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Abstract

Imaging techniques such as optical imaging of intrinsic signals, 2-photon calcium
imaging and voltage sensitive dye imaging can be used to measure the functional
organization of visual cortex across different spatial and temporal scales. Here, we
present Bayesian methods based on Gaussian processes for extracting topographic
maps from functional imaging data. In particular, we focus on the estimation of
orientation preference maps (OPMs) from intrinsic signal imaging data. We model
the underlying map as a bivariate Gaussian process, with a prior covariance func-
tion that reflects known properties of OPMs, and a noise covariance adjusted to
the data. The posterior mean can be interpreted as an optimally smoothed esti-
mate of the map, and can be used for model based interpolations of the map from
sparse measurements. By sampling from the posterior distribution, we can get er-
ror bars on statistical properties such as preferred orientations, pinwheel locations
or pinwheel counts. Finally, the use of an explicit probabilistic model facilitates
interpretation of parameters and quantitative model comparisons. We demonstrate
our model both on simulated data and on intrinsic signaling data from ferret visual
cortex.

1 Introduction

Neurons in the visual cortex of primates and many other mammals are organized according to their
tuning properties. The most prominent example of such a topographic organization is the layout of
neurons according to their preferred orientation, the orientation preference map (OPM) [1, 2, e.g.].
The statistical structure of OPMs [3, 4] and other topographic maps has been the focus of extensive
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research, as have been the relationships between different maps [5]. Orientation preference maps
can be measured using optical imaging of intrinsic signals, voltage sensitive dye imaging, functional
magnetic resonance imaging [6], or 2-photon calcium imaging [2, 7]. For most of these methods
the signal-to-noise ratio is low, i.e. the stimulus specific part of the response is small compared to
non-specific background fluctuations. Therefore, statistical pre-processing of the data is required in
order to extract topographic maps from the raw experimental data. Here, we propose to use Gaussian
process methods [8] for estimating topographic maps from noisy imaging data. While we will focus
on the case of OPMs, the methods used will be applicable more generally.

The most common analysis method for intrisic signaling data is to average the data within each
stimulus condition, and report differences between conditions. In the case of OPMs, this amounts
to estimating the preferred orientation at each pixel by vector averaging the different stimulus ori-
entations weighted according to the evoked responses. In a second step, spatial bandpass filtering
is usually applied in order to obtain smoother maps. One disadvantage of this approach is that the
frequency characteristics of the bandpass filters are free parameters which are often set ad-hoc, and
may have a substantial impact on the statistics of the obtained map [9, 10]. In addition, the approach
ignores the effect of anisotropic and correlated noise [11, 10], which might result in artifacts.

Methods aimed at overcoming these limitations include analysis techniques based on principal com-
ponent analysis, linear discriminant analysis, oriented PCA [12] (and extensions thereof [11]) as
well as variants of independent component analysis [9]. Finally, paradigms employing periodically
changing stimuli [13, 14] use differences in their temporal characteristics to separate signal and
noise components. These methods have in common that they do not make any parametric assump-
tions about the relationship between stimulus and response, between different stimuli, or about the
smoothness of the maps. Rather, they attempt to find ’good’ maps by searching for filters which are
maximally discriminative between different stimulus conditions. In particular, they differ from the
classical approach in that they do not assume the noise to be isotropic and uncorrelated, but make it
hard to incorporate prior knowledge about the structure of maps, and can therefore be data-intensive.
Here, we attempt to combine the strengths of the classical and discriminative models by combining
prior knowledge about maps with flexible noise models into a common probabilistic model.

We encode prior knowledge about the statistical structure of OPMs in the covariance function of a
Gaussian Process prior over maps. By combining the prior with the data through an explicit gener-
ative model of the measurement process, we obtain a posterior distribution over maps. Compared
to previously proposed methods for analyzing multivariate imaging methods, the GP approach has
a number of advantages:

• Optimal smoothing: The mean of the posterior distribution can be interpreted as an opti-
mally smoothed map. The filtering is adaptive, i.e. it will adjust to the amount and quality
of the data observed at any particular location.

• Non-isotropic and correlated noise: In contrast to the standard smoothing approach, noise
with correlations across pixels as well as non-constant variances can be modelled.

• Interpolations: The model returns an estimate of the preferred orientation at any location,
not only at those at which measurements were obtained. This can be used, e.g., for artifact
removal, or for inferring maps from multi-electrode recordings.

• Explicit probabilistic model: The use of an explicit, generative model of the data facilitates
both the interpretation and setting of parameters quantitative model comparisons.

• Model based uncertainty estimates: The posterior variances at each pixel can be used to
compute point-wise error bars at each pixel location [9, 11]. By sampling from the posterior
(using the full posterior covariance), we can also get error bars on topological or global
properties of the map, such as pinwheel counts or locations.

Mathematically speaking, we are interested in inferring a vector field (the 2-dimensional vector
encoding preferred orientation) across the cortical surface from noisy measurements. Related prob-
lems have been studied in spatial statistics, e.g. in the estimation of wind-fields in geo-statistics [15],
where GP methods for this problem are often referred to as co-kriging methods [16, 17].
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2 Methods

2.1 Encoding Model

We model an imaging experiment, where at each of N trials, the activity at n pixels is measured.
The response ri(x) at trial i to a stimulus parameterised by Vi is given by

ri(x) =
d∑
k=1

vkimk(x) + εi(x) = v>i mk(x) + εi(x), (1)

i.e. the mean response at each pixel is modelled to be a linear function of some stimulus parameters
vki.

This can be written compactly as ri = Mvi + εi or ri = V >i m + εi. Here, ri and εi are n-
dimensional vectors, M is an n× d dimensional matrix, Vi = vi ⊗ In, ⊗ is the Kronecker-product
and m = vec(M) is an nd-dimensional vector.

We refer to the coefficients mk(x) as feature maps, as they indicate the selectivity of pixel x to
stimulus feature k. In the specific case of modelling an orientation preference map, we have d = 2
and vi = (cos(2θi), sin(2θi))>. Then, the argument of the complex number m′(x) = m1(x) +
im2(x) is the preferred orientation at location x, whereas the absolute value of m′(x) is a measure
of its selectivity. While this approach assumes cosine-tuning curves at each measurement location,
it can be generalized to arbitrary tuning curves by including terms corresponding to cosines with
different frequencies.

We assume that the noise-residuals ε are normally distributed with covariance Σε, and a Gaussian
prior with covariance Km for the feature map vector m. Then, the posterior distribution over m is
Gaussian with posterior covariance Σpost and mean µpost:

Σ−1
post = K−1

m +

(∑
i

viv
>
i

)
⊗ Σ−1

ε (2)

µpost = Σpost

(∑
i

VjΣ−1
ε ri

)
= Σpost

(
Id ⊗ Σ−1

ε

)∑
i

vi ⊗ ri (3)

We note that the posterior covariance will have block structure provided that the prior covariance
Km has block structure, i.e. if different feature maps are statistically independent a priori, and the
stimuli are un-correlated on average, i.e.

∑
i viv

>
i = Dv is diagonal. Hence, inference for different

maps ’de-couples’, and we do not have to store the full joint covariance over all d maps.

2.2 Choosing a prior

We need to specify the covariance function K(m(x),m(x′)) of the prior distribution over maps.
As cortical maps, and in particular orientation preference maps, have been studied extensively in
the past [5], we actually have prior knowledge (rather than just prior assumptions) to guide the
choice of a prior. It is known that orientation preference maps are smooth [2] and that they have a
semi-periodic structure of regularly spaced columns. Hence, filtering white noise with appropriately
chosen filters [18] yields maps which visually look like measured OPMs (see Fig. 1). While it is
known that real OPMs differ from Gaussian random fields in their higher order statistics [3], use
of a Gaussian prior can be motivated by the maximum entropy principle: We assume a prior with
minimal higher-order correlations, with the goal of inferring them from the experimental data [3].
For simplicity, we take the prior to be isotropic, i.e. not to favour any direction over others. (For real
maps, there is a slight anisotropy [19]).

We assume that each prior sample is generated by convolving a two-dimensional Gaussian white-
noise image with a Difference-of-Gaussians filter f(x) =

∑2
k=1

αk

2πσ2
k

exp
(
− 1

2
x2

σ2
k

)
, α1 = −α2,

and σ2 = 2σ1. This will result in a prior which is uncorrelated in the different maps component, i.e.
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Cov(m1(x),m2(x′)) = 0, and a stationary covariance function given by

Kc(τ) = Kc(‖x− x′‖) = Cov(m1(x),m1(x′))

=
2∑

k,l=1

αkαl
2π(σ2

k + σ2
l )

exp
(
−1

2

(
τ2

σ2
k + σ2

l

))
. (4)

Then, the prior covariance matrix Km can be written as Km = Ic ⊗Kc. This prior has two hyper-
parameters, namely the absolute magnitude α1 and the kernel width σ1. In principle, optimization
of the marginal likelihood can be used to set hyper-parameters. In practice, it turned out to be
computationally more efficient to select them by matching the radial component of the empirically
observed auto-correlation function of the map [16], see Fig. 1 B).
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Figure 1: Prior covariance: A) Covariance function derived from the Difference-of-Gaussians. B)
Radial component of prior covariance function and of covariance of raw data. C Angle-map of one
sample from the prior, with σ1 = 4. Each color corresponds to an angle in [0, 180◦].

2.3 Approximate inference

The formulas for the posterior mean and covariance involve covariance matrices over all pixels. On
a map of size nx × ny , there are n = nx × ny pixels, so we would have to store and compute with
matrices of size n× n, which would limit this approach to maps of relatively small size. A number
of approximation techniques have been proposed to make large scale inference feasible in models
with Gaussian process priors (see [8] for an overview). Here, we utilize the fact that the spectrum
of eigenvalues drops off quickly for many kernel functions [20, 21], including the Difference-of-
Gaussians used here. This means that the covariance matrix Kc can be approximated well by a low
rank matrix product Kc ≈ GG>, where G is of size n × q, q � n (see [17] for a related idea).
To find G, we perform an incomplete Cholesky factorization on the matrix Kc. This can be done
without having to store Kc in memory explicitly.

In this case, the posterior covariance can be calculated without ever having to store (or even invert)
the full prior covariance:

Σpost = Id ⊗
(
Kc − β−1Kc

(
Σ−1
ε − Σ−1

ε G
(
βIq +G>Σ−1

ε G
)−1

G>Σ−1
ε

)
Kc

)
, (5)

where β = 2/N . We restrict the form of the noise covariance either to be diagonal (i.e. assume
uncorrelated noise), or more generally to be of the form Σε = Dε + GεRεG

>
ε . Here, Gε is of size

n× qε, qε � n, and Dε is a diagonal matrix. In other words, the functional form of the covariance
matrix is assumed to be the same as in factor analysis models [22, 23]: The low rank term Gε
models correlation across pixels, whereas the diagonal matrix Dε models independent noise. We
assume this model to regularize the noise covariance to ensure that the noise covariance has full
rank even when the number of data-points is less than the number of pixels [22]. The matrices Gε
and Dε can be fit using expectation maximization without ever having to calculate the full noise
covariance across all pixels. We initialize the noise covariance by calculating the noise variances for
each stimulus condition, and averaging this initial estimate across stimulus conditions. We iterate
between calculating the posterior mean (using the current estimate of Σε), and obtaining a point-
estimate of the most likely noise covariance given the mean [24]. In all cases, a very small number
of iterations lead to convergence.
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Figure 2: Illustration on synthetic data: A) Ground truth map used to generate the data. B) Raw
map, estimated using 10 trials of each direction. C) GP-reconstruction of the map. D) Posterior
variance of GP, visualized as size of 95% confidence intervals on preferred orientations. Superim-
posed are the zero-crossings of the GP map. E) Reconstruction by smoothing with fixed Gaussian
filter, filter-width optimized by maximizing correlation with ground truth. F) Reconstruction per-
formance as a function of stimulus presentations used, for GP with noise-correlations, GP without
noise-correlations, and simple smoothing.

3 Results

3.1 Illustration on synthetic data

To illustrate the ability of our method to recover maps from noisy recordings, we generated a syn-
thetic map (a sample from the prior distribution, ’true map’, see Fig. 2 A), and simulated responses
to each of 8 different oriented gratings by sampling from the likelihood (1). The parameters were
chosen to be roughly comparable with the experimental data (see below). We reconstructed the map
using our GP method (low rank approximation of rank q = 1600, noise correlations of rank qε = 5)
on data sets of different sizes (N = 8 ∗ (2, 5, 10, 20, 30, 40, 80)). Figure 2 C) shows the angular
components of the posterior mean of the GP, our reconstruction of the map. We use the posterior
variances to also calculate a pointwise 95% confidence interval on the preferred orientation at each
location, shown in Fig. 2 D). As expected, the confidence intervals are biggest near pinwheels,
where the orientation selectivity of pixels is low, and therefore the preferred orientation is not well
defined.

To evaluate the performance of the model, we quantified its reconstruction performance by comput-
ing the correlation coefficient of the posterior mean and the true map, each represented as a long
vector with 2n elements. We compared the GP map against a map obtained by filtering the raw
map (Fig. 2 B) with a Gaussian kernel (Fig. 2 D), where the kernel width was chosen by maximiz-
ing the similarity with the ’true map’. This yields an optimistic estimate of the performance of the
smoothed map, as setting the optimal filter-size requires access to the ground truth. We can see that
the GP map converges to the true map more quickly than the smoothed map (Fig. 2 F). For example,
using 16 stimulus presentations, the smoothed map has a correlation with the ground truth of 0.45,
whereas the correlation of the GP map is 0.77. For the simple smoothing method, about 120 pre-
sentations would be required to achieve this performance level. When we ignore noise-correlations
(i.e. assume Σε to be diagonal), GP still outperforms simple smoothing, although by a much smaller
amount (Fig. 2 F).
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3.2 Application to data from ferret visual cortex

To see how well the method works on real data, we used it to analyze data from an intrinsic signal
optical imaging experiment. The central portion of the visuotopic map in visual areas V1 and V2
of an anesthetized ferret was imaged with red light while square wave gratings (spatial frequency
0.1 cycles/degree) were presented on a screen. Gratings were presented in 4 different orientations
(0◦, 45◦, 90◦ and 135◦), and moving along one of the two directions orthogonal to its orientation
(temporal frequency 3.2Hz). Each of the 8 possible directions was presented 100 times in a pseudo-
random order for a duration of 5 seconds each, with an interstimulus interval of 8 seconds. Intrinsic
signals were collected using a digital camera with pixel-size 30µm. The response ri was taken
to be the average activity in a 5 second window relative to baseline Each response vector ri was
normalized to have mean 0 and standard deviation 1, no spatial filtering was performed. For all
analyses in this paper, we concentrated on a region of size 100 by 100 pixels. The large data set
with a total of 800 stimulus presentations made it possible to quantify the performance of our model
by comparing it to unsmoothed maps. Figure 3 A) shows the map estimated by vector averaging all
800 presentations, without any smoothing. However, the GP method itself is designed to also work
robustly on smaller data sets, and we are primarily interested in its performance in estimating maps
using only few stimulus presentations.

3.3 Bayesian estimation of orientation preference maps

For real measured data, we do not know ground truth to estimate the performance of our model.
Therefore, we used 5% of the data for estimating the map, and compared this map with the (un-
smoothed) map estimated on the other 95% of data, which served as our proxy for ground truth. As
above, we compared the GP map against one obtained by smoothing with a Gaussian kernel, where
the kernel width of the smoothing kernel was chosen by maximizing its correlation with (our proxy
for) the ground truth. The GP map outperformed the smoothing map consistently: For 18 out of 20
different splits into training and test data, the correlation of the GP map was higher (p = 2× 10−4,
average correlations c = 0.84± 0.01 for GP, c = 0.79± 0.015 for smoothing). The same held true
when we smoothed maps with a Difference of Gaussians filter rather than a Gaussian (19 out of 20,
average correlation c = 0.71± 0.08).

A) B) C)

Figure 3: OPMs in ferret V1 A) Raw map, estimated from 720 out of 800 stimuli. B) Smoothed
map estimated from other 80 stimuli, filter width obtained by maximizing the correlation to map
A. C) GP reconstruction of map. The GP has a correlation with the map shown in A) of 0.87, the
performance of the smoothed map is 0.74.

One of the strengths of the GP model is that the filter-parameters are inferred by the model, and do
not have to be set ad-hoc. The analysis above shows that, even if when optimized the filter-width for
smoothing (which would not be possible in a real experiment), the GP still outperforms the approach
of smoothing with a Gaussian window. In addition, it is important to keep in mind that using the
posterior mean as a clean estimate of the map is only one feature of our model. In the following,
we will use the GP model to optimally interpolate a sparsely sampled map, and to the posterior
distribution to obtain error bars over the pinwheel-counts and locations of the map.
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3.4 Interpolating the map

The posterior mean µ(x) of the model can be evaluated for any x. This makes it possible to extend
the map to locations at which no data was recorded. We envisage this to be useful in two kinds of
applications: First, if the measurement is corrupted in some pixels (e.g. because of a vessel artifact),
we attempt to recover the map in this region by model-based interpolation. We explored this scenario
by cutting out a region of the map described above (inside of ellipse in Fig. 4 A), and using the GP
to fill in the map. The correlation between the true map and the GP map in the filled-in region was
0.77. As before, we compared to smoothing with a Gaussian filter, for which the correlation was
0.59.

In addition, multi-electrode arrays [25] can be used to measure neural activity at multiple locations
simultaneously. Provided that the electrode spacing is small enough, it should be possible to recon-
struct at least a rough estimate of the map from such discrete measurements. We simulated a multi-
electrode recording by only using the measured activity at 49 pixel locations which were chosen to
be spaced 400µm apart. Then, we attempted to infer the full map using only these 49 measurements,
and our prior knowledge about OPMs encoded in the prior covariance. The reconstruction is shown
in Fig. 4 C. As before, the GP map outperforms the smoothing approach (c = 0.78 vs. c = 0.81).
Discriminative analysis methods for imaging data can not be used for such interpolations.

A) B) C) D)

Figure 4: Interpolations: A) Filling in: The region inside the white ellipse was reconstructed by the
GP using only the data outside the ellipse. B) Map estimated from all 800 stimulus presentations,
with ’electrode locations’ superimposed. C) GP-reconstruction of the map, estimated only from the
49 pixels colored in in gray in B). D) Smoothing reconstruction of the map.

3.5 Posterior uncertainty

As both our prior and the likelihood are Gaussian, the posterior distribution is also Gaussian, with
mean µpost and covariance Σpost. By sampling from this posterior distribution, we can get error bars
not only on the preferred orientations in individual pixels (as we did for Fig. 2 D), but also for
global properties of the map. For example, the location [10] and total number [3, 4] of pinwheels
(singularities at which both map components vanish) has received considerable attention in the past.
Figure 5 A) and B) shows two samples from the posterior distribution, which differ both in their
pinwheel locations and counts (A: 39, B: 28, C:31). To evaluate our certainty in the pinwheel
locations, we calculate a two-dimensional histogram of pinwheel locations across samples (Fig. 5 D
and E). One can see that the histogram gets more peaked with increasing data-set size. We illustrate
this effect by calculating the entropy of the (slightly smoothed) histograms, which seems to keep
decreasing for larger data-set sizes, indicating that we are more confident in the exact locations of
the pinwheels.

4 Discussion

We introduced Gaussian process methods for estimating orientation preference maps from noisy
imaging data. By integrating prior knowledge about the spatial structure of OPMs with a flexible
noise model, we aimed to combine the strengths of classical analysis methods with discriminative
approaches. While we focused on the analysis of intrinsic signal imaging data, our methods are
expected to be also applicable to other kinds of imaging data. For example, functional magnetic
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Figure 5: Posterior uncertainty: A B C) Three samples from the posterior distribution, using 80
stimuli (zoomed in for better visibility). D E) Density-plot of pinwheel locations when map is
estimated with 40 and 800 stimuli, respectively. F) Entropy of pinwheel-density as a measure of
confidence in the pinwheel locations.

resonance imaging is widely used as a non-invasive means of measuring brain activity, and has been
reported to be able to estimate orientation preference maps in human subjects [6].

In contrast to previously used analysis methods for intrinsic signal imaging, ours is based on a
generative model of the data. This can be useful for quantitative model comparisons, and for in-
vestigating the coding properties of the map. For example, it can be used to investigate the relative
impact of different model-properties on decoding performance. We assumed a GP prior over maps,
i.e. assumed the higher-order correlations of the maps to be minimal. However, it is known that the
statistical structure of OPMs shows systematic deviations from Gaussian random fields [3, 4], which
implies that there could be room for improvement in the definition of the prior. For example, using
priors which are sparse [26] (in an appropriately chosen basis) could lead to superior reconstruction
ability, and facilitate reconstructions which go beyond the auto-correlation length of the GP-prior
[27]. Finally, one could use generalized linear models rather than a Gaussian noise model [26, 28].
However, it is unclear how general noise correlation structures can be integrated in these models in a
flexible manner, and whether the additional complexity of using a more involved noise model would
lead to a substantial increase in performance.
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