−2Kx

SS

)(
I 0
0 ρI

)
. (11)

By using this factorization in the posterior variance (8) and taking out the
(
I 0
0 ρI

)
factors, we obtain

σ2
T (ρ, σ2

n, s
2) = k∗∗ − (kx

∗)
T[Σ(ρ, σ2

n, s
2)]−1kx

∗, (12)
where (kx

∗)
T def=

(
(kx
T∗)

T, (kx
S∗)

T
)

and

Σ(ρ, σ2
n, s

2) def=

(
Kx
TT Kx

TS
Kx
ST ρ−2Kx

SS

)
+
(
σ2

nI 0
0 ρ−2s2I

)
= Σ(1, σ2

n, s
2) + β

(
0 0
0 Kx

SS + s2I

)
.

The second expression for Σ makes clear that, in the terms of σ2
T (ρ, σ2

n, σ
2
n), having dataXS for task

S is equivalent to an additional correlated noise at these observations for task T . This expression
motivates the question that began this section. Note that ρ−2 > 1, and hence β > 0.

The increase in posterior variance due to having XS at task S with noise variance σ2
n rather than

having them at task T with noise variance s2 is given by ∆(ρ, σ2
n, s

2), which we may now write as
∆(ρ, σ2

n, s
2) = (kx

∗)
T
[
(Σ(1, σ2

n, s
2))−1 − (Σ(ρ, σ2

n, σ
2
n))−1

]
kx
∗. (13)

Recall that we seek an upper bound σ̄2
n for σ̃2

n such that ∆(ρ, σ2
n, σ̄

2
n) 6 0 for all test locations. In

general, this requires ¯̄σ2
n

def= β(λ̄+ σ2
n) + σ2

n 6 σ̄2
n; details can be found in supplementary material

§S.3. The tightness ¯̄σ2
n is evident from the construction.

Intuitively, σ2
T (x∗, 1, σ2

n, ¯̄σ
2
n) is the tight upper bound because it inflates the noise (co)variance atXS

just sufficiently, from (βKx
SS + σ2

nI/ρ
2) to ¯̄σ2

nI . Analogously, the tight lower bound on σ̃2
n is given

by
=
σ2

n
def= β(

¯
λ+ σ2

n) + σ2
n. In summary, ρ−2σ2

n 6
=
σ2

n 6 σ̃2
n 6 ¯̄σ2

n 6 σ̄2
n, where the first inequality

is obtained by substituting in zero for
¯
λ in

=
σ2

n. Hence observing XS at S is at most as “noisy” as
an additional β(λ̄ + σ2

n) noise variance, and at least as “noisy” as an additional β(
¯
λ + σ2

n) noise
variance. Since β decreases with |ρ|, the additional noise variances are smaller when |ρ| is larger,
i.e., when the task S is more correlated with task T .

We give a description of how the above bounds scale with nS , using the results stated
in section 2.3. For large enough nS , we may write λ̄ ≈ nS κ̄ and

¯
λ ≈ nSκnS

. Further-
more, for uniformly distributed inputs in the one-dimension unit interval, if the covariance
function satisfies Sacks-Ylvisaker conditions of order r, then κnS

= Θ
(
(πnS)−2r−2

)
, so that

¯
λ = Θ

(
(πnS)−2r−1

)
. Since ¯̄σ2

n and
=
σ2

n are linear in λ̄ and
¯
λ, we have ¯̄σ2

n = ρ−2σ2
n + βΘ(nS)

and
=
σ2

n = ρ−2σ2
n + βΘ

(
n−2r−1
S

)
. For the upper bound ¯̄σ2

n, note that although it scales linearly
with nS , the eigenvalues of K(1) scales with n, thus σ2

T (1, σ2
n, ¯̄σ

2
n) depends on πS

def= nS/n. In
contrast the lower bound

=
σ2

n is dominated by ρ−2σ2
n, so that σ2

T (1, σ2
n,=σ

2
n) does not depend on πS

even for moderate sizes nS . Therefore, the lower bound is not as useful as the upper bound.

Finally, if we refine εT as we have done for σ2
T in (8), we obtain the following corollary:

Corollary 8. Let ε̄T (ρ, σ2
n, σ

2
n, XT , XS) def= εT (1, σ2

n, ¯̄σ
2
n, XT , XS). Then

ε̄T (ρ, σ2
n, σ

2
n, XT , XS) > εT (ρ, σ2

n, σ
2
n, XT , XS).
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3.4 Exact computation of generalization error

The factorization of σ2
T expressed by (12) allows the generalization error to be computed exactly in

certain cases. We replace the quadratic form in (12) by matrix trace and then integrate out x∗ to give
εT (ρ, σ2

n, XT , XS) = 〈k∗∗〉 − tr
(
Σ−1〈kx

∗(k
x
∗)

T〉
)

=
∑∞
i=1 κi − tr

(
Σ−1M

)
,

where Σ denotes Σ(ρ, σ2
n, σ

2
n), the expectations are taken over x∗, and M is an n-by-n matrix with

Mpq
def=
∫
kx(xp,x∗) kx(xq,x∗) p(x∗)dx∗ =

∑∞
i=1 κ

2
iφi(xp)φi(xq), where xp,xq ∈ X.

When the eigenfunctions φi(·)s are not bounded, the infinite-summation expression forMpq is often
difficult to use. Nevertheless, analytical results for Mpq are still possible in some cases using the
integral expression. An example is the case of the squared exponential covariance function with
normally distributed x, when the integrand is a product of three Gaussians.

4 Optimal error for the degenerate case of no training data for primary task

If training examples are provided only for task S, then task T has the following optimal performance.
Proposition 9. Under optimal sampling on a 1-d space, if the covariance function satisfies Sacks-
Ylvisaker conditions of order r, then εopt

T (ρ, σ2, 1, n) = Θ(n−(2r+1)/(2r+2)
S ) + (1− ρ2)

∑∞
i=1 κi.

Proof. We obtain εopt
T (ρ, σ2, 1, n) = ρ2εopt

T (1, σ2
n, 1, n) + (1− ρ2)

∑∞
i=1 κi by minimizing Corol-

lary 4 wrt XS . Under the same conditions as the proposition, the optimal generalization error using
the single-task GP decays with training set size n as Θ(n−(2r+1)/(2r+2)) [11, Proposition V.3]. Thus
ρ2εopt

T (1, σ2
n, 1, n) = ρ2Θ(n−(2r+1)/(2r+2)

S ) = Θ(n−(2r+1)/(2r+2)
S ).

A directly corollary of the above result is that one cannot expect to do better than (1− ρ2)
∑
κi on

the average. As this is a lower bound, the same can be said for incorrectly specified GP priors.

5 Theoretical bounds on learning curve

Using the results from section 3, lower and upper bounds on the learning curve may be computed by
averaging over the choice of X using Monte Carlo approximation.1 For example, using Corollary 2
and integrating wrt p(X)dX gives the following trivial bounds on the learning curve:
Corollary 10. εavg

T (1, σ2
n, πS , n) 6 εavg

T (ρ, σ2
n, πS , n) 6 εavg

T (0, σ2
n, πS , n).

The gap between the trivial bounds can be analyzed as follows. Recall that πSn ∈ N0 by definition,
so that εavg

T (1, σ2
n, πS , (1− πS)n) = εavg

T (0, σ2
n, πS , n). Therefore εavg

T (1, σ2
n, πS , n) is equivalent to

εavg
T (0, σ2

n, πS , n) scaled along the n-axis by the factor (1− πS) ∈ [0, 1], and hence the gap between
the trivial bounds becomes wider with πS .

In the rest of this section, we derive non-trivial theoretical bounds on the learning curve before
providing simulation results. Theoretical bounds are particularly attractive for high-dimensional
input-spaces, on which Monte Carlo approximation is harder.

5.1 Lower bound

For the single-task GP, a lower bound on its learning curve is σ2
n

∑∞
i=1 κi/(σ

2
n + nκi) [15]. We

shall call this the single-task OV bound. This lower bound can be combined with Corollary 6.

Proposition 11. εavg
T (ρ, σ2

n, πS , n) > ρ2σ2
n

∞∑
i=1

κi
σ2

n + nκi
+ (1− ρ2)σ2

n

∞∑
i=1

κi
σ2

n + (1− πS)nκi
,

or equivalently, εavg
T (ρ, σ2

n, πS , n) > σ2
n

∞∑
i=1

b1iκi
σ2

n + nκi
, with b1i def=

σ2
n + (1− ρ2πS)nκi
σ2

n + (1− πS)nκi
,

or equivalently, εavg
T (ρ, σ2

n, πS , n) > σ2
n

∞∑
i=1

b0iκi
σ2

n + (1− πS)nκi
, with b0i def=

σ2
n + (1− ρ2πS)nκi

σ2
n + nκi

.

1Approximate lower bounds are also possible, by combining Corollary 6 and approximations in, e.g., [13].
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Proof sketch. To obtain the first inequality, we integrate Corollary 6 wrt to p(X)dX , and apply the
single-task OV bound twice. For the second inequality, its ith summand is obtained by combining
the corresponding pair of ith summands in the first inequality. The third inequality is obtained from
the second by swapping the denominator of b1i with that of κi/(σ2

n + nκi) for every i.

For fixed σ2
n, πS and n, denote the above bound by OVρ. Then OV0 and OV1 are both single task

bounds. In particular, from Corollary 10, we have that the OV1 is a lower bound on εavg
T (ρ, σ2

n, πS , n).
From the first expression of the above proposition, it is clear from the “mixture” nature of the bound
that the two-tasks bound OVρ is always better than OV1. As ρ2 decreases, the two-tasks bound moves
towards the OV0; and as πS increases, the gap between OV0 and OV1 increases. In addition, the gap
is also larger for rougher processes, which are harder to learn. Therefore, the relative tightness of
OVρ over OV1 is more noticeable for lower ρ2, higher πS and rougher processes.

The second expression in the Proposition 11 is useful for comparing with the OV1. Each summand
for the two-tasks case is a factor b1i of the corresponding summand for the single-task case. Since
b1i ∈ [1, (1− ρ2πS)/(1− πS)[ , OVρ is more than OV1 by at most (1− ρ2)πS/(1− πS) times.
Similarly, the third expression of the proposition is useful for comparing with OV0: each summand
for the the two-tasks case is a factor b0i ∈ ](1− ρ2πS), 1] of the corresponding single-task one.
Hence, OVρ is less than OV0 by up to ρ2πS times. In terms of the lower bound, this is the limit to
which multi-task learning can outperform the single-task learning that ignores the secondary task.

5.2 Upper bound using equivalent noise

An upper bound on the learning curve of a single-task GP is given in [16]. We shall refer to this
as the single-task FWO bound and combine it with the approach in section 3.3 to obtain an upper
on the learning curve of task T . Although the single-task FWO bound was derived for observations
with isotropic noise, with some modifications (see supplementary material §S.4), the derivations are
still valid for observations with heteroscedastic and correlated noise. Below is a version of the FWO
bound that has yet to assume isotropic noise:
Theorem 12. ([16], modified second part of Theorem 6) Consider a zero-mean GP with covari-
ance function kx(·, ·), and eigenvalues κi and eigenfunctions φi(·) under the measure p(x)dx;
and suppose that the noise (co)variances of the observations are given by γ2(·, ·). For n ob-
servations {xi}ni=1, let H and Φ be matrices such that Hij

def= kx(xi,xj) + γ2(xi,xj) and
Φij def= φj(xi). Then the learning curve at n is upper-bounded by

∑∞
i=1 κi − n

∑∞
i=1 κ

2
i /ci, where

ci def=
〈
(ΦTHΦ)ii

〉
/n, and the expectation in ci is taken over the set of n input locations drawn

independently from p(x).

Unlike [16], we do not assume that the noise variance γ2(xi,xj) is of the form σ2
nδij . Instead

of proceeding from the upper bound σ2
T (1, σ2

n, ¯̄σ
2
n), we proceed directly from the exact posterior

variance given by (12). Thus we set the observation noise (co)variance γ2(xi,xj) to
δ(xi ∈ XT )δ(xj ∈ XT ) δijσ

2
n + δ(xi ∈ XS)δ(xj ∈ XS)

[
βkx(xi,xj) + ρ−2δijσ

2
n

]
, (14)

so that, through the definition of ci in Theorem 12, we obtain

ci = (1 + βπS)
{[

(1 + βπ2
S)n/(1 + βπS)− 1

]
κi +

∫
kx(x,x) [φi(x)]2 p(x)dx + σ2

n

}
; (15)

details are in the supplementary material §S.5. This leads to the following proposition:
Proposition 13. Let β def= ρ−2 − 1. Then, using the cis defined in (15), we have

εavg
T (ρ, σ2

n, πS , n) 6
∑∞
i=1 κi − n

∑∞
i=1 κ

2
i /ci.

Denote the above upper bound by FWOρ. When ρ = ±1 or πS = 0, the single-task FWO upper
bound is recovered. However, FWOρ with ρ = 0 gives the prior variance

∑
κi instead. A trivial

upper bound can be obtained using Corollary 10, by replacing n with (1 − πS)n in the single-task
FWO bound. The FWOρ bound is better than this trivial single-task bound for small n and high |ρ|.

5.3 Comparing bounds by simulations of learning curve

We compare our bounds with simulated learning curves. We follow the third scenario in [13]: the in-
put space is one dimensional with Gaussian distribution N (0, 1/12), the covariance function is the
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(a) ρ2 = 1/2, πS = 1/2
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(b) ρ2 = 3/4, πS = 3/4

Figure 3: Comparison of various bounds for two settings of (ρ, πS). Each graph plots εavg
T against n

and consists of the “true” multi-task learning curve (middle ), the theoretical lower/upper bounds
of Propositions 11/13 (lower/upper ), the empirical trivial lower/upper bounds using Corollary
10 (lower/upper ), and the empirical lower/upper bounds using Corollaries 6/8 (×/ 4). The
thickness of the “true” multi-task learning curve reflects 95% confidence interval.

unit variance squared exponential kx(x, x′) = exp[−(x− x′)2/(2l2)] with length-scale l = 0.01,
the observation noise variance is σ2

n = 0.05, and the learning curves are computed for up to n = 300
training data points. When required, the average over x∗ is computed analytically (see section 3.4).
The empirical average over X def= XT ∪XS , denoted by 〈〈·〉〉, is computed over 100 randomly sam-
pled training sets. The process eigenvalues κis needed to compute the theoretical bounds are given
in [17]. Supplementary material §S.6 gives further details.

Learning curves for pairwise combinations of ρ2 ∈ {1/8, 1/4, 1/2, 3/4} and πS ∈ {1/4, 1/2, 3/4}
are computed. We compare the following: (a) the “true” multi-task learning curve 〈〈εT (ρ)〉〉 obtained
by averaging σ2

T (ρ) over x∗ and X; (b) the theoretical bounds OVρ and FWOρ of Propositions 11
and 13; (c) the trivial upper and lower bounds that are single-task learning curves 〈〈εT (0)〉〉 and
〈〈εT (1)〉〉 obtained by averaging σ2

T (0) and σ2
T (1); and (d) the empirical lower bound 〈〈̄εT (ρ)〉〉 and

upper bound 〈〈ε̄T (ρ)〉〉 using Corollaries 6 and 8. Figure 3 gives some indicative plots of the curves.

We summarize with the following observations: (a) The gap between the trivial bounds 〈〈εT (0)〉〉
and 〈〈εT (1)〉〉 increases with πS , as described at the start of section 5. (b) We find the lower bound
〈〈̄εT (ρ)〉〉 a rather close approximation to the multi-task learning curve 〈〈εT (ρ)〉〉, as evidenced by
the much overlap between the× lines and the middle lines in Figure 3. (c) The curve for the
empirical upper bound 〈〈ε̄T (ρ)〉〉 using the equivalent noise method has jumps, e.g., the 4 lines in
Figure 3, because the equivalent noise variance ¯̄σ2

n increases whenever a datum for XS is sampled.
(d) For small n, 〈〈εT (ρ)〉〉 is closer to FWOρ, but becomes closer to OVρ as n increases, as shown by
the unmarked solid lines in Figure 3. This is because the theoretical lower bound OVρ is based on the
asymptotically exact single-task OV bound and the

¯
εT (ρ) bound, which is observed to approximate

the multi-task learning curve rather closely (point (b)).

Conclusions We have measured the influence of the secondary task on the primary task using the
generalization error and the learning curve, parameterizing these with the correlation ρ between the
two tasks, and the proportion πS of observations for the secondary task. We have provided bounds
on the generalization error and learning curves, and these bounds highlight the effects of ρ and πS .
This is a step towards understanding the role of the matrix Kf of inter-task similarities in multi-task
GPs with more than two tasks. Analysis on the degenerate case of no training data for the primary
task has uncovered an intrinsic limitation of multi-task GP. Our work contributes to an understanding
of multi-task learning that is orthogonal to the existing PAC-based results in the literature.
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