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Abstract

This paper studies the general problem of learning kerreded on a polynomial
combination of base kernels. We analyze this problem in #se of regression
and the kernel ridge regression algorithm. We examine thesponding learning
kernel optimization problem, show how that minimax problean be reduced to a
simpler minimization problem, and prove that the globauitioh of this problem

always lies on the boundary. We give a projection-basedigmadescent algo-
rithm for solving the optimization problem, shown empitig@o converge in few

iterations. Finally, we report the results of extensiveezkpents with this algo-

rithm using several publicly available datasets demotisgyahe effectiveness of
our technique.

1 Introduction

Learning algorithms based on kernels have been used with suacess in a variety of tasks [17,19].
Classification algorithms such as support vector machi8¥$4s) [6, 10], regression algorithms,

e.g., kernel ridge regression and support vector regmne$SidR) [16, 22], and general dimensional-
ity reduction algorithms such as kernel PCA (KPCA) [18] ahlefit from kernel methods. Positive
definite symmetric (PDS) kernel functions implicitly spigcan inner product in a high-dimension

Hilbert space where large-margin solutions are soughtoB8g &s the kernel function used is PDS,
convergence of the training algorithm is guaranteed.

However, in the typical use of these kernel method algorithime choice of the PDS kernel, which
is crucial to improved performance, is left to the user. Asldemanding alternative is to require
the user to instead specify a family of kernels and to user#tieing data to select the most suitable
kernel out of that family. This is commonly referred to as pineblem oflearning kernels

There is a large recent body of literature addressing varaspects of this problem, including de-
riving efficient solutions to the optimization problems é@rgerates and providing a better theoretical
analysis of the problem both in classification and regresgip8, 9,11, 13, 15, 21]. With the excep-
tion of a few publications considering infinite-dimensibkernel families such as hyperkernels [14]
or general convex classes of kernels [2], the great majofignalyses and algorithmic results focus
on learning finitelinear combinations of base kernels as originally considered &Y. [However,
despite the substantial progress made in the theoreticlratanding and the design of efficient
algorithms for the problem of learning such linear comhona of kernels, no method seems to re-
liably give improvements over baseline methods. For exantpk learned linear combination does
not consistently outperform either the uniform combinaid base kernels or simply the best single
base kernel (see, for example, UCI dataset experiments i2]9see also NIPS 2008 workshop).
This suggests exploring oth@on-linear families of kernels to obtain consistent and significant
performance improvements.

Non-linear combinations of kernels have been recently idensd by [23]. However, here too,
experimental results have not demonstrated a consistefiarpance improvement for the general



learning task. Another method, hierarchical multiple héag [3], considers learning a linear combi-
nation of an exponential number of linear kernels, whichloauefficiently represented as a product
of sums. Thus, this method can also be classified as learniog-dinear combination of kernels.
However, in [3] the base kernels are restricteccemcatenatiorkernels, where the base kernels
apply to disjoint subspaces. For this approach the authrorsde an effective and efficient algo-
rithm and some performance improvement is actually obseioreregression problems in very high
dimensions.

This paper studies the general problem of learning kerreted on a polynomial combination of
base kernels. We analyze that problem in the case of regregsing the kernel ridge regression
(KRR) algorithm. We show how to simplify its optimizationgislem from a minimax problem
to a simpler minimization problem and prove that the gloledlison of the optimization problem
always lies on the boundary. We give a projection-basedegmnadescent algorithm for solving this
minimization problem that is shown empirically to conveigéew iterations. Furthermore, we give
a necessary and sufficient condition for this algorithm sxhea global optimum. Finally, we report
the results of extensive experiments with this algorithimgiseveral publicly available datasets
demonstrating the effectiveness of our technique.

The paper is structured as follows. In Section 2, we intredine non-linear family of kernels
considered. Section 3 discusses the learning problem,ulates the optimization problem, and
presents our solution. In Section 4, we study the performafour algorithm for learning non-
linear combinations of kernels in regression (NKRR) on saivgublicly available datasets.

2 Kernel Family

This section introduces and discusses the family of kerwelsonsider for our learning kernel
problem. LetKy, ..., K, be afinite set of kernels that we combine to define more conkamels.
We refer to these kernels asise kernels In much of the previous work on learning kernels, the
family of kernels considered is that of linear or convex camhons of some base kernels. Here,
we consider polynomial combinations of higher degieel of the base kernels with non-negative
coefficients of the form:

Ky = 5 ey KB - K5, g, 0. &
0<ki+-+kp<d, k; >0, i€[0,p]
Any kernel functionk’,, of this form is PDS since products and sums of PDS kernels B&[R].

Note thatk , is in fact a linear combination of the PDS kernéig’ - - -K;fp. However, the number
of coefficientsyy, ..., is in O(p?), which may be too large for a reliable estimation from a sampl
of sizem. Instead, we can assume that for some subsétall p-tuples(ki, ..., k), jx,...x, can

be written as a product of non-negative coefficients. . ., yi,: g, ...k, = M’fl . -M’;”. Then, the
general form of the polynomial combinations we consideiobees

K — Z k. "M];P K. .K]’;p + Z Mkl---kafl . .K}’;p7 (2)

where J denotes the complement of the subsetThe total number of free parameters is then
reduced tp+|J|. The choice of the set and its size depends on the sample sizand possible
prior knowledge about relevant kernel combinations. Tlowsd sum of equation (2) defining our
general family of kernels represents a linear combinatioRBS kernels. In the following, we
focus on kernels that have the form of the first sum and thatherg non-linear in the parameters
wi, - - ., fp. More specifically, we consider kernél§, defined by

K, = Z M]fl"'M];PKfl'-'KSP, (3)
ki+edky=d
wherep = (u11, ..., pp) " €RP. For the ease of presentation, our analysis is given forabed=2,
where the quadratic kernel can be given the following simgkpression:
p
K, = Z prpu KiK. 4)
k=1

But, the extension to higher-degree polynomials is stitéagivard and our experiments include
results for degreeg up to4.



3 Algorithm for Learning Non-Linear Kernel Combinations

3.1 Optimization Problem

We consider a standard regression problem where the lesroeives a training sample of size
m, S =((x1,91),-- s (Tm,¥m)) € (X xY)™, whereX is the input space andl € R the label
space. The family of hypothesés, out of which the learner selects a hypothesis is the repinduc
kernel Hilbert space (RKHS) associated to a PDS kernel fomdt,,: X x X — R as defined in

the previous section. Unlike standard kernel-based regneslgorithms however, here, both the
parameter vectgn defining the kernek’,, and the hypothesis are learned using the training sample
S.

The learning kernel algorithm we consider is derived frormkéridge regression (KRR). Let=
[y1,...,ym] €R™ denote the vector of training labels and ¥}, denote the Gram matrix of the
kernel K, for the sampleS: [K,];; = K, (z;,z;), for all 4, j € [1,m]. The standard KRR dual
optimization algorithm for a fixed kernel matrk,, is given in terms of the Lagrange multipliers
a € R™ by [16]:

max —aT(K# +MN)a+2a'y (5)
acRm

The related problem of learning the kerd€], concomitantly can be formulated as the following
min-max optimization problem [9]:
: T T
—a (K, + M 2 6
min max a (Ky+Aa+2ay, (6)
where M is a positive, bounded, and convex set. The positivityw@@nsures thak,, is positive

semi-definite (PSD) and its boundedness forms a regulameabntrolling the norm ofe.t Two
natural choices for the s@if are the norm-1 and norm-2 bounded sets,

Mi={p|p=0A |- pl <A} (7)

Mo=A{p[p=0A |[p—pol2 <A} (8)
These definitions include an offset paramgigrfor the weightsis. Some natural choices far,
are: o =0, or py/|leoll = 1. Note that here, since the objective function is not lineguj the
norm-1-type regularization may not lead to a sparse salutio

3.2 Algorithm Formulation

For learning linear combinations of kernels, a typical teghe consists of applying the minimax
theorem to permute thein and max operators, which can lead to optimization problems com-
putationally more efficient to solve [8,12]. However, in then-linear case we are studying, this
technique is unfortunately not applicable.

Instead, our method for learning non-linear kernels andisgithe min-max problem in equation (6)
consists of first directly solving the inner maximizatiomplem. In the case of KRR for any fixed
w the optimum is given by
a=(K,+)'y. 9)

Plugging the optimal expression af in the min-max optimization yields the following equivaten
minimization in terms ofx only:

min  F(p) =y (K, +\I)"'y. (10)

peM
We refer to this optimization as the NKRR problem. Althoubk briginal min-max problem has
been reduced to a simpler minimization problem, the fumctiois not convex in general as illus-
trated by Figure 1. For small values af concave regions are observed. Thus, standard interior-
point or gradient methods are not guaranteed to be suctaséfuding a global optimum.

In the following, we give an analysis which shows that un@etain conditions it is however possible
to guarantee the convergence of a gradient-descent typgathlg to a global minimum.

Algorithm 1 illustrates a general gradient descent alparifor the norm-2 bounded setting which
projectsu back to the feasible sel- after each gradient step (projectinghd, is very similar).

To clarify the difference between similar acronyms, a PD&fion corresponds to a PSD matrix [4].



Figure 1: Example plots fof' defined over two linear base kernels generated from the st t
features of the sonar dataset. From left to right 1,10, 100. For larger values oA it is clear that
there are in fact concave regions of the function rgear

Algorithm 1 Projection-based Gradient Descent Algorithm
Input: g5 € Mo, € [0,1],e >0, Ky, k € [1, p)
K= Pingg
repeat
—

B — —nVF(p)+ p

VE, w), < max(0, u},)

normalizep/, s.t. ||’ — poll = A
until ||’ — pl < e

In Algorithm 1 we have fixed the step sizg however this can be adjusted at each iteration via
a line-search. Furthermore, as shown later, the threstpktiep that forceg’ to be positive is
unnecessary SinCé F' is never positive.

Note that Algorithm 1 is simpler than the wrapper method psgal by [20]. Because of the closed
form expression (10), we do not alternate between solvinghf® dual variables and performing a
gradient step in the kernel parameters. We only need to gqaimith respect to the kernel parame-
ters.

3.3 Algorithm Properties
We first explicitly calculate the gradient of the objectiuaétion for the optimization problem (10).
In what follows,o denotes the Hadamard (pointwise) product between matrices

Proposition 1. For anyk € [1, p], the partial derivative of": p — y " (K,, + AI)~ 'y with respect
to u; is given by
OF

— = —-2a'Uia, (11)
O

whereUy, = (37, (1 K;) 0 Ky).

Proof. In view of the identityVy; Tr(y ' M~ly)=—M~1"yy "M~ " we can write:

IF - [ayT (K + D)7ty 0(K, + /\I)]
Oup 0K, + M) O,

= _Tr [(KH +AD) yy T(K, + D!

A(K, + )\I)}

=~ T (K + Aty (K + A1) (2 S (0K, o Kk)]

r=1

p
= — 2y T (K,, + \I)~! (Z(MTKT) o Kk) (K, + )"y = —2a" Uya. O

r=1



Matrix Uy, just defined in proposition 1 is always PSD, tr’&% <0Oforalli € [1,p] andVF <0.
As already mentioned, this fact obliterates the threshgldiep in Algorithm 1. We now provide
guarantees for convergence to a global optimum. We shalhzsshat) is strictly positive:\ > 0.

Proposition 2. Any stationary poinj* of the functionF: u — y T (K, + AI)~'y necessarily
maximizes':

2
F(u) = max () = 21 (12)
m

Proof. In view of the expression of the gradient given by Proposifipat any poinj.*,
p
p VFE(p) =a' Z,uiUka =a'K, a. (13)
i=1

By definition, if u* is a stationary pointV F(u*) = 0, which impliesp* " VF(u*) = 0. Thus,
a"K,-a=0, which impliesK ,-a =0, that is

K Ky + M)ty =0 (K + ML= AD)(Kps + M) 'y =0 (14)
Sy - MKy +A)7ly=0 (15)
& (K + M)ty = % (16)

Thus, for any such stationary poipt', F'(n*) = vy (Ku+ M)~y = % which is clearly a
maximum. O

We next show that there cannot be an interior stationarytpaird thus any local minimum strictly
within the feasible set, unless the function is constant.

Proposition 3. If any pointp* > 0 is a stationary point of": p — y ' (K, + AI)~'y, then the
function is necessarily constant.

Proof. Assume thatu* > 0 is a stationary point, then, by Proposition 2(p*) = y " (K- +

M) ly= % which implies thay is an eigenvector ofi<,,- + AI) ~! with eigenvalue\~. Equiv-
alently,y is an eigenvector K ,,» + AI with eigenvalue\, which is equivalent ty € null(K,,«).
Thus,

P m
Y Ky =Y i Y yeysKi(@r, 2) Ki(w,25) = 0. (17)
k,l=1 r,s=1

()
Since the product of PDS functions is also PDS, (*) must be megative. Furthermore, since by

assumptioru; > 0 for all 7 € [1, p|, it must be the case that the term (*) is equal to zero. Thus,
equation 17 is equal to zero for alland the functiort” is equal to the constatiy||% /. O

The previous propositions are sufficient to show that theigra descent algorithm will not become
stuck at a local minimum while searching the interior of av@nset M and, furthermore, they
indicate that the optimum is found at the boundary.

The following proposition gives a necessary and sufficiemtdition for the convexity ofF' on a
convex regionC. If the boundary region defined by — py|| = A is contained in this convex
region, then Algorithm 1 is guaranteed to converge to a dlopamum. Letu € R? represent an
arbitrary direction ofu in C'. We simplify the analysis of convexity in the following deation by
separating the terms that dependI§p and those depending ds,,, which arise when showing
the positive semi-definiteness of the Hessian,.eV2Fu > 0. We denote byo the Kronecker
product of two matrices.

Proposition 4. The functionF': u — y ' (K, + AI)~ly is convex over the convex gétiff the
following condition holds for alp € C and allu:

(M,N - 1)p >0, (18)



Data | m p | lin. base lin.¢q lin. 45 quad. base quad; quad./y

Parkinsonsg 194 21| .70+.03 .70+£.04 .70+.03 .65+.03 .66+.03 .64+.03
lono 351 34| 82+.03 81+.04 81+£.03 .62+£.05 .624+.05 .60=£.05
Sonar 208 60| .90£.02 .92+.03 .904+.04 .84+£.03 80+.04 .80+£.04
Breast 683 9|.70+£.02 .7T1+.02 .70+£.02 .70£.02 .70+.01 .70+£.01

Table 1: The square-root of the mean squared error is repfmteach method and several datasets.

whereM = (1 ® vec(aa')") o (Ky ® Ku), N = 4(1® vec(V)") o (K, ® K,,), and1 is the
matrix with zero-one entries constructed to select the $éMf;;;,; wherei = k andj = [, i.e. itis
non-zero only in théi, j)th coordinate of thé:, j)th m x m block.

Proof. For anyu € R? the expression of the Hessian Bfat the pointu € C can be derived from
that of its gradient and shown to be

u' (V2F)u=4a" (K, oK, VK, oKy)a —a' (KyoKy)a. (19)
Expanding each term, we obtain:

a’ (K, oK, V(K Z aioy Y (K [Kalin V] K puin [K i (20)

Z (i [Kulie[Kal ) (VI [Kulie[Kuliy)  (21)
k,l=

anda’ (K, o Ky)a = Do i [K ] i[Kulij. Letl € R™" define the column vector of all
ones and letec(A) denote the vectorization of a maté by stacking its columns. Let the matrices
M andN be defined as in the statement of the proposition. TReR; ;. = (a0 [Kulix [Kuij)
and[N];ju = [V]u[Kuli K. Then, in view of the definition of, the terms of equation (19)
can be represented with the Frobenius inner product,

u' (V2F)u= (M,N)p — (M,1)p = (M,N - 1)p. O

Foranyp € R?, letK,, =", i;K; and letV = (K,, + AI)~!. We now show that the condition
of Proposition 4 is satisfied for convex regions for whichand thereforeu, is sufficiently large, in
the case wher&,, andK,, are diagonal. In that casd[, N andV are diagonal as well and the
condition of Proposition 4 can be rewritten as follows:

Z[Ku]ii[Ku]jjai% (4[K p]ii[Kpulj5 Vis — Li=j) = 0. (22)
Using the fact thaV’ i;,jdiagonal, this inequality we can be further simplified
SO o (4K Vi~ 1) > 0. @)
A sufficient condition for this ;:(;quality to hold is that deierm(4[K )% V,; — 1) be non-negative,

or equivalently thanKiV —I>0,thatisK, ~ ,/%I. Therefore, it suffices to seleptsuch that

ming Y b kKl > /A/3.
4 Empirical Results

To test the advantage of learning non-linear kernel contiming, we carried out a number of ex-
periments on publicly available datasets. The datasetshergen to demonstrate the effectiveness
of the algorithm under a number of conditions. For genergbpmance improvement, we chose a
number of UCI datasets frequently used in kernel learnimgements, e.g., [7,12,15]. For learning
with thousands of kernels, we chose the sentiment analgsiset of Blitzer et. al [5]. Finally, for
learning with higher-order polynomials, we selected dettawith large number of examples such as
kin-8nmfrom the Delve repository. The experiments were run on a &H3 Intel Xeon Processor
with 2GB of RAM.
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Figure 2: The performance of baseline and learned quadm@ititels (plus or minus one standard
deviation) versus the number of bigrams (and kernels) used.

4.1 UCI Datasets

We first analyzed the performance of the kernels learned adrgtic combinations. For each
dataset, features were scaled to lie in the intgfudl]. Then, both labels and features were centered.
In the case of classification dataset, the labels were set tand the RMSE was reported. We as-
sociated a base kernel to each feature, which computesdhagdrof this feature between different
examples. We compared both linear and quadratic combirgteach with a baseline (uniform),
norm-1-regularized and norm-2-regularized weightingggi, = 1 corresponding to the weights of
the baseline kernel. The paramete@nd A were selected via 10-fold cross validation and the error
reported was based on 30 random 50/50 splits of the entiaselainto training and test sets. For the
gradient descent algorithm, we started witk- 1 and reduced it by a factor @f8 if the step was
found to be too large, i.e., the differengg’ — u|| increased. Convergence was typically obtained
in less than 25 steps, each requiring a fraction of a secert(> seconds).

The results, which are presented in Table 1, are in line widlvipus ones reported for learning
kernels on these datasets [7,8,12,15]. They indicateghating quadratic combination kernels can
sometimes offer improvements and that it clearly does ngtatke with respect to the performance
of the baseline kernel. The learned quadratic combinagofopms well, particularly on tasks where
the number of features was large compared to the number ofgdihis suggests that the learned
kernel is better regularized than the plain quadratic Keand can be advantageous is scenarios
where over-fitting is an issue.

4.2 Text Based Dataset

We next analyzed a text-based task where features are fregquoed n-grams. Each base kernel
computes the product between the counts of a partieutgnam for the given pair of points. Such
kernels have a direct connection to count-based ratiomakkg as described in [8]. We used the
sentiment analysis dataset of Blitzer et. al [5]. This dettasntains text-based user reviews found
for products oramazon. com Each text review is associated with a 0-5 star rating. Theyot re-
views fall into two categories: electronics and kitcherregaeach with 2,000 data-points. The data
was not centered in this case since we wished to preservpdhsity, which offers the advantage of
significantly more efficient computations. A constant featwas included to act as an offset.

For each domain, the parametarand A were chosen via 10-fold cross validation on 1,000 points.
Once these parameters were fixed, the performance of eamfitlahy was evaluated using 20 ran-
dom50/50 splits of the entire 2,000 points into training and test.sés used the performance of
the uniformly weighted quadratic combination kernel as seline, and showed the improvement
when learning the kernel with norm-1 or norm-2 regulari@atiisinguy = 1 corresponding to the
weights of the baseline kernel. As shown by Figure 2, thenledukernels significantly improved
over the baseline quadratic kernel in both the kitchen aectrlnics categories. For this case too,
the number of features was large in comparison with the nuofioints. Using 900 training points
and about 3,600 bigrams, and thus kernels, each iteratitimeadigorithm took approximately 25
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Figure 3: Performance on tHén-8nmdataset. For all polynomials, we compared un-weighted,
standard KRR (solid lines) with norm-2 regularized kerm@rhing (dashed lines). For 4th degree
polynomials we observed a clear performance improvemspéaally for medium amount of train-
ing data (subsampling factor of 10-50). Standard deviatiere typically in the orddr.005, so the
results were statistically significant.

seconds to compute with our Matlab implementation. Whengusbrm-2 regularization, the algo-
rithm generally converges in under 30 iterations, whileribem-1 regularization requires an even
fewer number of iterations, typically less than 5.

4.3 Higher-order Polynomials

We finally investigated the performance of higher-order-tinear combinations. For these exper-
iments, we used thkin-8nmdataset from the Delve repository. This dataset has 20,080 eles
with 8 input features. Here too, we used polynomial kernekr ahe features, but this time we
experimented with polynomials with degrees as high as 4.irAgee made the assumption that all
coefficients ofu are in the form of products qi;s (see Section 2), thus only 8 kernel parameters
needed to be estimated.

We split the data into 10,000 examples for training and 10 &&mples for testing, and, to inves-
tigate the effect of the sample size on learning kernelssamipled the training data so that only a
fraction from 1 to 100 was used. The parameteend A were determined by 10-fold cross vali-
dation on the training data, and results are reported oretiaata, see Figure 3. We used norm-2
regularization withug =1 and compare our results with those of uniformly weighted KRR

For lower degree polynomials, the performance was esdlgrtti@a same, but for 4th degree poly-
nomials we observed a significant performance improvenfdaaoning kernels over the uniformly
weighted KRR, especially for a medium amount of traininggdatibsampling factor of 10-50). For
the sake of readability, the standard deviations are natételd in the plot. They were typically in
the order of 0.005, so the results were statistically sigaifi. This result corroborates the finding
on the UCI dataset, that learning kernels is better regédrthan plain unweighted KRR and can
be advantageous is scenarios where overfitting is an issue.

5 Conclusion

We presented an analysis of the problem of learning polyabooeimbinations of kernels in regres-
sion. This extends learning kernel ideas and helps expleneck combinations leading to better
performance. We proved that the global solution of the op@tion problem always lies on the
boundary and gave a simple projection-based gradient dealgorithm shown empirically to con-
verge in few iterations. We also gave a necessary and sutficendition for that algorithm to
converge to a global optimum. Finally, we reported the tssoil several experiments on publicly
available datasets demonstrating the benefits of learmilygpmial combinations of kernels. We are
well aware that this constitutes only a preliminary studg tivat a better analysis of the optimization
problem and solution should be further investigated. Weehbpt the performance improvements
reported will further motivate such analyses.
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