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Abstract

We address the problem of learning classifiers when observations have multiple
views, some of which may not be observed for all examples. We assume the
existence of view generating functions which may complete the missing views
in an approximate way. This situation corresponds for example to learning text
classifiers from multilingual collections where documentsare not available in all
languages. In that case, Machine Translation (MT) systems may be used to trans-
late each document in the missing languages. We derive a generalization error
bound for classifiers learned on examples with multiple artificially created views.
Our result uncovers a trade-off between the size of the training set, the number
of views, and the quality of the view generating functions. As a consequence,
we identify situations where it is more interesting to use multiple views for learn-
ing instead of classical single view learning. An extensionof this framework is
a natural way to leverage unlabeled multi-view data in semi-supervised learning.
Experimental results on a subset of the Reuters RCV1/RCV2 collections support
our findings by showing that additional views obtained from MT may significantly
improve the classification performance in the cases identified by our trade-off.

1 Introduction

We study the learning ability of classifiers trained on examples generated from different sources,
but where some observations are partially missing. This problem occurs for example in non-parallel
multilingual document collections, where documents may beavailable in different languages, but
each document in a given language may not be translated in all(or any) of the other languages.

Our framework assumes the existence of view generating functions which may approximate miss-
ing examples using the observed ones. In the case of multilingual corpora these view generating
functions may be Machine Translation systems which for eachdocument in one language produce
its translations in all other languages. Compared to other multi-source learning techniques [6],
we address a different problem here by transforming our initial problem of learning from partially
observed examples obtained from multiple sources into the classical multi-view learning. The con-
tributions of this paper are twofold. We first introduce a supervised learning framework in which
we define different multi-view learning tasks. Our main result is a generalization error bound for
classifiers trained over multi-view observations. From this result we induce a trade-off between the
number of training examples, the number of views and the ability of view generating functions to



produce accurate additional views. This trade-off helps usidentify situations in which artificially
generated views may lead to substantial performance gains.We then show how the agreement of
classifiers over their class predictions on unlabeled training data may lead to a much tighter trade-off.
Experiments are carried out on a large part of the Reuters RCV1/RCV2 collections, freely available
from Reuters, using 5 well-represented languages for text classification. Our results show that our
approach yields improved classification performance in both the supervised and semi-supervised
settings.

In the following two sections, we first define our framework, then the learning tasks we address.
Section 4 describes our trade-off bound in the Empirical Risk Minimization (ERM) setting, and
shows how and when the additional, artificially generated views may yield a better generalization
performance in a supervised setting. Section 5 shows how to exploit these results when additional
unlabeled training data are available, in order to obtain a more accurate trade-off. Finally, section 6
describes experimental results that support this approach.

2 Framework and Definitions

In this section, we introduce basic definitions and the learning objectives that we address in our
setting of artificially generated representations.

2.1 Observed and Generated Views

A multi-view observationis a sequencex def
= (x1, ..., xV ), where differentviewsxv provide a rep-

resentation of the same object in different setsXv. A typical example is given in [3] where each
Web-page is represented either by its textual content (firstview) or by the anchor texts which point
to it (second view). In the setting of multilingual classification, each view is the textual representa-
tion of a document written in a given language (e.g.English, German, French).

We consider binary classification problems where, given a multi-view observation, some of the
views are not observed (we obviously require that at least one view is observed). This hap-
pens, for instance, when documents may be available in different languages, yet a given document
may only be available in a single language. Formally, our observationsx belong to the input set
X def

= (X1 ∪ {⊥}) × ... × (XV ∪ {⊥}), wherexv =⊥ means that thev-th view is not observed.
In binary classification, we assume that examples are pairs(x, y), with y ∈ Y def

= {0, 1}, drawn
according to a fixed, but unknown distributionD overX ×Y, such thatP(x,y)∼D (∀v : xv =⊥) = 0
(at least one view is available). In multilingual text classification, aparallel corpusis a dataset where
all views are always observed (i.e.P(x,y)∼D (∃v : xv =⊥) = 0), while acomparable corpusis a
dataset where only one view is available for each example (i.e. P(x,y)∼D (|{v : xv 6=⊥}| 6= 1) = 0).

For a given observationx, the viewsv such thatxv 6=⊥ will be called theobserved views. The
originality of our setting is that we assume that we haveview generating functionsΨv→v′ : Xv →
Xv′ which take as input a given viewxv and output an element ofXv′ , that we assume isclose
to whatxv′

would be if it was observed. In our multilingual text classification example, the view
generating functions are Machine Translation systems. These generating functions can then be used
to create surrogate observations, such that all views are available. For a given partially observedx,
thecompletedobservationx is obtained as:

∀v, xv =

{

xv if xv 6=⊥
Ψv′→v(xv′

) otherwise, wherev′ is such thatxv′ 6=⊥ (1)

In this paper, we focus on the case where onlyoneview is observed for each example. This setting
corresponds to the problem of learning fromcomparable corpora, which will be the focus of our
experiments. Our study extends to the situation where two ormore views may be observed in a
straightforward manner. Our setting differs from previousmulti-view learning studies [5] mainly on
the straightforward generalization to more than two views and the use of view generating functions
to induce the missing views from the observed ones.



2.2 Learning objective

The learning task we address is to find, in some predefined classifier setC, the stochastic classifierc
that minimizes the classification error on multi-view examples (with, potentially, unobserved views)
drawn according to some distributionD as described above. Following the standard multi-view
framework, in which all views are observed [3, 13], we assumethat we are givenV deterministic
classifier sets(Hv)V

v=1, each working on one specific view1. That is, for each viewv, Hv is a set
of functionshv : Xv → {0, 1}. The final set of classifiersC containsstochasticclassifiers, whose
output only depends on the outputs of the view-specific classifiers. That is, associated to a set of
classifiersC, there is a functionΦC : (Hv)V

v=1 ×X → [0, 1] such that:

C = {x 7→ ΦC(h1, ..., hV ,x) |∀v, hv ∈ Hv }
For simplicity, in the rest of the paper, when the context is clear, the functionx 7→ ΦC(h1, ..., hV ,x)
will be denoted bych1,...,hV

. The overall objective of learning is therefore to findc ∈ C with low
generalization error, defined as:

ǫ(c) = E
(x,y)∼D

e (c, (x, y)) (2)

wheree is a pointwise error, for instance the0/1 loss:e(c, (x, y)) = c(x)(1 − y) + (1 − c(x))y.

In the following sections, we address this learning task in our framework in terms of supervised and
semi-supervised learning.

3 Supervised Learning Tasks

We first focus on the supervised learning case. We assume thatwe have a training setS of m
examples drawn i.i.d. according to a distributionD, as presented in the previous section. Depending
on how the generated views are used at both training and test stages, we consider the following
learning scenarios:

- Baseline: This setting corresponds to the case where each view-specific classifier is trained using
the corresponding observed view on the training set, and prediction for a test example is
done using the view-specific classifier corresponding to theobserved view:

∀v, hv ∈ arg min
h∈Hv

∑

(x,y)∈S:xv 6=⊥
e(h, (xv, y)) (3)

In this case we pose∀x, cb
h1,...,hV

(x) = hv(xv), wherev is the observed view forx. Notice
that this is the most basic way of learning a text classifier from a comparable corpus.

- Generated Views as Additional Training Data: The most natural way to use the generated
views for learning is to use them as additional training material for the view-specific clas-
sifiers:

∀v, hv ∈ arg min
h∈Hv

∑

(x,y)∈S

e(h, (xv, y)) (4)

with x defined by eq. (1). Prediction is still done using the view-specific classifiers cor-
responding to the observed view, i.e.∀x, cb

h1,...,hV
(x) = hv(x

v). Although the test set
distribution is a subdomain of the training set distribution [2], this mismatch is (hopefully)
compensated by the addition of new examples.

- Multi-view Gibbs Classifier: In order to avoid the potential bias introduced by the use of gener-
ated views only during training, we consider them also during testing. This becomes a stan-
dard multi-view setting, where generated views are used exactly as if they were observed.
The view-specific classifiers are trained exactly as above (eq. 4), but the prediction is car-
ried out with respect to the probability distribution of classes, by estimating the probability
of class membership in class 1 from the mean prediction of each view-specific classifier:

∀x, cmg
h1,...,hV

(x) =
1

V

V
∑

v=1

hv(x
v) (5)

1We assume deterministic view-specific classifiers for simplicity and with no loss of generality.



- Multi-view Majority Voting: With view generating functions involved in training and test, a nat-
ural way to obtain a (generally) deterministic classifier with improved performance is to
take the majority vote associated with the Gibbs classifier.The view-specific classifiers are
again trained as in eq. 4, but the final prediction is done using a majority vote:

∀x, cmv
h1,...,hV

(x) =

{

1
2 if

∑V

v=1 hv(x
v) = V

2

I
(

∑V

v=1 hv(xv) > V
2

)

otherwise
(6)

WhereI(.) is the indicator function. The classifier outputs either themajority voted class,
or either one of the classes with probability1/2 in case of a tie.

4 The trade-offs with the ERM principle

We now analyze how the generated views can improve generalization performance. Essentially,
the trade-off is that generated views offer additional training material, therefore potentiallyhelping
learning, but can also be of lower quality, which maydegradelearning.

The following theorem sheds light on this trade-off by providing bounds on the baseline vs. multi-
view strategies. Note that such trade-offs have already been studied in the literature, although in
different settings (see e.g. [2, 4]). Our first result is the following theorem. The notion of func-
tion class capacity used here is theempirical Rademacher complexity[1]. Proof is given in the
supplementary material.

Theorem 1 Let D be a distribution overX × Y, satisfyingP(x,y)∼D (|{v : xv 6=⊥}| 6= 1) = 0.
Let S = ((xi, yi))

m

i=1 be a dataset ofm examples drawn i.i.d. according toD. Let e be the0/1
loss, and let(Hv)V

v=1 be the view-specific deterministic classifier sets. For eachview v, denote
e ◦Hv

def
= {(xv, y) 7→ e(h, (xv, y))|h ∈ Hv}, and denote , for any sequenceSv ∈ (Xv × Y)

mv of
sizemv, R̂mv

(e ◦ Hv,Sv) the empirical Rademacher complexity ofe ◦ Hv onSv. Then, we have:

Baseline setting: for all 1 > δ > 0, with probability at least1 − δ overS:

ǫ(cb
h1,...,hV

) ≤ inf
h′

v
∈Hv

[

ǫ(cb
h′

1
,...,h′

V

)
]

+ 2

V
∑

v=1

mv

m
R̂mv

(e ◦ Hv,Sv) + 6

√

ln(2/δ)

2m

where, for allv, Sv def
= {(xv

i , yi)|i = 1..m andxv
i 6=⊥}, mv = |Sv| andhv ∈ Hv is the

classifier minimizing the empirical risk onSv.

Multi-view Gibbs classification setting: for all 1 > δ > 0, with probability at least1 − δ overS:

ǫ(cmg
h1,...,hV

) ≤ inf
h′

v
∈Hv

[

ǫ(cb
h′

1
,...,h′

V

)
]

+
2

V

V
∑

v=1

R̂m(e ◦ Hv,Sv) + 6

√

ln(2/δ)

2m
+ η

where, for allv, Sv def
= {(xv

i , yi)|i = 1..m}, hv ∈ Hv is the classifier minimizing the
empirical risk onSv, and

η = inf
h′

v
∈Hv

[

ǫ(cmg

h′

1
,...,h′

V

)
]

− inf
h′

v
∈Hv

[

ǫ(cb
h′

1
,...,h′

V

)
]

(7)

This theorem gives us a rule for whether it is preferable to learn only with the observed views
(the baseline setting) or preferable to use the view-generating functions in the multi-view Gibbs
classification setting: we should use the former when2

∑

v
mv

m
R̂mv

(e ◦ Hv,Sv) < 2
V

∑

v R̂m(e ◦
Hv,Sv) + η, and the latter otherwise.

Let us first explain the role ofη (Eq. 7). The difference between the two settings is in the train
and test distributions for the view-specific classifiers.η compares the best achievable error for each

of the distribution.infh′

v
∈Hv

[

ǫ(cb
h′

1
,...,h′

V

)
]

is the best achievable error in the baseline setting (i.e.

without generated views), with the automatically generated views, the best achievable error becomes

infh′

v
∈Hv

[

ǫ(cmg

h′

1
,...,h′

V

)
]

.



Thereforeη measures the loss incurred by using the view generating functions. In a favorable
situation, the quality of the generating functions will be sufficient to makeη small.

The terms depending on the complexity of the class of functions may be better explained using
orders of magnitude. Typically, the Rademacher complexityfor a sample of sizen is usually of
orderO( 1√

n
) [1].

Assuming, for simplicity, that all empirical Rademacher complexities in Theorem 1 are approxi-
mately equal tod/

√
n, wheren is the size of the sample on which they are computed, and assuming

thatmv = m/V for all v. The trade-off becomes:

Choose the Multi-view Gibbs classification setting when:d
(
√

V
m

− 1√
m

)

> η

This means that we expect important performance gains when the number of examples is small, the
generated views of sufficiently high quality for the given classification task, and/or there are many
views available. Note that our theoretical framework does not take the quality of the MT system in a
standard way: in our setup, a good translation system is (roughly) one which generates bag-of-words
representations that allow to correctly discriminate between classes.

Majority voting One advantage of the multi-view setting at prediction time is that we can use a
majority voting scheme, as described in Section 2. In such a case, we expect thatǫ(cmv

h′

1
,...,h′

V

) ≤
ǫ(cmg

h′

1
,...,h′

V

) if the view-specific classifiers are not correlated in their errors. It can not be guaranteed

in general, though, since, in general, we can not prove any better thanǫ(cmv
h′

1
,...,h′

V

) ≤ 2ǫ(cmg

h′

1
,...,h′

V

)

(see e.g. [9]).

5 Agreement-Based Semi-Supervised Learning

One advantage of the multi-view settings described in the previous section is that unlabeled training
examples may naturally be taken into account in a semi–supervised learning scheme, using existing
approaches for multi-view learning (e.g. [3]).

In this section, we describe how, under the framework of [11], the supervised learning trade-off
presented above can be improved using extra unlabeled examples. This framework is based on
the notion ofdisagreementbetween the various view-specific classifiers, defined as theexpected
variance of their outputs:

V (h1, ..., hV ) def
= E

(x,y)∼D





1

V

∑

v

hv(xv)2 −
(

1

V

∑

v

hv(xv)

)2


 (8)

The overall idea is that a set of good view-specific classifiers should agree on their predictions,
making the expected variance small. This notion of disagreement has two key advantages. First, it
does not depend on the true class labels, making its estimation easy over a large, unlabeled training
set. The second advantage is that if, during training, it turns out that the view-specific classifiers
have a disagreement of at mostµ on the unlabeled set, the set of possible view-specific classifiers
that needs be considered in the supervised learning stage isreduced to:

H∗
v(µ) def

= {h′
v ∈ Hv |∀v′ 6= v,∃h′

v′ ∈ Hv′ , V(h′
1, ..., h

′
V ) ≤ µ}

Thus, the more the various view-specific classifiers tend to agree, the smaller the possible set of
functions will be. This suggests a simple way to do semi-supervised learning: the unlabeled data
can be used to choose, among the classifiers minimizing the empirical risk on the labeled training
set, those with best generalization performance (by choosing the classifiers with highest agreement
on the unlabeled set). This is particularly interesting when the number of labeled examples is small,
as the train error is usually close to0.

Theorem 3 of [11] provides a theoretical valueB(ǫ, δ) for the minimum number of unlabeled ex-
amples required to estimate Eq. 8 with precisionǫ and probability1 − δ (this bound depends on
{Hv}v=1..V ). The following result gives a tighter bound of the generalization error of the multi-view
Gibbs classifier when unlabeled data are available. The proof is similar to Theorem 4 in [11].



Proposition 2 Let 0 ≤ µ ≤ 1 and 0 < δ < 1. Under the conditions and notations of Theorem
1, assume furthermore that we have access tou ≥ B(µ/2, δ/2) unlabeled examples drawn i.i.d.
according to the marginal distribution ofD onX .

Then, with probability at least 1 − δ, if the empirical risk minimizers hv ∈
arg minh∈Hv

∑

(xv,y)∈Sv e(h, (xv, y)) have a disagreement less thanµ/2 on the unlabeled
set, we have:

ǫ(cmg
h1,...,hV

) ≤ inf
h′

v
∈Hv

[

ǫ(cb
h′

1
,...,h′

V

)
]

+
2

V

V
∑

v=1

R̂m(e ◦ H∗
v(µ),Sv) + 6

√

ln(4/δ)

2m
+ η

We can now rewrite the trade-off between the baseline setting and the multi-view Gibbs classifier,
taking semi-supervised learning into account. Using orders of magnitude, and assuming that for
each view,R̂m(e ◦ H∗

v(µ),Sv) is O(du/
√

m), with the proportional factordu ≪ d, the trade-off
becomes:

Choose the mutli-view Gibbs classification setting when:d
√

V/m − du/
√

m > η.

Thus, the improvement is even more important than in the supervised setting. Also note that the
more views we have, the greater the reduction in classifier set complexity should be.

Notice that this semi-supervised learning principle enforces agreement between the view specific
classifiers. In the extreme case where they almost always give the same output, majority voting is
then nearly equivalent to the Gibbs classifier (when all voters agree, any vote is equal to the majority
vote). We therefore expect the majority vote and the Gibbs classifier to yield similar performance in
the semi-supervised setting.

6 Experimental Results

In our experiments, we address the problem of learning document classifiers from a comparable
corpus. We build the comparable corpus by sampling parts of the Reuters RCV1 and RCV2 collec-
tions [12, 14]. We used newswire articles written in5 languages,English, French, German,
Italian andSpanish. We focused on6 relatively populous classes:C15, CCAT, E21, ECAT,
GCAT, M11.

For each language and each class, we sampled up to5000 documents from the RCV1 (forEnglish)
or RCV2 (for other languages). Documents belonging to more than one of our6 classes were as-
signed the label of their smallest class. This resulted in 12-30K documents per language, and 11-34K
documents per class (see Table 1). In addition, we reserved atest split containing20% of the doc-
uments (respecting class and language proportions) for testing. For each document, we indexed
the text appearing in the title (headlinetag), and the body (body tags) of each article. As prepro-
cessing, we lowercased, mapped digits to a singledigit token, and removed non alphanumeric
tokens. We also filtered out function words using a stop-list, as well as tokens occurring in less than
5 documents.

Documents were then represented as a bag of words, using a TFIDF-based weighting scheme. The
final vocabulary size for each language is given in table 1. The artificial views were produced using

Table 1: Distribution of documents over languages and classes in the comparable corpus.

Language # docs (%) # tokens
English 18, 758 16.78 21, 531
French 26, 648 23.45 24, 893
German 29, 953 26.80 34, 279
Italian 24, 039 21.51 15, 506
Spanish 12, 342 11.46 11, 547

Total 111, 740

Class Size (all lang.) (%)
C15 18, 816 16.84
CCAT 21, 426 19.17
E21 13, 701 12.26
ECAT 19, 198 17.18
GCAT 19, 178 17.16
M11 19, 421 17.39



PORTAGE, a statistical machine translation system developed at NRC [15]. Each document from
the comparable corpus was thus translated to the other4 languages.2

For each class, we set up a binary classification task by usingall documents from that class as
positive examples, and all others as negative. We first present experimental results obtained in
supervised learning, using various amounts of labeled examples. We rely on linearSVM models as
base classifiers, using theSVM-Perf package [8]. For comparisons, we employed the four learning
strategies described in section 3:1− the single-view baselinesvb (Eq. 3),2− generated views as
additional training datagvb (Eq. 4),3− multi-view Gibbsmvg (Eq. 5), and4− multi-view majority
votingmvm (Eq. 6). Recall that the second setting,gvb, is the most straightforward way to train and
test classifiers when additional examples are available (orgenerated) from different sources. It can
thus be seen as a baseline approach, as opposed to the last twostrategies (mvg andmvm), where
view-specific classifiers are both trained and tested over both original and translated documents.
Note also that in our case (V = 5 views), additional training examples obtained from machine
translation represent4 times as many labeled examples as the original texts used to train the baseline
svb. All test results were averaged over10 randomly sampled training sets.

Table 2: Test classification accuracy andF1 in the supervised setting, for both baselines (svb, gvb),
Gibbs (mvg) and majority voting (mvw) strategies, averaged over10 random sets of10 labeled
examples per view.↓ indicates statistically significantly worse performance that the best result,
according to a Wilcoxon rank sum test (p < 0.01) [10].

Strategy C15 CCAT E21 ECAT GCAT M11
Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

svb .559↓ .388↓ .639↓ .403↓ .557↓ .294↓ .579↓ .374↓ .800↓ .501↓ .651↓ .483↓

gvb .705 .474↓ .691↓ .464↓ .665↓ .351↓ .623↓ .424↓ .835↓ .595↓ .786↓ .589↓

mvg .693↓ .494↓ .681↓ .445↓ .665↓ .375↓ .620↓ .420↓ .834↓ .594↓ .787↓ .600↓

mvm .716 .521 .708 .478 .693 .405 .636 .441 .860 .642 .820 .644

Results obtained in a supervised setting with only10 labeled documents per language for training are
summarized in table 2. All learning strategies using the generated views during training outperform
the single-view baseline. This shows that, although imperfect, artificial views do bring additional
information that compensates the lack of labeled data. Although the multi-view Gibbs classifier
predicts based on a translation rather than the original in80% of cases, it produces almost identical
performance to thegvb run (which only predicts using the original text). These results indicate that
the translation produced by our MT system is of sufficient quality for indexing and classification
purposes. Multi-view majority voting reaches the best performance, yielding a6 − 17% improve-
ment in accuracy over the baseline. A similar increase in performance is observed usingF1, which
suggests that the multi-viewSVM appropriately handles unbalanced classes.

Figure 1 shows the learning curves obtained on3 classes,C15, ECAT andM11. These figures show
that when there are enough labeled examples (around500 for these3 classes), the artificial views do
not provide any additional useful information over the original-language examples. These empirical
results illustrate the trade-off discussed at the previoussection. When there are sufficient original
labeled examples, additional generated views do not provide more useful information for learning
than what view-specific classifiers have available already.

We now investigate the use of unlabeled training examples for learning the view-specific classifiers.
Our overall aim is to illustrate our findings from section 5. Recall that in the case where view-specific
classifiers are in agreement over the class labels of a large number of unlabeled examples, the multi-
view Gibbs and majority vote strategies should have the sameperformance. In order to enforce
agreement between classifiers on the unlabeled set, we use a variant of the iterative co-training
algorithm [3]. Given the view-specific classifiers trained on an initial set of labeled examples, we
iteratively assign pseudo-labels to the unlabeled examples for which all classifier predictions agree.
We then train new view-specific classifiers on the joint set ofthe original labeled examples, and those
unanimously (pseudo-)labeled ones. Key differences between this algorithm and co-training are the
number of views used for learning (5 instead of2), and the use of unanimous and simultaneous
labeling.

2The dataset is available fromhttp://multilingreuters.iit.nrc.ca/ReutersMultiLingualMultiView.htm
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Figure 1:F1 vs. size of the labeled training set for classesC15, ECAT andM11.

We call this iterative processself-learning multiple-view algorithm, as it also bears a similarity with
the self-training paradigm [16]. Prediction from the multi-view SVM models obtained from this
self-learning multiple-view algorithm is done either using Gibbs (mvs

g) or majority voting (mvs
m).

These results are shown in table 3. For comparison we also trained aTSVM model [7] on each view
separately, a semi-supervised equivalent to the single-view baseline strategy. Note that theTSVM
model mostly out-performs the supervised baselinesvb, although theF1 suffers on some classes.
This suggests that theTSVM has trouble handling unbalanced classes in this setting.

Table 3: Test classification accuracy andF1 in the semi-supervised setting, for single-viewTSVM
and multi-view self-learning using either Gibbs (mvs

g) or majority voting (mvs
m), averaged over10

random sets using10 labeled examples per view to start. For comparison we provide the single-view
baseline and multi-view majority voting performance for supervised learning.

Strategy C15 CCAT E21 ECAT GCAT M11
Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

svb .559↓ .388↓ .639↓ .403↓ .557↓ .294↓ .579↓ .374↓ .800↓ .501↓ .651↓ .483↓

mvm .716↓ .521↓ .708↓ .478↓ .693↓ .405↓ .636↓ .441↓ .860↓ .642↓ .820↓ .644↓

TSVM .721↓ .482↓ .721↓ .405↓ .746↓ .269↓ .665↓ .263↓ .876↓ .606↓ .834↓ .706↓

mvs
g .772 .586 .762 .538 .765 .470 .691 .504 .903 .729 .900 .764

mvs
m .773 .589 .766 .545 .767 .473 .701 .508 .905 .734 .901 .766

The multi-view self-learning algorithm achieves the best classification performance in both accuracy
andF1, and significantly outperforms both theTSVM and the supervised multi-view strategy in all
classes. As expected, the performance of bothmvs

g andmvs
m strategies are similar.

7 Conclusion

The contributions of this paper are twofold. First, we proposed a bound on the risk of the Gibbs
classifier trained over artificially completed multi-view observations, which directly corresponds to
our target application of learning text classifiers from a comparable corpus. We showed that our
bound may lead to a trade-off between the size of the trainingset, the number of views, and the
quality of the view generating functions. Our result identifies in which case it is advantageous to
learn with additional artificial views, as opposed to sticking with the baseline setting in which a clas-
sifier is trained over single view observations. This resultleads to our second contribution, which is
a natural way of using unlabeled data in semi-supervised multi-view learning. We showed that in the
case where view-specific classifiers agree over the class labels of additional unlabeled training data,
the previous trade-off becomes even much tighter. Empirical results on a comparable multilingual
corpus support our findings by showing that additional viewsobtained using a Machine Translation
system may significantly increase classification performance in the most interesting situation, when
there are few labeled data available for training.
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