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Abstract

Regularized risk minimization often involves non-smoophimization, either be-
cause of the loss function (e.g., hinge loss) or the reqda(e.g./; -regularizer).

Gradient methods, though highly scalable and easy to imgi¢nare known to
converge slowly. In this paper, we develop a novel acceddrgtadient method
for stochastic optimization while still preserving thewroputational simplicity
and scalability. The proposed algorithm, called SAGE (Bastic Accelerated
GradiEnt), exhibits fast convergence rates on stochastitposite optimization
with convex or strongly convex objectives. Experimentaltes show that SAGE
is faster than recent (sub)gradient methods including FOLEMIDAS and SCD.
Moreover, SAGE can also be extended for online learningjltiag in a simple

algorithm but with the best regret bounds currently knowrtliese problems.

1 Introduction

Risk minimization is at the heart of many machine learnirgpethms. Given a class of models
parameterized by and a loss functiod(-, -), the goal is to minimizé€ xy [¢/(w; X,Y)] w.r.t. w,
where the expectation is over the joint distribution of inguand outpu®”. However, since the joint
distribution is typically unknown in practice, a surroggt@blem is to replace the expectation by
its empirical average on a training sample:1,y1), . - ., (m, ym)}. Moreover, a regularize(-)

is often added for well-posedness. This leads to the mirititia of the regularized risk

G

i=1

where )\ is a regularization parameter. In optimization terminglafe deterministic optimization
problem in (1) can be considered as a sample average ap@iixn{SAA) of the corresponding
stochastic optimization problem:

rrgn Exy[l(w; X,Y)] + AQ(w). )

Since both¢(-, -) and()(-) are typically convex, (1) is a convex optimization probleieh can be
conveniently solved even with standard off-the-shelfmjtation packages.

However, with the proliferation of data-intensive applioas in the text and web domains, data sets
with millions or trillions of samples are nowadays not unenam. Hence, off-the-shelf optimization
solvers are too slow to be used. Indeed, even tailor-madea@s for specific models, such as the
sequential minimization optimization (SMO) method for B¥M, have superlinear computational



complexities and thus are not feasible for large data setght of this, the use of stochastic meth-
ods have recently drawn a lot of interest and many of thesbighdy successful. Most are based
on (variants of) the stochastic gradient descent (SGD)mpkas include Pegasos [1], SGD-ON [2],
FOLOS [3], and stochastic coordinate descent (SCD) [4]. A& advantages of these methods
are that they are simple to implement, have low per-itenatiomplexity, and can scale up to large
data sets. Their runtime is independent of, or even decreisethe number of training samples
[5, 6]. On the other hand, because of their simplicity, thes¢hods have a slow convergence rate,
and thus may require a large number of iterations.

While standard gradient schemes have a slow convergencethrayecan often be “accelerated”.
This stems from the pioneering work of Nesterov in 1983 [7hich is a deterministic algorithm
for smooth optimization. Recently, it is also extended femposite optimization, where the objec-
tive has a smooth component and a non-smooth component. [§h8§ is particularly relevant to
machine learning since the loésand regularizef in (2) may be non-smooth. Examples include
loss functions such as the commonly-used hinge loss usée IBYM, and regularizers such as the
popular/; penalty in Lasso [10], and basis pursuit. These accelegatadient methods have also
been successfully applied in the optimization problems oftiple kernel learning [11] and trace
norm minimization [12]. Very recently, Lan [13] made an iaitattempt to further extend this for
stochastic composite optimization, and obtained the cgevee rate of

0 (L/N2 + (M + a)/\/ﬁ) . 3)

Here, N is the number of iterations performed by the algorithinis the Lipschitz parameter of
the gradient of the smooth term in the objectivié, is the Lipschitz parameter of the nonsmooth
term, ando is the variance of the stochastic subgradient. Moreovee ti@at the first term of (3)
is related to the smooth component in the objective whilestheond term is related to the non-
smooth component. Complexity results [14, 13] show thaig3he optimal convergence rate for
any iterative algorithm solving stochastic (general) @nwomposite optimization.

However, as pointed out in [15], a very useful property ttzat icnprove the convergence rates in ma-
chine learning optimization problems is strong convexiityr example, (2) can be strongly convex
either because of the strong convexity/@t.g., log loss, square loss) Qr(e.g.,¢s regularization).
On the other hand, [13] is more interested in general conpéixnization problems and so strong
convexity is not utilized. Moreover, though theoreticaliyeresting, [13] may be of limited practi-
cal use as (1) the stepsize in its update rule depends ontdrewofknowry; and (2) the number of
iterations performed by the algorithm has to be fixed in adgan

Inspired by the successes of Nesterov's method, we develtps paper a novel accelerated sub-
gradient scheme for stochastic composite optimizatioracktieves the optimal convergence rate
of O (L/N2 + a/\/ﬁ) for general convex objectives, ard ((L + p)/N* + opu~'/N) for p-

strongly convex objectives. Moreover, its per-iteratiomplexity is almost as low as that for stan-
dard (sub)gradient methods. Finally, we also extend thelated gradient scheme to online learn-

ing. We obtainO(+/N) regret for general convex problems afilog N) regret for strongly convex
problems, which are the best regret bounds currently knawthEse problems.

2 Setting and Mathematical Background

First, we recapitulate a few notions in convex analysis.

(Lipschitz continuity) A function f(z) is L-Lipschitz if || f () — f(y)|| < L||z — ]|
Lemma 1. [14] Thegradient of a differentiable function f () is Lipschitz continuous with Lipschitz
parameter L if, for any 2 and v,

F() < F@) + (VS (@)y —2) + 2l — ] @

(Strong convexity)A function¢(z) is p-strongly convex ifp(y) > ¢(z)+(g(x),y—a)+ 4 |ly—z?
for anyx, y and subgradienj(z) € d¢(x).
Lemma 2. [14] Let ¢(x) be u-strongly convex and z* = arg min, ¢(z). Then, for any z,

o) = o) + Sl — | (5)



We consider the following stochastic convex stochastiénapation problem, with a composite

objective function
min{¢(z) = E[F(z,£)] + ¥ ()}, (6)

where¢ is a random vectorf(xz) = E[F(z,&)] is convex and differentiable, and(x) is convex
but non-smooth. Clearly, this includes the optimizatioolgpem (2). Moreover, we assume that the
gradient off (z) is L-Lipschitz andp(z) is u-strongly convex (with: > 0). Note that wher)(x) is
smooth ¢(x) = 0), u lower bounds the smallest eigenvalue of its Hessian.

Recall that in smooth optimization, the gradient update, = «; — AV f(x;) on a functionf (x)
can be seen as proximal regularization of the linearifed the current iterate; [16]. In other
words, z; 41 = argmin, ((V f(z¢),z — ;) + 55 |l — 2]|*). With the presence of a non-smooth
component, we have the following more general notion.

(Gradient mapping) [8] In minimizing f(z) 4+ ¥ (x), wheref is convex and differentiable andis
convex and non-smooth,

s = axgumin (V). =) + o= a7 + o) %

is called the generalized gradient update, anel %(act — x411) Is the (generalized) gradient map-
ping. Note that the quadratic approximation is made to theatimcomponent only. It can be shown
that the gradient mapping is analogous to the gradient irofmmnvex optimization [14, 8]. This
is also a common construct used in recent stochastic suibgtadethods [3, 17].

3 Accelerated Gradient Method for Stochastic Learning

Let G(zy,&) = Vo F(x,&)|.=, be the stochastic gradient éf(x, &;). We assume that it is an
unbiased estimator of the gradiewiff (z), i.e.,E¢[G(z,£)] = V f(z). Algorithm 1 shows the pro-
posed algorithm, which will be called SAGE (Stochastic Aecated GradiEnt). It involves the
updating of three sequencés; }, {y;:} and{z;}. Note thaty, is the generalized gradient update,
andz;y; is a convex combination aj; andz;. The algorithm also maintains two parameter se-
quences .} and{L;}. We will see in Section 3.1 that different settings of theaeameters lead
to different convergence rates. Note that the only experstiep of Algorithm 1 is the computation
of the generalized gradient updatg which is analogous to the subgradient computation in other
subgradient-based methods. In general, its computatmmplexity depends on the structure of
¥(x). As will be seen in Section 3.3, this can often be efficientiyained in many regularized risk
minimization problems.

Algorithm 1 SAGE (Stochastic Accelerated GradiEnt).

Input: Sequence§L;} and{«;}.

Initialize: y1=2.1=0,ap=X=1.Lo=L+ L.

fort =0to N do
vy =(1—a)ye—1 +arzi 1.
yr = argming {(G (1, &), — x1) + %Hx — x| + () }.
2o =21 — (Lyoy + p) " HLe(we — ye) 4+ p(ze—1 — 20)].

end for

Outputyy .

3.1 Convergence Analysis

DefineA, = G(z,&,) — Vf(x,). Because of the unbiasednessfr,, ¢;), E¢, [A,] = 0. In the
following, we will show that the value ab(y;) — ¢(x) can be related to that @f(y;—1) — ¢(x) for
anyz. Letd; = Li(x; — y:) be the gradient mapping involved in updatipg First, we introduce
the following lemma.
Lemma 3. For ¢t > 0, ¢(x) is quadratically bounded from below as
2L, — L
116

t

Ow) 2 Oyn) + (e, — ) + Ella =l + (D — ) + =5



Proposition 1. Assumethat for each¢ > 0, ||A¢||« < o and L; > L, then

2
Oye) — ) + L0 T

2
< (1= a)[p(ye—1) — o)) +

lz = 2|

Lia? o?
il ||$ — Zt71H2 + m

(8)

+ 0[t<At,£L' — Zt71>.

Proof. Define Vi(z) = (0,2 — 1) + &z — 2||? + L4242 — z,1]%. It is easy to see that
z = argmin,cra Vi(x). Moreover, notice that;(x) is (that + w)-strongly convex. Hence on
applying Lemmas 2 and 3, we obtain that for any

B LtOét +[,L

Vi) < Vilw) = 225 o — 2
Lia Loy +
= (Grz— )+ Sl — ol + 2o — 2P = S o — 2l
2L,—L Lioy Lioai+p
< o(x)—(y)— ;Lz 16117+ t2 fHI—Zt—lHZ—%HI—Z:&||2+<A&l‘—yt>-
t

Then,¢(y;) can be bounded from above, as:

2Ly — L Lia
P(yr) <O(x) + (0¢, T — 21) — ;TH&&HQ - ; Iz — zea]?
f ©)
Lioy Loy +
e =z 2 = 2 o — 2l + (A - ),

where the non-positive term¥ ||z, — 2||* has been dropped from its right-hand-side. On the other
hand, by applying Lemma 3 with = 3,1, we get
2Ly — L
D) = A1) < O we = y1) + (Ae s —w) — 0%, (10)
t

where the non-positive term % ||y;_; — z;||* has also been dropped from the right-hand-side. On
multiplying (9) by« and (10) byl — «,, and then adding them together, we obtain

2L, — L L.a?
P(ye) — () < (1—ay)[d(yi—1) — d(x)] - thz t2 Lz =z, (12)
t
whereA = <§t7 a(zy—2z)+(1 » ag) (@ —yi—1)), B = ay(Apx—ye) + (1 — ) (Ag, Ye—1— ),
andC = X% || — 2, |2 — L@y 512, 1n the following, we consider to upper bount]
andB. First, by using the update rule of in Algorithm 1 and the Young’s inequalitywe have

A= <5t7 at(% - Zt—l) + (1 - at)(fft - yt—1)> + Oét<5t7 Zt—1 — Zt>

6:)1% +A+B+C—

Lio? 8112
= a(0p, 20—1 — 21) < t2 Lz =zl + 7”22[ . (12)
On the other hand3 can be bounded as
Ay, 0
B= (Ao + (1 alyis — 20) + (B, — ) = Bz — z) + 20
t
1)

SOét<At,£C—Zt71>+ UH tH (13)

L,
where the second equality is due to the update rule,pfand the last step is from the Cauchy-
Schwartz inequality and the boundednesapf Hence, plugging (12) and (13) into (11),

_ 2 5 "
6(ur) — 6(z) < (1-an)dly) ~o(x)) - LN 210

+ o (A, x—21) +C

213 Ly
2
g
< (1= a)[e(y—1) — o(x)] + 2L - 1) + (A, x = 21) +C,
where the last step is due to the fact thatr? + b < % with a,b > 0. On re-arranging terms, we
obtain (8). O

2
[zl

The Young’s inequality states théat, y) < ‘ga

+ llyl® for anya > 0
Y .
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Let the optimal solution in problem (6) he. From the update rules in Algorithm 1, we observe

that the triplet(x;, y; 1, 2:—1) depends on the random procé€gs |} = {&o,...,§:—1} and hence is
also random. Clearly;;_; andx* are independent @f,. Thus,
Eﬁ[t] <Ata T — Zt—1> = ]Ef[tfu]EE[t] [<At7 T — Zt—1>‘§[t—1]] = Eé[tquft, [<At7 - Zt—1>]

= ]Eg[t—l] <£L'* — Zt—1, Eft [AtD =0,

where the first equality usé, [h(z)] = E,E,[h(x)]y], and the last equality is from our assumption
that the stochastic gradie6t(z, &) is unbiased. Taking expectations on both sides of (8) with
x*, we obtain the following corollary, which will be useful imqving the subsequent theorems.

Corollary 1.

Ltaf + poy B
2

< (1= a)(E[p(ye-1)] — o(z7)) +

[llz* = z|?]

Lta? 2 o?
E[l|z* — z— —_—.
Bl = 2l + 5

Elo(ye)] — ¢(x7) +

So far, the choice of.; anda; in Algorithm 1 has been left unspecified. In the following, wil
show that with a good choice df; and«;, (the expectation ofp(y;) converges rapidly t@(z*).

Theorem 1. Assumethat E[||z* — z;|?] < D? for some D. Set

2
Li=bt+1)2 +L - = 14
t ( + )2 + ) Qi t+2’ ( )
where b > 0 isa constant. Then the expected error of Algorithm 1 can be bounded as
3D?L ., o\ 1
— < ) —.

Blo(m)] - o) < 2E 4 (304 ) o 19)

If o were known, we can sétto the optimal choice 0{9{%, and the bound in (15) becomé%i—L +
2v/50D
VN

Note that so far(z) is only assumed to be convex. As is shown in the following teep the
convergence rate can be further improved by assuming strmmgexity. This also requires another
setting ofa;, andL; which is different from that in (14).

Theorem 2. Assume the same conditions as in Theorem 1, except that ¢(x) is p-strongly convex.

Set
_ -1 . _ /\%—1 At—1
Ly=L+p\_, fort>1; ap=+/M\_1+ I fort > 1, (16)

where \; = IT} _;(1 — o) for ¢ > 1 and Ay = 1. Then, the expected error of Algorithm 1 can be
bounded as

2(L+p)D?* 602

Elp(yn)] - ¢(a7) = = N (17)

In comparison, FOLOS only converges@§log(NN)/N) for strongly convex objectives.

3.2 Remarks

As in recent studies on stochastic composite optimizati8h the error bounds in (15) and (17) con-
sist of two terms: a faster term which is related to the smoothponent and a slower term related to
the non-smooth component. SAGE benefits from using thetaneliof the problem and accelerates
the convergence of the smooth component. On the other haarg;, stochastic (sub)gradient-based
algorithms like FOLOS do not separate the smooth from thesmaooth part, but simply treat the

whole objective as non-smooth. Consequently, convergefitbe smooth component is also slowed

down toO(1/v/N).

As can be seen from (15) and (17), the convergence of SAGEsengally encumbered by the
variance of the stochastic subgradient. Recall that theuvee of the average of i.i.d. random



variables is equal ta/p of the original variance. Hence, as in Pegasos ¢1¢an be reduced by
estimating the subgradient from a data subset.

Unlike the AC-SA algorithm in [13], the settings &f andc; in (14) do not require knowledge of

o and the number of iterations, both of which can be difficulestimate in practice. Moreover,
with the use of a sparsity-promoting(z), SAGE can produce a sparse solution (as will be exper-
imentally demonstrated in Section 5) while AC-SA cannot.isTil because in SAGE, the output
y is obtained from a generalized gradient update. With a gpgreomoting«(x), this reduces to

a (soft) thresholding step, and thus ensures a sparsecsol@in the other hand, in each iteration
of AC-SA, its output is a convex combination of two other whtes. Unfortunately, adding two
vectors is unlikely to produce a sparse vector.

3.3 Efficient Computation of y;

The computational efficiency of Algorithm 1 hinges on theadfint computation of;;. Recall that

y; is just the generalized gradient update, and so is not signifiy more expensive than the gradient
update in traditional algorithms. Indeed, the generalgediient update is often a central compo-
nent in various optimization and machine learning alganigh In particular, Duchi and Singer [3]
showed how this can be efficiently computed with the variousah and non-smooth regulariz-
ers, including the/y, /5, ¢3, /., Berhu and matrix norms. Interested readers are referrgg] for
details.

4 Accelerated Gradient Method for Online Learning

In this section, we extend the proposed accelerated gitagtibeme for online learning of (2). The
algorithm, shown in Algorithm 2, is similar to the stochastersion in Algorithm 1.

Algorithm 2 SAGE-based Online Learning Algorithm.

Inputs: Sequenced.,} and{«a;}, whereL, > L and0 < oy < 1.

Initialize: z; = y;.

loop
= (1 —ap)y—1 + 2.
Outputy, = argmin, {(V fi_1(z:),z — ;) + 5t [lz — z|* + ¢ (2) }.
ze = 2z—1 — (L + poy) “HLe(me — ye) + plze—1 — x4)].

end loop

First, we introduce the following lemma, which plays a samitole as its stochastic counterpart of
Lemma 3. Moreover, lef; = L;(x; — y;) be the gradient mapping related to the updating;of

Lemma 4. For t > 1, ¢;(x) can be quadratically bounded from below as
2L, — L
212
Proposition 2. For any = and ¢ > 1, assume that there exists a subgradient g(z) € 9+ () such that
IV fi(z) + §(2) ||« < Q. Then for Algorithm 2,
Q2
(1 — Oét)(Lt — L)

v
Gr—1(x) = de—1(ye) + (0, @ — ) + %HJC — x| + 16117

Ly + poy 5
— |z — |
20[,5

L
Gr—1(Yp—1) — dr—1(x) < 5 +T‘;||$—Zt71H2—

(1 AL (1 )L L (18)
— — —
+ L : et — 2l — ooz — well .
2 2
Proof Sketch. Definer; = Ltat_l. From the update rule af;, one can check that
. T
2 = argm;nvt(x) = (0, —xy) + ng —x)® + é”x -z
Similar to the analysis in obtaining (9), we can obtain
2L;—L T Tt T+
¢t—1(yt)—¢t—1($)ﬁ<5t7xt—2t>—;T||5t||2—§t||zt—2t—1|\24é\|$—2t—1||2—tTl||l‘—ZtH2- (19)
t



On the other hand,

e =2 = U0 E e — =l
< otz =zl g = e, (200
on using the convexity of - ||2. Using (20), the inequality (19) becomes
bra(w) — dra() < POy D e 3
- Sep IR + Pl — sl = T e — -

On the other hand, by the convexity ®f_, () and the Young's inequality, we have

Gr—1(ye—1) — Ge—1(ye) <V fim1(Wi—1) + Ge—1(ye—1) Ye—1 — Yr)
Q* (1—oay)(Le — L)
S0 —an@—1) " >

lye—1 — el (22)

Moreover, by using the update ruleof and the convexity of - ||?, we have

lye—1 — yell> = [|(e—1 — @) + (20 — yo) I” = | (-1 — 2ze—1) + (¢ — vo)||?

5 2
< aulles = sl (1= a0) o = sl = aulpr — 5l e @)
On using (23), it follows from (22) that
Q2 Oét(l—at)(Lt—L) 2 Lt—L 2
(Y1) — e < 11—z .
Gr—1(yt-1) — de—1(ye) < 20 —ay) (=L > lye—1—z-1]" + 212 161
Inequality (18) then follows immediately by adding this f1§. O

Theorem 3. Assumethat © = 0, and ||z* —z;|| < Dfort > 1. Setay = ecand Ly = aL\/t — 1+ L,
wherea € (0, 1) isa constant. Then the regret of Algorithm 2 can be bounded as

N

2 2 2
;[@(%)W*)}g@g *[M; *au?a)J VA

Theorem 4. Assumethat 1 > 0, and ||a* — 2| < Dfort > 1. Setay = a,and L; = aut + L +
a~'(u— L)+, wherea € (0,1) isa constant. Then the regret of Algorithm 2 can be bounded as

2
@ i log(N +1).

ol (2a+a Hp+ L
2a(1 —a

> [6e(mr) — ¢r(a™)] < o

}D2+

In particular, witha = 1, the regret bound reduces & + L) D? + 2%2 log(N + 1).

5 Experiments

In this section, we perform experiments on the stochasticnigation of (2). Two data sets are
used (Table 1). The first one is thecmac data set, which is a subset of the 20-newsgroup data set
from [18], while the second one is tiCV1 data set, which is a filtered collection of the Reuters
RCV1 from [19]. We choose the square loss £6r,-) and thel; regularizer for)(-) in (2). As
discussed in Section 3.3 and [3], the generalized gradatdte can be efficiently computed by soft
thresholding in this case. Moreover, we do not use strongesdty and squ = 0.

We compare the proposed SAGE algorithm (withanda in (14)) with three recent algorithms: (1)
FOLOS [3]; (2) SMIDAS [4]; and (3) SCD [4]. For fair comparisowe compare their convergence

2Downloaded fromnttp://people.cs.uchicago.edu/~vikass/svmlin.html @ndhttp:/ww.cs.ucsb.edu/~wychen/sc.html.



behavior w.r.t. both the number of iterations and the nunabetata access operations, the latter
of which has been advocated in [4] as an implementationpi@déent measure of time. Moreover,
the efficiency tricks for sparse data described in [4] are migplemented. Following [4], we set the
regularization parametexin (2) to 10~6. Then parameter in SMIDAS is searched over the range
of {107%, 1075, 1074, 1073, 1072, 10~'}, and the one with the loweét-regularized loss is used.
As in Pegasos [1], the (sub)gradient is computed from sraadide subsets. The subset sizs set

to min(0.01m, 500), wherem is the data set size. This is used on all the algorithms ex8€,
since SCD is based on coordinate descent and is quite diffiecan the other stochastic subgradient
algorithms? All the algorithms are trained with the same maximum amoftitime” (i.e., number

of data access operations).

Table 1: Summary of the data sets.

data set| #features| #instances sparsity
pcmac 7,511 1,946 0.73%
RCV1 | 47,236 | 193,844 | 0.12%

Results are shown in Figure 1. As can be seen, SAGE requirels fewer iterations for convergence
than the others (Figures 1(a) and 1(e)). Moreover, the iadditcosts on maintaining; andz; are
small, and the most expensive step in each SAGE iterationdsmputing the generalized gradient
update. Hence, its per-iteration complexity is comparalille the other (sub)gradient schemes, and
its convergence in terms of the number of data access opesat still the fastest (Figures 1(b),
1(c), 1(f) and 1(g)). Moreover, the sparsity of the SAGE #oluis comparable with those of the
other algorithms (Figures 1(d) and 1(h)).
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Figure 1: Performance of the various algorithms onpthac (upper) anckcvi (below) data sets.

6 Conclusion

In this paper, we developed a novel accelerated gradienhade{SAGE) for stochastic con-
vex composite optimization. It enjoys the computationabicity and scalability of traditional
(sub)gradient methods but are much faster, both theoligtanad empirically. Experimental results
show that SAGE outperforms recent (sub)gradient descetitade. Moreover, SAGE can also be
extended to online learning, obtaining the best regret dsenrrently known.
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