
Learning Non-Linear Combinations of Kernels

Corinna Cortes
Google Research

76 Ninth Ave
New York, NY 10011

corinna@google.com

Mehryar Mohri
Courant Institute and Google

251 Mercer Street
New York, NY 10012

mohri@cims.nyu.edu

Afshin Rostamizadeh
Courant Institute and Google

251 Mercer Street
New York, NY 10012

rostami@cs.nyu.edu

Abstract

This paper studies the general problem of learning kernels based on a polynomial
combination of base kernels. We analyze this problem in the case of regression
and the kernel ridge regression algorithm. We examine the corresponding learning
kernel optimization problem, show how that minimax problemcan be reduced to a
simpler minimization problem, and prove that the global solution of this problem
always lies on the boundary. We give a projection-based gradient descent algo-
rithm for solving the optimization problem, shown empirically to converge in few
iterations. Finally, we report the results of extensive experiments with this algo-
rithm using several publicly available datasets demonstrating the effectiveness of
our technique.

1 Introduction

Learning algorithms based on kernels have been used with much success in a variety of tasks [17,19].
Classification algorithms such as support vector machines (SVMs) [6, 10], regression algorithms,
e.g., kernel ridge regression and support vector regression (SVR) [16,22], and general dimensional-
ity reduction algorithms such as kernel PCA (KPCA) [18] all benefit from kernel methods. Positive
definite symmetric (PDS) kernel functions implicitly specify an inner product in a high-dimension
Hilbert space where large-margin solutions are sought. So long as the kernel function used is PDS,
convergence of the training algorithm is guaranteed.

However, in the typical use of these kernel method algorithms, the choice of the PDS kernel, which
is crucial to improved performance, is left to the user. A less demanding alternative is to require
the user to instead specify a family of kernels and to use the training data to select the most suitable
kernel out of that family. This is commonly referred to as theproblem oflearning kernels.

There is a large recent body of literature addressing various aspects of this problem, including de-
riving efficient solutions to the optimization problems it generates and providing a better theoretical
analysis of the problem both in classification and regression [1, 8, 9, 11, 13,15, 21]. With the excep-
tion of a few publications considering infinite-dimensional kernel families such as hyperkernels [14]
or general convex classes of kernels [2], the great majorityof analyses and algorithmic results focus
on learning finitelinear combinations of base kernels as originally considered by [12]. However,
despite the substantial progress made in the theoretical understanding and the design of efficient
algorithms for the problem of learning such linear combinations of kernels, no method seems to re-
liably give improvements over baseline methods. For example, the learned linear combination does
not consistently outperform either the uniform combination of base kernels or simply the best single
base kernel (see, for example, UCI dataset experiments in [9, 12], see also NIPS 2008 workshop).
This suggests exploring othernon-linear families of kernels to obtain consistent and significant
performance improvements.

Non-linear combinations of kernels have been recently considered by [23]. However, here too,
experimental results have not demonstrated a consistent performance improvement for the general

1

learning task. Another method, hierarchical multiple learning [3], considers learning a linear combi-
nation of an exponential number of linear kernels, which canbe efficiently represented as a product
of sums. Thus, this method can also be classified as learning anon-linear combination of kernels.
However, in [3] the base kernels are restricted toconcatenationkernels, where the base kernels
apply to disjoint subspaces. For this approach the authors provide an effective and efficient algo-
rithm and some performance improvement is actually observed for regression problems in very high
dimensions.

This paper studies the general problem of learning kernels based on a polynomial combination of
base kernels. We analyze that problem in the case of regression using the kernel ridge regression
(KRR) algorithm. We show how to simplify its optimization problem from a minimax problem
to a simpler minimization problem and prove that the global solution of the optimization problem
always lies on the boundary. We give a projection-based gradient descent algorithm for solving this
minimization problem that is shown empirically to convergein few iterations. Furthermore, we give
a necessary and sufficient condition for this algorithm to reach a global optimum. Finally, we report
the results of extensive experiments with this algorithm using several publicly available datasets
demonstrating the effectiveness of our technique.

The paper is structured as follows. In Section 2, we introduce the non-linear family of kernels
considered. Section 3 discusses the learning problem, formulates the optimization problem, and
presents our solution. In Section 4, we study the performance of our algorithm for learning non-
linear combinations of kernels in regression (NKRR) on several publicly available datasets.

2 Kernel Family

This section introduces and discusses the family of kernelswe consider for our learning kernel
problem. LetK1, . . . , Kp be a finite set of kernels that we combine to define more complexkernels.
We refer to these kernels asbase kernels. In much of the previous work on learning kernels, the
family of kernels considered is that of linear or convex combinations of some base kernels. Here,
we consider polynomial combinations of higher degreed≥1 of the base kernels with non-negative
coefficients of the form:

Kµ =
∑

0≤k1+···+kp≤d, ki≥0, i∈[0,p]

µk1···kp
Kk1

1 · · ·K
kp

p , µk1···kp
≥0. (1)

Any kernel functionKµ of this form is PDS since products and sums of PDS kernels are PDS [4].

Note thatKµ is in fact a linear combination of the PDS kernelsKk1

1 · · ·K
kp

p . However, the number
of coefficientsµk1···kp

is in O(pd), which may be too large for a reliable estimation from a sample
of sizem. Instead, we can assume that for some subsetI of all p-tuples(k1, . . . , kp), µk1···kp

can

be written as a product of non-negative coefficientsµ1, . . . , µp: µk1···kp
= µk1

1 · · ·µ
kp

p . Then, the
general form of the polynomial combinations we consider becomes

K =
∑

(k1,...,kp)∈I

µk1

1 · · ·µ
kp

p Kk1

1 · · ·K
kp

p +
∑

(k1,...,kp)∈J

µk1···kp
Kk1

1 · · ·K
kp

p , (2)

whereJ denotes the complement of the subsetI. The total number of free parameters is then
reduced top+ |J |. The choice of the setI and its size depends on the sample sizem and possible
prior knowledge about relevant kernel combinations. The second sum of equation (2) defining our
general family of kernels represents a linear combination of PDS kernels. In the following, we
focus on kernels that have the form of the first sum and that arethus non-linear in the parameters
µ1, . . . , µp. More specifically, we consider kernelsKµ defined by

Kµ =
∑

k1+···+kp=d

µk1

1 · · ·µ
kp

p Kk1

1 · · ·K
kp

p , (3)

whereµ=(µ1, . . . , µp)
⊤∈R

p. For the ease of presentation, our analysis is given for the cased=2,
where the quadratic kernel can be given the following simpler expression:

Kµ =

p∑

k,l=1

µkµl KkKl . (4)

But, the extension to higher-degree polynomials is straightforward and our experiments include
results for degreesd up to4.

2

3 Algorithm for Learning Non-Linear Kernel Combinations

3.1 Optimization Problem

We consider a standard regression problem where the learnerreceives a training sample of size
m, S = ((x1, y1), . . . , (xm, ym)) ∈ (X×Y)m, whereX is the input space andY ∈ R the label
space. The family of hypothesesHµ out of which the learner selects a hypothesis is the reproducing
kernel Hilbert space (RKHS) associated to a PDS kernel function Kµ : X×X → R as defined in
the previous section. Unlike standard kernel-based regression algorithms however, here, both the
parameter vectorµ defining the kernelKµ and the hypothesis are learned using the training sample
S.

The learning kernel algorithm we consider is derived from kernel ridge regression (KRR). Lety=
[y1, . . . , ym]⊤ ∈R

m denote the vector of training labels and letKµ denote the Gram matrix of the
kernelKµ for the sampleS: [Kµ]i,j = Kµ(xi, xj), for all i, j ∈ [1, m]. The standard KRR dual
optimization algorithm for a fixed kernel matrixKµ is given in terms of the Lagrange multipliers
α ∈ R

m by [16]:
max
α∈Rm

−α
⊤(Kµ + λI)α + 2α

⊤y (5)

The related problem of learning the kernelKµ concomitantly can be formulated as the following
min-max optimization problem [9]:

min
µ∈M

max
α∈Rm

−α
⊤(Kµ + λI)α + 2α

⊤y, (6)

whereM is a positive, bounded, and convex set. The positivity ofµ ensures thatKµ is positive
semi-definite (PSD) and its boundedness forms a regularization controlling the norm ofµ.1 Two
natural choices for the setM are the norm-1 and norm-2 bounded sets,

M1 = {µ | µ � 0 ∧ ‖µ− µ0‖1 ≤ Λ} (7)

M2 = {µ | µ � 0 ∧ ‖µ− µ0‖2 ≤ Λ}. (8)
These definitions include an offset parameterµ0 for the weightsµ. Some natural choices forµ0
are: µ0 = 0, or µ0/‖µ0‖ = 1. Note that here, since the objective function is not linear in µ, the
norm-1-type regularization may not lead to a sparse solution.

3.2 Algorithm Formulation

For learning linear combinations of kernels, a typical technique consists of applying the minimax
theorem to permute themin andmax operators, which can lead to optimization problems com-
putationally more efficient to solve [8, 12]. However, in thenon-linear case we are studying, this
technique is unfortunately not applicable.

Instead, our method for learning non-linear kernels and solving the min-max problem in equation (6)
consists of first directly solving the inner maximization problem. In the case of KRR for any fixed
µ the optimum is given by

α = (Kµ + λI)−1y. (9)
Plugging the optimal expression ofα in the min-max optimization yields the following equivalent
minimization in terms ofµ only:

min
µ∈M

F (µ) = y⊤(Kµ + λI)−1y. (10)

We refer to this optimization as the NKRR problem. Although the original min-max problem has
been reduced to a simpler minimization problem, the function F is not convex in general as illus-
trated by Figure 1. For small values ofµ, concave regions are observed. Thus, standard interior-
point or gradient methods are not guaranteed to be successful at finding a global optimum.

In the following, we give an analysis which shows that under certain conditions it is however possible
to guarantee the convergence of a gradient-descent type algorithm to a global minimum.

Algorithm 1 illustrates a general gradient descent algorithm for the norm-2 bounded setting which
projectsµ back to the feasible setM2 after each gradient step (projecting toM1 is very similar).

1To clarify the difference between similar acronyms, a PDS function corresponds to a PSD matrix [4].

3

0

0.5

1
0

0.5

1

195

200

205

210

µ
2µ

1

F
(µ

1,µ
2)

0

0.5

1 0

0.5

1

20

20.5

21

µ
2µ

1

F
(µ

1,µ
2)

0

0.5

1 0

0.5

1

2.06

2.07

2.08

2.09

µ
2µ

1

F
(µ

1,µ
2)

Figure 1: Example plots forF defined over two linear base kernels generated from the first two
features of the sonar dataset. From left to rightλ = 1, 10, 100. For larger values ofλ it is clear that
there are in fact concave regions of the function near0.

Algorithm 1 Projection-based Gradient Descent Algorithm

Input: µinit ∈M2, η ∈ [0, 1], ǫ > 0, Kk, k ∈ [1, p]
µ

′ ← µinit
repeat

µ← µ
′

µ
′ ← −η∇F (µ) + µ

∀k, µ′
k ← max(0, µ′

k)
normalizeµ′, s.t.‖µ′ − µ0‖ = Λ

until ‖µ′ − µ‖ < ǫ

In Algorithm 1 we have fixed the step sizeη, however this can be adjusted at each iteration via
a line-search. Furthermore, as shown later, the thresholding step that forcesµ′ to be positive is
unnecessary since∇F is never positive.

Note that Algorithm 1 is simpler than the wrapper method proposed by [20]. Because of the closed
form expression (10), we do not alternate between solving for the dual variables and performing a
gradient step in the kernel parameters. We only need to optimize with respect to the kernel parame-
ters.

3.3 Algorithm Properties

We first explicitly calculate the gradient of the objective function for the optimization problem (10).
In what follows,◦ denotes the Hadamard (pointwise) product between matrices.

Proposition 1. For anyk ∈ [1, p], the partial derivative ofF : µ→ y⊤(Kµ +λI)−1y with respect
to µi is given by

∂F

∂µk

= −2α
⊤Ukα, (11)

whereUk =
(∑p

r=1(µrKr) ◦Kk

)
.

Proof. In view of the identity∇M Tr(y⊤M−1y)=−M−1⊤yy⊤M−1⊤, we can write:

∂F

∂µk

=Tr

[
∂y⊤(Kµ + λI)−1y

∂(Kµ + λI)

∂(Kµ + λI)

∂µk

]

=− Tr

[
(Kµ + λI)−1yy⊤(Kµ + λI)−1 ∂(Kµ + λI)

∂µk

]

=− Tr

[
(Kµ + λI)−1yy⊤(Kµ + λI)−1

(
2

p∑

r=1

(µrKr) ◦Kk

)]

=− 2y⊤(Kµ + λI)−1
(p∑

r=1

(µrKr) ◦Kk

)
(Kµ + λI)−1y = −2α

⊤Ukα.

4

Matrix Uk just defined in proposition 1 is always PSD, thus∂F
∂µk
≤0 for all i ∈ [1, p] and∇F ≤0.

As already mentioned, this fact obliterates the thresholding step in Algorithm 1. We now provide
guarantees for convergence to a global optimum. We shall assume thatλ is strictly positive:λ>0.

Proposition 2. Any stationary pointµ⋆ of the functionF : µ → y⊤(Kµ + λI)−1y necessarily
maximizesF :

F (µ⋆) = max
µ

F (µ) =
‖y‖2

λ
. (12)

Proof. In view of the expression of the gradient given by Proposition 1, at any pointµ⋆,

µ
⋆⊤∇F (µ⋆) = α

⊤

p∑

i=1

µ⋆
kUkα = α

⊤Kµ⋆α. (13)

By definition, if µ
⋆ is a stationary point,∇F (µ⋆) = 0, which impliesµ

⋆⊤∇F (µ⋆) = 0. Thus,
α

⊤Kµ⋆α=0, which impliesKµ⋆α=0, that is

Kµ⋆(Kµ⋆ + λI)−1y = 0⇔ (Kµ⋆ + λI− λI)(Kµ⋆ + λI)−1y = 0 (14)

⇔ y − λ(Kµ⋆ + λI)−1y = 0 (15)

⇔ (Kµ⋆ + λI)−1y =
y

λ
. (16)

Thus, for any such stationary pointµ
⋆, F (µ⋆) = y⊤(Kµ⋆ +λI)−1y = y⊤y

λ
, which is clearly a

maximum.

We next show that there cannot be an interior stationary point, and thus any local minimum strictly
within the feasible set, unless the function is constant.

Proposition 3. If any pointµ⋆ > 0 is a stationary point ofF : µ → y⊤(Kµ + λI)−1y, then the
function is necessarily constant.

Proof. Assume thatµ⋆ > 0 is a stationary point, then, by Proposition 2,F (µ⋆) = y⊤(Kµ⋆ +

λI)−1y= y⊤y

λ
, which implies thaty is an eigenvector of(Kµ⋆ +λI)−1 with eigenvalueλ−1. Equiv-

alently,y is an eigenvector ofKµ⋆ + λI with eigenvalueλ, which is equivalent toy ∈ null(Kµ⋆).
Thus,

y⊤Kµ⋆y =

p∑

k,l=1

µkµl

m∑

r,s=1

yrysKk(xr , xs)Kl(xr, xs)

︸ ︷︷ ︸
(∗)

= 0. (17)

Since the product of PDS functions is also PDS, (*) must be non-negative. Furthermore, since by
assumptionµi > 0 for all i ∈ [1, p], it must be the case that the term (*) is equal to zero. Thus,
equation 17 is equal to zero for allµ and the functionF is equal to the constant‖y‖2/λ.

The previous propositions are sufficient to show that the gradient descent algorithm will not become
stuck at a local minimum while searching the interior of a convex setM and, furthermore, they
indicate that the optimum is found at the boundary.

The following proposition gives a necessary and sufficient condition for the convexity ofF on a
convex regionC. If the boundary region defined by‖µ − µ0‖ = Λ is contained in this convex
region, then Algorithm 1 is guaranteed to converge to a global optimum. Letu ∈ R

p represent an
arbitrary direction ofµ in C. We simplify the analysis of convexity in the following derivation by
separating the terms that depend onKµ and those depending onKu, which arise when showing
the positive semi-definiteness of the Hessian, i.e.u⊤∇2Fu � 0. We denote by⊗ the Kronecker
product of two matrices.

Proposition 4. The functionF : µ → y⊤(Kµ +λI)−1y is convex over the convex setC iff the
following condition holds for allµ ∈ C and allu:

〈M,N− 1̃〉F ≥ 0, (18)

5

Data m p lin. base lin.ℓ1 lin. ℓ2 quad. base quad.ℓ1 quad.ℓ2

Parkinsons 194 21 .70± .03 .70± .04 .70± .03 .65± .03 .66± .03 .64± .03
Iono 351 34 .82± .03 .81± .04 .81± .03 .62± .05 .62± .05 .60± .05
Sonar 208 60 .90± .02 .92± .03 .90± .04 .84± .03 .80± .04 .80± .04
Breast 683 9 .70± .02 .71± .02 .70± .02 .70± .02 .70± .01 .70± .01

Table 1: The square-root of the mean squared error is reported for each method and several datasets.

whereM =
(
1⊗ vec(αα

⊤)⊤
)
◦ (Ku ⊗Ku), N = 4

(
1⊗ vec(V)⊤

)
◦ (Kµ ⊗Kµ), and1̃ is the

matrix with zero-one entries constructed to select the terms [M]ijkl wherei = k andj = l, i.e. it is
non-zero only in the(i, j)th coordinate of the(i, j)th m×m block.

Proof. For anyu ∈ R
p the expression of the Hessian ofF at the pointµ ∈ C can be derived from

that of its gradient and shown to be

u⊤(∇2F)u = 4α
⊤(Kµ ◦Ku)V(Kµ ◦Ku)α−α

⊤(Ku ◦Ku)α. (19)
Expanding each term, we obtain:

α
⊤(Kµ ◦Ku)V(Kµ ◦Ku)α =

m∑

i,j=1

αiαj

m∑

k,l=1

[Kµ]ik[Ku]ik[V]kl[Kµ]ik[Kµ]lj (20)

=

m∑

i,j,k,l=1

(αiαj [Ku]ik[Ku]lj)([V]kl[Kµ]ik[Kµ]lj) (21)

andα
⊤(Ku ◦Ku)α =

∑m
i,j=1 αiαj [Ku]ij [Ku]ij . Let 1 ∈ R

m2

define the column vector of all
ones and letvec(A) denote the vectorization of a matrixA by stacking its columns. Let the matrices
M andN be defined as in the statement of the proposition. Then,[M]ijkl = (αiαj [Ku]ik[Ku]lj)

and[N]ijkl = [V]kl[Kµ]ik[Kµ]lj . Then, in view of the definition of̃1, the terms of equation (19)
can be represented with the Frobenius inner product,

u⊤(∇2F)u = 〈M,N〉F − 〈M, 1̃〉F = 〈M,N− 1̃〉F .

For anyµ ∈ R
p, let Kµ =

∑
i µiKi and letV = (Kµ + λI)−1. We now show that the condition

of Proposition 4 is satisfied for convex regions for whichΛ, and thereforeµ, is sufficiently large, in
the case whereKu andKµ are diagonal. In that case,M, N andV are diagonal as well and the
condition of Proposition 4 can be rewritten as follows:

∑

i,j

[Ku]ii[Ku]jjαiαj(4[Kµ]ii[Kµ]jjVij − 1i=j) ≥ 0. (22)

Using the fact thatV is diagonal, this inequality we can be further simplified
m∑

i=1

[Ku]2ii α2
i (4[Kµ]2iiVii − 1) ≥ 0. (23)

A sufficient condition for this inequality to hold is that each term(4[Kµ]2iiVii−1) be non-negative,

or equivalently that4K2
µ
V− I � 0, that isKµ �

√
λ
3 I. Therefore, it suffices to selectµ such that

mini

∑p
k=1 µk[Kk]ii ≥

√
λ/3.

4 Empirical Results

To test the advantage of learning non-linear kernel combinations, we carried out a number of ex-
periments on publicly available datasets. The datasets arechosen to demonstrate the effectiveness
of the algorithm under a number of conditions. For general performance improvement, we chose a
number of UCI datasets frequently used in kernel learning experiments, e.g., [7,12,15]. For learning
with thousands of kernels, we chose the sentiment analysis dataset of Blitzer et. al [5]. Finally, for
learning with higher-order polynomials, we selected datasets with large number of examples such as
kin-8nmfrom the Delve repository. The experiments were run on a 2.33GHz Intel Xeon Processor
with 2GB of RAM.

6

0 1000 2000 3000 4000
1.4

1.45

1.5

1.55

1.6

1.65

1.7
Kitchen

R
M

S
E

bigrams

L2 reg. Baseline L1 reg.

0 1000 2000 3000 4000 5000
1.4

1.45

1.5

1.55

1.6

1.65

1.7
Electronics

R
M

S
E

bigrams

L2 reg. Baseline L1 reg.

Figure 2: The performance of baseline and learned quadratickernels (plus or minus one standard
deviation) versus the number of bigrams (and kernels) used.

4.1 UCI Datasets

We first analyzed the performance of the kernels learned as quadratic combinations. For each
dataset, features were scaled to lie in the interval[0, 1]. Then, both labels and features were centered.
In the case of classification dataset, the labels were set to±1 and the RMSE was reported. We as-
sociated a base kernel to each feature, which computes the product of this feature between different
examples. We compared both linear and quadratic combinations, each with a baseline (uniform),
norm-1-regularized and norm-2-regularized weighting usingµ0 =1 corresponding to the weights of
the baseline kernel. The parametersλ andΛ were selected via 10-fold cross validation and the error
reported was based on 30 random 50/50 splits of the entire dataset into training and test sets. For the
gradient descent algorithm, we started withη = 1 and reduced it by a factor of0.8 if the step was
found to be too large, i.e., the difference‖µ′ − µ‖ increased. Convergence was typically obtained
in less than 25 steps, each requiring a fraction of a second (∼ 0.05 seconds).

The results, which are presented in Table 1, are in line with previous ones reported for learning
kernels on these datasets [7,8,12,15]. They indicate that learning quadratic combination kernels can
sometimes offer improvements and that it clearly does not degrade with respect to the performance
of the baseline kernel. The learned quadratic combination performs well, particularly on tasks where
the number of features was large compared to the number of points. This suggests that the learned
kernel is better regularized than the plain quadratic kernel and can be advantageous is scenarios
where over-fitting is an issue.

4.2 Text Based Dataset

We next analyzed a text-based task where features are frequent word n-grams. Each base kernel
computes the product between the counts of a particularn-gram for the given pair of points. Such
kernels have a direct connection to count-based rational kernels, as described in [8]. We used the
sentiment analysis dataset of Blitzer et. al [5]. This dataset contains text-based user reviews found
for products onamazon.com. Each text review is associated with a 0-5 star rating. The product re-
views fall into two categories: electronics and kitchen-wares, each with 2,000 data-points. The data
was not centered in this case since we wished to preserve the sparsity, which offers the advantage of
significantly more efficient computations. A constant feature was included to act as an offset.

For each domain, the parametersλ andΛ were chosen via 10-fold cross validation on 1,000 points.
Once these parameters were fixed, the performance of each algorithm was evaluated using 20 ran-
dom50/50 splits of the entire 2,000 points into training and test sets. We used the performance of
the uniformly weighted quadratic combination kernel as a baseline, and showed the improvement
when learning the kernel with norm-1 or norm-2 regularization usingµ0 = 1 corresponding to the
weights of the baseline kernel. As shown by Figure 2, the learned kernels significantly improved
over the baseline quadratic kernel in both the kitchen and electronics categories. For this case too,
the number of features was large in comparison with the number of points. Using 900 training points
and about 3,600 bigrams, and thus kernels, each iteration ofthe algorithm took approximately 25

7

0 20 40 60 80 100

0.10

0.15

0.20

0.25

Training data subsampling factor
M

S
E

KRR, with (dashed) and without (solid) learning

1st degree
2nd degree
3rd degree
4th degree

Figure 3: Performance on thekin-8nmdataset. For all polynomials, we compared un-weighted,
standard KRR (solid lines) with norm-2 regularized kernel learning (dashed lines). For 4th degree
polynomials we observed a clear performance improvement, especially for medium amount of train-
ing data (subsampling factor of 10-50). Standard deviations were typically in the order0.005, so the
results were statistically significant.

seconds to compute with our Matlab implementation. When using norm-2 regularization, the algo-
rithm generally converges in under 30 iterations, while thenorm-1 regularization requires an even
fewer number of iterations, typically less than 5.

4.3 Higher-order Polynomials

We finally investigated the performance of higher-order non-linear combinations. For these exper-
iments, we used thekin-8nmdataset from the Delve repository. This dataset has 20,000 examples
with 8 input features. Here too, we used polynomial kernels over the features, but this time we
experimented with polynomials with degrees as high as 4. Again, we made the assumption that all
coefficients ofµ are in the form of products ofµis (see Section 2), thus only 8 kernel parameters
needed to be estimated.

We split the data into 10,000 examples for training and 10,000 examples for testing, and, to inves-
tigate the effect of the sample size on learning kernels, subsampled the training data so that only a
fraction from 1 to 100 was used. The parametersλ andΛ were determined by 10-fold cross vali-
dation on the training data, and results are reported on the test data, see Figure 3. We used norm-2
regularization withµ0 =1 and compare our results with those of uniformly weighted KRR.

For lower degree polynomials, the performance was essentially the same, but for 4th degree poly-
nomials we observed a significant performance improvement of learning kernels over the uniformly
weighted KRR, especially for a medium amount of training data (subsampling factor of 10-50). For
the sake of readability, the standard deviations are not indicated in the plot. They were typically in
the order of 0.005, so the results were statistically significant. This result corroborates the finding
on the UCI dataset, that learning kernels is better regularized than plain unweighted KRR and can
be advantageous is scenarios where overfitting is an issue.

5 Conclusion

We presented an analysis of the problem of learning polynomial combinations of kernels in regres-
sion. This extends learning kernel ideas and helps explore kernel combinations leading to better
performance. We proved that the global solution of the optimization problem always lies on the
boundary and gave a simple projection-based gradient descent algorithm shown empirically to con-
verge in few iterations. We also gave a necessary and sufficient condition for that algorithm to
converge to a global optimum. Finally, we reported the results of several experiments on publicly
available datasets demonstrating the benefits of learning polynomial combinations of kernels. We are
well aware that this constitutes only a preliminary study and that a better analysis of the optimization
problem and solution should be further investigated. We hope that the performance improvements
reported will further motivate such analyses.

8

References

[1] A. Argyriou, R. Hauser, C. Micchelli, and M. Pontil. A DC-programming algorithm for kernel
selection. InInternational Conference on Machine Learning, 2006.

[2] A. Argyriou, C. Micchelli, and M. Pontil. Learning convex combinations of continuously
parameterized basic kernels. InConference on Learning Theory, 2005.

[3] F. Bach. Exploring large feature spaces with hierarchical multiple kernel learning. InAdvances
in Neural Information Processing Systems, 2008.

[4] C. Berg, J. P. R. Christensen, and P. Ressel.Harmonic Analysis on Semigroups. Springer-
Verlag: Berlin-New York, 1984.

[5] J. Blitzer, M. Dredze, and F. Pereira. Biographies, Bollywood, Boom-boxes and Blenders: Do-
main Adaptation for Sentiment Classification. InAssociation for Computational Linguistics,
2007.

[6] B. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin classifiers. In
Conference on Learning Theory, 1992.

[7] O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for
support vector machines.Machine Learning, 46(1-3), 2002.

[8] C. Cortes, M. Mohri, and A. Rostamizadeh. Learning sequence kernels. InMachine Learning
for Signal Processing, 2008.

[9] C. Cortes, M. Mohri, and A. Rostamizadeh.L2 regularization for learning kernels. InUncer-
tainty in Artificial Intelligence, 2009.

[10] C. Cortes and V. Vapnik. Support-Vector Networks.Machine Learning, 20(3), 1995.

[11] T. Jebara. Multi-task feature and kernel selection forSVMs. In International Conference on
Machine Learning, 2004.

[12] G. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. Jordan. Learning the kernel
matrix with semidefinite programming.Journal of Machine Learning Research, 5, 2004.

[13] C. Micchelli and M. Pontil. Learning the kernel function via regularization.Journal of Machine
Learning Research, 6, 2005.

[14] C. S. Ong, A. Smola, and R. Williamson. Learning the kernel with hyperkernels.Journal of
Machine Learning Research, 6, 2005.

[15] A. Rakotomamonjy, F. Bach, Y. Grandvalet, and S. Canu. Simplemkl. Journal of Machine
Learning Research, 9, 2008.

[16] C. Saunders, A. Gammerman, and V. Vovk. Ridge Regression Learning Algorithm in Dual
Variables. InInternational Conference on Machine Learning, 1998.

[17] B. Schölkopf and A. Smola.Learning with Kernels. MIT Press: Cambridge, MA, 2002.

[18] B. Scholkopf, A. Smola, and K. Muller. Nonlinear component analysis as a kernel eigenvalue
problem.Neural computation, 10(5), 1998.

[19] J. Shawe-Taylor and N. Cristianini.Kernel Methods for Pattern Analysis. Cambridge Univer-
sity Press, 2004.

[20] S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf. Large scale multiple kernel learning.
Journal of Machine Learning Research, 7, 2006.

[21] N. Srebro and S. Ben-David. Learning bounds for supportvector machines with learned ker-
nels. InConference on Learning Theory, 2006.

[22] V. N. Vapnik. Statistical Learning Theory. Wiley-Interscience, New York, 1998.

[23] M. Varma and B. R. Babu. More generality in efficient multiple kernel learning. InInterna-
tional Conference on Machine Learning, 2009.

9

