Learning from Multiple Partially Observed Views —
an Application to Multilingual Text Categorization

Massih R. Amini Nicolas Usunier
Interactive Language Technologies Group  Laboratoire d’'Informatique de Paris 6
National Research Council Canada Universié Pierre et Marie Curie, France
Massi h- Reza. Ami ni @nrc-nrc. gc. ca Ni col as. Usuni er @i p6. fr
Cyril Goutte

Interactive Language Technologies Group
National Research Council Canada
Cyril.Goutte@nrc-nrc.gc.ca

Abstract

We address the problem of learning classifiers when obsengahave multiple
views, some of which may not be observed for all examples. ¥éeirae the
existence of view generating functions which may complete mhissing views
in an approximate way. This situation corresponds for eXarnp learning text
classifiers from multilingual collections where documeaits not available in all
languages. In that case, Machine Translation (MT) systemsbe used to trans-
late each document in the missing languages. We derive aaj=a¢ion error
bound for classifiers learned on examples with multiplefiaigily created views.
Our result uncovers a trade-off between the size of theitrgiget, the number
of views, and the quality of the view generating functionss & consequence,
we identify situations where it is more interesting to usdtiple views for learn-
ing instead of classical single view learning. An extensibithis framework is
a natural way to leverage unlabeled multi-view data in seagiervised learning.
Experimental results on a subset of the Reuters RCV1/RCVW@atmns support
our findings by showing that additional views obtained frorh May significantly
improve the classification performance in the cases idedthiy our trade-off.

1 Introduction

We study the learning ability of classifiers trained on exlamenerated from different sources,
but where some observations are partially missing. Thiblpra occurs for example in non-parallel
multilingual document collections, where documents mayvelable in different languages, but
each document in a given language may not be translated (orahy) of the other languages.

Our framework assumes the existence of view generatingifurewhich may approximate miss-
ing examples using the observed ones. In the case of mglidincorpora these view generating
functions may be Machine Translation systems which for ebttument in one language produce
its translations in all other languages. Compared to otheltiteource learning techniques [6],
we address a different problem here by transforming ouiainitroblem of learning from partially
observed examples obtained from multiple sources into ldmsical multi-view learning. The con-
tributions of this paper are twofold. We first introduce a ewpsed learning framework in which
we define different multi-view learning tasks. Our main flessia generalization error bound for
classifiers trained over multi-view observations. Frons ttesult we induce a trade-off between the
number of training examples, the number of views and thetgluif view generating functions to



produce accurate additional views. This trade-off help#destify situations in which artificially
generated views may lead to substantial performance g&ifesthen show how the agreement of
classifiers over their class predictions on unlabeleditmgidata may lead to a much tighter trade-off.
Experiments are carried out on a large part of the Reuters RREV?2 collections, freely available
from Reuters, using 5 well-represented languages for fessiication. Our results show that our
approach yields improved classification performance irhlibe supervised and semi-supervised
settings.

In the following two sections, we first define our frameworken the learning tasks we address.
Section 4 describes our trade-off bound in the EmpiricakRiBnimization (ERM) setting, and
shows how and when the additional, artificially generatenvgi may yield a better generalization
performance in a supervised setting. Section 5 shows howgioie these results when additional
unlabeled training data are available, in order to obtairbaenaccurate trade-off. Finally, section 6
describes experimental results that support this approach

2 Framework and Definitions

In this section, we introduce basic definitions and the legriobjectives that we address in our
setting of artificially generated representations.

2.1 Observed and Generated Views

A multi-view observatiofis a sequence %' (z!,...,2"), where differenviewsz? provide a rep-
resentation of the same object in different s&ts A typical example is given in [3] where each
Web-page is represented either by its textual content {fiest) or by the anchor texts which point
to it (second view). In the setting of multilingual classifiion, each view is the textual representa-
tion of a document written in a given language (&eggl i sh, Ger man, Fr ench).

We consider binary classification problems where, given dtiraigw observation, some of the
views are not observed (we obviously require that at least wiew is observed). This hap-
pens, for instance, when documents may be available irréiffdanguages, yet a given document
may only be available in a single language. Formally, ourokstionsx belong to the input set
X E (xyu{Ll}) x ... x (X U{L}), wherez’ =1 means that the-th view is not observed.
In binary classification, we assume that examples are pgirg), withy € Y £ {0, 1}, drawn
according to a fixed, but unknown distributi@hover X’ x ), such tha?, ,).p (Vv : 2" =1) =0

(at least one view is available). In multilingual text cifisation, aparallel corpusis a dataset where
all views are always observed (i.&x ,)~p (Fv : ¥ =1) = 0), while acomparable corpuss a
dataset where only one view is available for each exam@ejy, o ([{v : z¥ #L}| # 1) = 0).

For a given observation, the viewsv such thatz? 1 will be called theobserved viewsThe
originality of our setting is that we assume that we hemav generating function,, ., : X, —

X, which take as input a given view” and output an element o¥,, that we assume islose

to whatz" would be if it was observed. In our multilingual text classifion example, the view
generating functions are Machine Translation systemssé& lgenerating functions can then be used
to create surrogate observations, such that all views aiéable. For a given partially observeqd

the completedbservatiorx is obtained as:

Vo 2 — ¥ if ¥ #£L )
= W, ,(xz"") otherwise, where’ is such that:*’ # L

In this paper, we focus on the case where amigview is observed for each example. This setting
corresponds to the problem of learning fraaomparable corporawhich will be the focus of our
experiments. Our study extends to the situation where twamare views may be observed in a
straightforward manner. Our setting differs from previooslti-view learning studies [5] mainly on
the straightforward generalization to more than two viewd the use of view generating functions
to induce the missing views from the observed ones.



2.2 Learning objective

The learning task we address is to find, in some predefinedifilasetC, the stochastic classifier
that minimizes the classification error on multi-view exdeggwith, potentially, unobserved views)
drawn according to some distributidd as described above. Following the standard multi-view
framework, in which all views are observed [3, 13], we assiihat we are giverl deterministic
classifier set§H,))_,, each working on one specific viéwThat is, for each view, H, is a set

of functionsh,, : X, — {0,1}. The final set of classifierS containsstochasticclassifiers, whose
output only depends on the outputs of the view-specific iflass That is, associated to a set of
classifiere, there is a functio®¢ : (H,)Y_; x X — [0, 1] such that:

C={x— Pc(hy,...hv,x)|Vv, hy € Hy}

For simplicity, in the rest of the paper, when the contextéag the functiork — ®¢(hq, ..., Ay, X)
will be denoted byey,, ... n,. The overall objective of learning is therefore to fiad: C with low
generalization error, defined as:

)= E_ clexy) @)

wheree is a pointwise error, for instance tig1 loss:e(c, (x,y)) = ¢(x)(1 —y) + (1 — ¢(x))y.

In the following sections, we address this learning taskinframework in terms of supervised and
semi-supervised learning.

3 Supervised Learning Tasks

We first focus on the supervised learning case. We assumevth&iiave a training sef of m
examples drawn i.i.d. according to a distributibnas presented in the previous section. Depending
on how the generated views are used at both training and teegtss we consider the following
learning scenarios:

- Baseline: This setting corresponds to the case where each view-spelz§sifier is trained using
the corresponding observed view on the training set, andigiien for a test example is
done using the view-specific classifier corresponding tatheerved view:

Voh cargmin 3 elh (",9)) @
h€Ho  (x yyeSav#L

In this case we posex, c’;m“)hv (x) = hy(z"), wherev is the observed view fat. Notice
that this is the most basic way of learning a text classifiemfia comparable corpus.

- Generated Views as Additional Training Data: The most natural way to use the generated
views for learning is to use them as additional training matdor the view-specific clas-

sifiers:
Vv, h, € arg min Z e(h, (2%, y)) 4)
hEH.,
(x,y)€S8
with x defined by eq. (1). Prediction is still done using the viewsesfic classifiers cor-
responding to the observed view, i.&x, cl;,ll"___,,,v(x) = hy(z"). Although the test set

distribution is a subdomain of the training set distribnt[@], this mismatch is (hopefully)
compensated by the addition of new examples.

- Multi-view Gibbs Classifier: In order to avoid the potential bias introduced by the useeofey-
ated views only during training, we consider them also dytesting. This becomes a stan-
dard multi-view setting, where generated views are usedthxas if they were observed.
The view-specific classifiers are trained exactly as aboge4¥ but the prediction is car-
ried out with respect to the probability distribution of sts, by estimating the probability
of class membership in class 1 from the mean prediction di gsw-specific classifier:

|4
- 1 .
v, gy, () =5 D () (5)
v=1

We assume deterministic view-specific classifiers for simplicity and with rodbgenerality.



- Multi-view Majority Voting:  With view generating functions involved in training andttesnat-
ural way to obtain a (generally) deterministic classifiethwimproved performance is to
take the majority vote associated with the Gibbs classifiee view-specific classifiers are
again trained as in eq. 4, but the final prediction is doneguaimajority vote:

mu % If Zt‘)/:l hv (zv) = %
hy (X) =

VX, ek I(ZV L ho(z?) > %> otherwise ©

v=

Wherel(.) is the indicator function. The classifier outputs eitherhegority voted class,
or either one of the classes with probability2 in case of a tie.

4 The trade-offs with the ERM principle

We now analyze how the generated views can improve genatializperformance. Essentially,
the trade-off is that generated views offer additionalnirag material, therefore potentiallyelping
learning, but can also be of lower quality, which ndsgradeearning.

The following theorem sheds light on this trade-off by pding bounds on the baseline vs. multi-
view strategies. Note that such trade-offs have already agied in the literature, although in
different settings (see e.g. [2, 4]). Our first result is tbédfwing theorem. The notion of func-
tion class capacity used here is tempirical Rademacher complexity]. Proof is given in the
supplementary material.

Theorem 1 Let D be a distribution overY’ x Y, satisfyingP y ,)~p ([{v:z” L} # 1) = 0.
LetS = ((x;,¥:));~, be a dataset ofn examples drawn i.i.d. according . Lete be the0/1

loss, and let(*,)Y_; be the view-specific deterministic classifier sets. For edet v, denote
eoH, £ {(2%,y) — e(h, (z¥,y))|h € H,}, and denote , for any sequenseé € (X, x Y)™" of

sizem,,, R, (e o H,,S) the empirical Rademacher complexityeaf H,, on S”. Then, we have:
Baseline setting: for all 1 > § > 0, with probability at least — ¢ overS:

b ; b "y v In(2/9)
(Chy,.hy) < h}g?f{ {G(Chg,...,h",)} + 2; HRmv (eoHy, SY)+6 “om

where, for allv, S* %" {(z¢,y;)li = l.m andz? #1}, m, = |S’| andh, € H, is the
classifier minimizing the empirical risk a#V".
Multi-view Gibbs classification setting: for all 1 > § > 0, with probability at leasti — § overS:

2 . In(2/4)
e(en? ny) < h(l,ilel;-(u [6(623,...,%)} + v XER,,L(e oMy, S") +6 o +1n

where, for allv, S £ {(z?,y;)|i = 1..m}, h, € H, is the classifier minimizing the
empirical risk onS*, and

- . : b
= hglg,f{v [G(CZZ({.A.,MV)} - hlg; {G(Ch;,...,h'v)} )

This theorem gives us a rule for whether it is preferable trreonly with the observed views
(the baseline setting) or preferable to use the view-geingrdunctions in the multi-view Gibbs
classification setting: we should use the former whén, %fzm“ (eo My, SY) < 2, Rm(eo
H,,S") + n, and the latter otherwise.

Let us first explain the role off (Eq. 7). The difference between the two settings is in thmtra
and test distributions for the view-specific classifieygompares the best achievable error for each

of the distribution.inf; ¢4, {6(02,1 ..n1,)| 1s the best achievable error in the baseline setting (i.e.
without generated views), with the automatically genetaiews, the best achievable error becomes

. mg
infp; e, {E(Ch’l,m,h@) .



Thereforen measures the loss incurred by using the view generatingtibmsc In a favorable
situation, the quality of the generating functions will hdfiient to make, small.

The terms depending on the complexity of the class of funstimay be better explained using
orders of magnitude. Typically, the Rademacher compleiitya sample of size: is usually of
orderO(ﬁ) [1].

Assuming, for simplicity, that all empirical Rademachenyaexities in Theorem 1 are approxi-
mately equal tel//n, wheren is the size of the sample on which they are computed, and asgum
thatm,, = m/V for all v. The trade-off becomes:

Choose the Multi-view Gibbs classification setting whﬁé:\ [ L — ﬁ) >

This means that we expect important performance gains wieenumber of examples is small, the
generated views of sufficiently high quality for the giveasdification task, and/or there are many
views available. Note that our theoretical framework doatstake the quality of the MT system in a

standard way: in our setup, a good translation system igjfigdione which generates bag-of-words
representations that allow to correctly discriminate lesw classes.

Majority voting  One advantage of the multi-view setting at prediction tisi¢hiat we can use a
majority voting scheme, as described in Section 2. In sucase,owe expect tha(c;)” . ) <

e(cZilg .. ) if the view-specific classifiers are not correlated in theioes. It can not be guaranteed
\4

.

in general, though, since, in general, we can not prove anpr‘ctdaane(c’,{%l” h’v) < 2e(c? )
L bl
(seee.g. [9]).

5 Agreement-Based Semi-Supervised Learning

One advantage of the multi-view settings described in th&ipus section is that unlabeled training
examples may naturally be taken into account in a semi—sigeeflearning scheme, using existing
approaches for multi-view learning (e.g. [3]).

In this section, we describe how, under the framework of [1i¢ supervised learning trade-off
presented above can be improved using extra unlabeled éeamiphis framework is based on
the notion ofdisagreemenbetween the various view-specific classifiers, defined asxpected
variance of their outputs:

2
1 1
gef = L R v
V (hy,....hy) & m}?w % EU hy(z") (V Ev ho(z )) (8)

The overall idea is that a set of good view-specific classifidrould agree on their predictions,
making the expected variance small. This notion of disagerd has two key advantages. First, it
does not depend on the true class labels, making its estimasisy over a large, unlabeled training
set. The second advantage is that if, during training, ingusut that the view-specific classifiers
have a disagreement of at mgsbn the unlabeled set, the set of possible view-specific ifiless
that needs be considered in the supervised learning stag@used to:

Ho(n) (b, € Ho [V £ 0,3h]y € Hor, V(B o bly) < 1}

Thus, the more the various view-specific classifiers tendgteey the smaller the possible set of
functions will be. This suggests a simple way to do semi-stiped learning: the unlabeled data
can be used to choose, among the classifiers minimizing tipérieat risk on the labeled training
set, those with best generalization performance (by chgadsie classifiers with highest agreement
on the unlabeled set). This is particularly interesting wtree number of labeled examples is small,
as the train error is usually close (o

Theorem 3 of [11] provides a theoretical valBe, §) for the minimum number of unlabeled ex-
amples required to estimate Eq. 8 with precisioand probabilityl — § (this bound depends on
{H,}v=1.v). The following result gives a tighter bound of the geneatiion error of the multi-view
Gibbs classifier when unlabeled data are available. Thef jg@milar to Theorem 4 in [11].



Proposition 2 Let0 < p < 1and0 < § < 1. Under the conditions and notations of Theorem
1, assume furthermore that we have access 8 B(n/2,4/2) unlabeled examples drawn i.i.d.
according to the marginal distribution dp on X’.

Then, with probability at leastl — ¢, if the empirical risk minimizersh, €
arg minyeqy, 3o )esv €(: (2%, y)) have a disagreement less thary2 on the unlabeled

set, we have:

In(4/6)

v
m . 2 > * v
€(Ch1£,7..,,hv) < inf |:€(C?LI1,...JL'V):| + v ZRm(e oHy(p),S") +6 “om +1n
v=1

We can now rewrite the trade-off between the baseline se#tivd the multi-view Gibbs classifier,
taking semi-supervised learning into account. Using @aragrmagnitude, and assuming that for
each view,R,, (e o H:(u),S") is O(d,/+/m), with the proportional factod,, < d, the trade-off
becomes:

Choose the mutli-view Gibbs classification setting whepV/m — d,,/v/m > 1.

Thus, the improvement is even more important than in the rsigesl setting. Also note that the
more views we have, the greater the reduction in classiftex@aplexity should be.

Notice that this semi-supervised learning principle ecésragreement between the view specific
classifiers. In the extreme case where they almost alwagsther same output, majority voting is
then nearly equivalent to the Gibbs classifier (when alligoégree, any vote is equal to the majority
vote). We therefore expect the majority vote and the Gibassifier to yield similar performance in
the semi-supervised setting.

6 Experimental Results

In our experiments, we address the problem of learning dectirolassifiers from a comparable
corpus. We build the comparable corpus by sampling partseoReuters RCV1 and RCV2 collec-
tions [12, 14]. We used newswire articles writtensitanguagesgngl i sh, Fr ench, Ger man,

I talianandSpani sh. We focused of6 relatively populous classe€15, CCAT, E21, ECAT,
GCAT, ML1.

For each language and each class, we sampledig®tadocuments from the RCV1 (féngl i sh)

or RCV2 (for other languages). Documents belonging to mlaa tone of out classes were as-
signed the label of their smallest class. This resulted #8830 documents per language, and 11-34K
documents per class (see Table 1). In addition, we resertest aplit containin@0% of the doc-
uments (respecting class and language proportions) ftingesFor each document, we indexed
the text appearing in the titldhéadlinetag), and the bodybpdytags) of each article. As prepro-
cessing, we lowercased, mapped digits to a sidglgi t token, and removed non alphanumeric
tokens. We also filtered out function words using a stop-#istwell as tokens occurring in less than
5 documents.

Documents were then represented as a bag of words, usingFIdsed weighting scheme. The
final vocabulary size for each language is given in table ® dttificial views were produced using

Table 1: Distribution of documents over languages and elassthe comparable corpus.

Language  #docs (%)| # tokens Class Size (alllang.) (%)
English 18,758 16.78 | 21,531 C15 18,816 16.84
French 26,648 23.45 | 24,893 CCAT 21,426 19.17
Cer man 29,953  26.80 | 34,279 E21 13,701 12.26
Italian 24,039 21.51 | 15,506 ECAT 19,198 17.18
Spani sh 12,342  11.46 | 11,547 GCAT 19,178 17.16

Total 111,740 ML1 19,421 17.39




PORTAGE, a statistical machine translation system deeslgi NRC [15]. Each document from
the comparable corpus was thus translated to the dtlmrguages.

For each class, we set up a binary classification task by wdindpcuments from that class as
positive examples, and all others as negative. We first ptessgperimental results obtained in
supervised learning, using various amounts of labeled plesnWe rely on lineaBVMmodels as
base classifiers, using %M Per f package [8]. For comparisons, we employed the four learning
strategies described in section B+ the single-view baselinev, (Eq. 3),2— generated views as
additional training datgv;, (Eq. 4),3— multi-view Gibbsmuv, (Eq. 5), andi— multi-view majority
voting mv,, (EQ. 6). Recall that the second setting,, is the most straightforward way to train and
test classifiers when additional examples are availablgdoerated) from different sources. It can
thus be seen as a baseline approach, as opposed to the ladtategies (xv, andmuv,,), where
view-specific classifiers are both trained and tested ovér bdginal and translated documents.
Note also that in our casé/( = 5 views), additional training examples obtained from maehin
translation represedttimes as many labeled examples as the original texts useaindhe baseline
sup. All test results were averaged ovEr randomly sampled training sets.

Table 2: Test classification accuracy ahidin the supervised setting, for both baselines, ( gvy),
Gibbs (nv,) and majority voting €.v,,) strategies, averaged ovéd random sets ofl0 labeled
examples per view.! indicates statistically significantly worse performanbattthe best result,
according to a Wilcoxon rank sum test € 0.01) [10].

Strategy CI15 CCAT E21 ECAT GCAT ML1
Jl"Acc. v Acc. I Acc. I Acc. It Acc. By Acc. Fy

svp 55913881 6390 4031 5570 2041 5791 3741 800! 5011 6510 4831
gop 705 474k 691 4640 6650 3511 6231 4241 835! 595! 786! .589!
mv, | .6930 494! 681! 445! 665! .375¢ .620¢ .4201 .834} 5941 787l .600!
mv, | .716 521 .708 .478 .693 .405 .636 .441 .860 .642 .820 .644

Results obtained in a supervised setting with diiyabeled documents per language for training are
summarized in table 2. All learning strategies using theegated views during training outperform
the single-view baseline. This shows that, although ingmtsfartificial views do bring additional
information that compensates the lack of labeled data. oligh the multi-view Gibbs classifier
predicts based on a translation rather than the origin&d of cases, it produces almost identical
performance to thewv, run (which only predicts using the original text). Theseuitsindicate that
the translation produced by our MT system is of sufficientliggiéor indexing and classification
purposes. Multi-view majority voting reaches the best perfance, yielding & — 17% improve-
ment in accuracy over the baseline. A similar increase ifoperance is observed usirfg , which
suggests that the multi-vie@VMappropriately handles unbalanced classes.

Figure 1 shows the learning curves obtainedatassesC15, ECAT andML1. These figures show
that when there are enough labeled examples (ard0idor these3 classes), the artificial views do
not provide any additional useful information over the ora-language examples. These empirical
results illustrate the trade-off discussed at the preverdion. When there are sufficient original
labeled examples, additional generated views do not peowidre useful information for learning
than what view-specific classifiers have available already.

We now investigate the use of unlabeled training exampleleéoning the view-specific classifiers.
Our overall aimis to illustrate our findings from section %edll that in the case where view-specific
classifiers are in agreement over the class labels of a langéer of unlabeled examples, the multi-
view Gibbs and majority vote strategies should have the saenrmance. In order to enforce
agreement between classifiers on the unlabeled set, we usgaatwof the iterative co-training
algorithm [3]. Given the view-specific classifiers trainad an initial set of labeled examples, we
iteratively assign pseudo-labels to the unlabeled exasrfptewhich all classifier predictions agree.
We then train new view-specific classifiers on the joint s¢heforiginal labeled examples, and those
unanimously (pseudo-)labeled ones. Key differences latlas algorithm and co-training are the
number of views used for learning {nstead of2), and the use of unanimous and simultaneous
labeling.

The dataset is available frohttp://multilingreuters.iit.nrc.ca/ReutersMultiLingualMultiView.htm
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Figure 1: F; vs. size of the labeled training set for clas€#$, ECAT andML1.

We call this iterative procesself-learning multiple-view algorithpas it also bears a similarity with
the self-training paradigm [16]. Prediction from the muliew SVM models obtained from this
self-learning multiple-view algorithm is done either ugiGibbs (nvs) or majority voting (nvs,).
These results are shown in table 3. For comparison we alsetraTSVMmodel [7] on each view
separately, a semi-supervised equivalent to the singe-biaseline strategy. Note that th&VM
model mostly out-performs the supervised baseling although theF; suffers on some classes.
This suggests that tHESVMhas trouble handling unbalanced classes in this setting.

Table 3: Test classification accuracy afAdin the semi-supervised setting, for single-vid8vVM
and multi-view self-learning using either Gibbs/(;) or majority voting (nv,,), averaged ovet0
random sets usintp labeled examples per view to start. For comparison we peotrid single-view
baseline and multi-view majority voting performance fopswised learning.

Strateak Ci5 CCAT E21 ECAT GCAT ML
9) Acc. ja) Acc. J Acc. J Acc. R Acc. J 2 Acc. Ia)
SUp 55903880 6391 4031 5570 2041 5791 3741 800! 501! .6517 .483!

MU, 716t 5218 7080 4780 6930 405! 6361 441! 860} .642! 820! .644!
TSWM | 7211 4821 7211 4050 7460 269 665! 263! 8761 606! .834! 706!
mus 772 586 762 538  .765 470 .691 .504 .903 .729 .900 .764
s 773 589 766 .545 767 .473 701 508 .905 .734 .901 .766

The multi-view self-learning algorithm achieves the béassification performance in both accuracy
and F, and significantly outperforms both tie&SVMand the supervised multi-view strategy in all
classes. As expected, the performance of botf] andmuv;,, strategies are similar.

7 Conclusion

The contributions of this paper are twofold. First, we pregd a bound on the risk of the Gibbs
classifier trained over artificially completed multi-vieswservations, which directly corresponds to
our target application of learning text classifiers from anparable corpus. We showed that our
bound may lead to a trade-off between the size of the traisgtgthe number of views, and the
quality of the view generating functions. Our result idéas in which case it is advantageous to
learn with additional artificial views, as opposed to stigkivith the baseline setting in which a clas-
sifier is trained over single view observations. This reldtls to our second contribution, which is
a natural way of using unlabeled data in semi-supervised-vielv learning. We showed that in the

case where view-specific classifiers agree over the clasfslabadditional unlabeled training data,
the previous trade-off becomes even much tighter. Empiresults on a comparable multilingual

corpus support our findings by showing that additional vielined using a Machine Translation
system may significantly increase classification perforrean the most interesting situation, when
there are few labeled data available for training.
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