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Abstract

We propose a novel information theoretic approach for samkrvised learning
of conditional random fields that defines a training objectiv combine the con-
ditional likelihood on labeled data and the mutual inforimaton unlabeled data.
In contrast to previous minimum conditional entropy seopeyvised discrimi-
native learning methods, our approach is grounded on a notick feundation,

the rate distortion theory in information theory. We analytze tractability of the
framework for structured prediction and present a convergariational train-

ing algorithm to defy the combinatorial explosion of termgtie sum over label
configurations. Our experimental results show the ratedish approach outper-
forms standard, regularization, minimum conditional entropy regulariaatas

well as maximum conditional entropy regularization on bthiti-class classifi-
cation and sequence labeling problems.

1 Introduction

In most real-world machine learning problems (e.g., foit,téxage, audio, biological sequence
data), unannotated data is abundant and can be collectéui@dtano cost. However, supervised
machine learning techniques require large quantities tf da manually labeled so that automatic
learning algorithms can build sophisticated models. Unfoately, manual annotation of a large
guantity of data is both expensive and time-consuming. Hadlenge is to find ways to exploit the
large quantity of unlabeled data and turn it into a resouneé ¢an improve the performance of su-
pervised machine learning algorithms. Meeting this clngiéerequires research at the cutting edge
of automatic learning techniques, useful in many fields sisckanguage and speech technology, im-
age processing and computer vision, robot control and tainimatics. A surge of semi-supervised
learning research activities has occurred in recent yeats\ise various effective semi-supervised
training schemes. Most of these semi-supervised learigayithms are applicable only to multi-
class classification problems [1, 10, 32], with very few gtammns that develop discriminative mod-
els suitable for structured prediction [2, 9, 16, 20, 21, 22]

In this paper, we propose an information theoretic apprdeckemi-supervised learning of condi-
tional random fields (CRFs) [19], where we use the mutuakimédgion between the empirical distri-
bution of unlabeled data and the discriminative model aga&dependent regularized prior. Grand-
valet and Bengio [15] and Jiao et al. [16] have proposed daimiformation theoretic approach that
used the conditional entropy of their discriminative madeh unlabeled data as a data-dependent
regularization term to obtain very encouraging result@iiMum entropy approach can be explained
from data-smoothness assumption and is motivated from-sep@rvised classification, using unla-
beled data to enhance classification; however, its degeneraven more problematic and arguable
by noting minimum entropy O can be achieved by putting all sn@s one label and zeros for the
rest of labels. As far as we know, there is no formal prindmeplanation for the validity of this
minimum conditional entropy approach. Instead, our apgtazn be naturally cast into the rate

*These authors contributed equally to this work.



distortion theory framework which is well-known in infortii@n theory [14]. The closest work to
ours is the one by Corduneanu et al. [11, 12, 13, 28]. Both svark discriminative models and
do indeed use mutual information concepts. There are twomuigtinctions between our work
and theirs. First, their approach is essentially motivditeth semi-supervised classification point
of view and formulated as a communication game, while our@ggh is based on a completely
different motivation, semi-supervised clustering thatsmbeled data to enhance clustering and is
formulated as a data compression scheme, thus leads to al&bion distinctive from Corduneanu
et al. Second, their model is non-parametric, whereas sgarametric. As a result, their model can
be trained by optimizing a convex objective function thrioagvariant of Blahut-Arimoto alternating
minimization algorithm, whereas our model is more compled the objective function becomes
non-convex. In particular, training a simple chain stroetbCRF model [19] in our framework turns
out to be intractable even if using Blahut-Arimoto’s typeatternating minimization algorithm. We
develop a convergent variational approach to approximatelve this problem. Another relevant
work is the information bottleneck (IB) method introduced Tishby et al [30]. 1B method is an
information-theoretic framework for extracting relevar@mponents of an input random variable
X, with respect to an output random variabife Instead of directly compressing to its repre-
sentationY” subject to an expected distortion through a parametricghitistic mapping like our
proposed approach, IB method is performed by finding a tliothpressed, non-parametric and
model-independent representatibrof X that is most informative abodt. Formally speaking, the
notion of compression is quantified by the mutual informatietweeri” and X while the informa-
tiveness is quantified by the mutual information betw&eandY . The solutions are characterized
by the bottleneck equations and can be found by a convergesdtimation method that general-
izes the Blahut-Arimoto algorithm. Finally in contrast tarapproach which minimizes both the
negative conditional likelihood on labeled data and theualihformation between the hidden vari-
ables and the observations on unlabeled data fis@iminativemodel, Oliver and Garg [24] have
proposed maximum mutual information hidden Markov mod®8I(HMM) of semi-supervised
training for chain structured graph. The objective is to immaxe both the joint likelihood on labeled
data and the mutual information between the hidden vasadie the observations on unlabeled data
for agenerativanodel. It is equivalent to minimizing conditional entropfyeogenerative HMM for
the part of unlabeled data. The maximum mutual informatioa generative HMM was originally
proposed by Bahl et al. [4] and popularized in speech retiogntommunity [23], but it is differ-
ent from Oliver and Garg’s approach in that an individual HNBVearned for each possible class
(e.g., one HMM for each word string), and the point-wise nalifnformation between the choice
of HMM and the observation sequence is maximized. It is eaiwt to maximizing the conditional
likelihood of a word string given observation sequence tprione the discrimination across differ-
ent models [18]. Thus in essence, Bahl et al. [4] proposedcridiinative learning algorithm for
generative HMMs of training utterances in speech recagmiti

In the following, we first motivate our rate distortion appoh for semi-supervised CRFs as a data
compression scheme and formulate the semi-supervisedrggraradigm as a classic rate distortion
problem. We then analyze the tractability of the framewankdtructured prediction and present a
convergent variational learning algorithm to defy the camaborial explosion of terms in the sum
over label configurations. Finally we demonstrate encdongagsults with two real-world problems
to show the effectiveness of the proposed approach: teagjogration as a multi-class classification
problem and hand-written character recognition as a s@guabeling problem. Similar ideas have
been successfully applied to semi-supervised boosting [31

2 Ratedistortion formulation

Let X be a random variable over data sequences to be labeledy doel a random variable
over corresponding label sequences. All componeritspf Y are assumed to range over a fi-

nite label alphabed. Given a set of labeled exampleB! = {(X(l),y(l)), e ,(X(N),y(N))},
and unlabeled example* = {x(N“),m ,x(M)}, we would like to build a CRF model

po(ylx) = #(x)exp ((0,f(x,y)>) over sequential input data, wheref = (61, ---,0x)",

fy) = (hxy), -, fr(x,y) ", andZy(x) = 3, exp ((0,f(x,y)>>. Our goal is to learn

such a model from the combined set of labeled and unlabelashges, D! U D“. For notational
convenience, we assume that there are no identical exampR¥sandD*.



The standard supervised training procedure for CRFs isdh@seninimizing the negative log con-
ditional likelihood of the labeled examplesIPf

Z log pe(y )+ AU(0) 1)

whereU () can be any standard regularizer éne.g. U(#) = ||0||?>/2 and X is a parameter that
controls the influence di(¢). Regularization can alleviate over-fitting on rare feaguaad avoid
degeneracy in the case of correlated features.

Obviously, Eq. (1) ignores the unlabeled example®in To make full use of the available training
data, Grandvalet and Bengio [15] and Jiao et al. [16] prop@seemi-supervised learning algo-
rithm that exploits a form ofminimum conditional entropy regularizatioon the unlabeled data.
Specifically, they proposed to minimize the following olijee

N M
RLmince(0) = =Y logpo(y " x) + AU (0) =7 Y~ > pelylx")logpe(y[x") )
i=1 j=N+1 y

where the first term is the negative log conditional liketid®f the labeled data, and the third term
is the conditional entropy of the CRF model on the unlabebtd.dThe tradeoff parametexsaand-~
control the influences d¥ (¢) and the unlabeled data, respectively.

This is equivalent to minimizing the following objective ifv different values of\ and~)

RLuucs(8) = D(5i(x,¥), u()po(yix)) + AU(0) +7 Y- pu(x)H (po(y[)) @)
xeDv
where D(ﬁz(X,Y)ﬁl(X)pe(Y\X)) = Y (xy)ep Pi(x,y)log %, H(pe()’|x)) =

>y Po(y[x)log pe(y|x). Here we usg(x,y) to denote the empirical distribution of bot and

Y on labeled dat®', j;(x) to denote the empirical distribution &f on labeled dat®', andp,, (x)
to denote the emplncal distribution &f on unlabeled dat®".

In this paper, we propose an alternative approach for sapessised CRFs. Rather than using
minimum conditional entropy as a regularization term orabeled data, we usainimum mutual
informationon unlabeled data. This approach has a nice and strong iafaamtheoretic interpre-
tation by rate distortion theory.

We define the marginal distributign (y) of our discriminative model on unlabeled dd to be
Po(y) = D xepw Pu(X)po(y|x) Over the input data. Then the mutual information between the
empirical distributions(x) and the discriminative model is

1(u(x),po(ylx)) = 3 " pux)p(ylx) log (w) H(po(y)) = 3 5u(x)H (po(ylx))

ot Pu(x)pe(y) o=t

whereH (po(y)) = = Xy Leps 5u(X)po(y[x)10g (S ecpe Bulx)po(ylx)) is the entropy of
the labelY on unlabeled data. Thus in rate distortion terminology, éhwirical distribution of
unlabeled dat@, (x) corresponds to input distribution, the mogg(y|x) corresponds to the prob-
abilistic mapping fromX to Y, andpy(y) corresponds to the output distribution6f

Our proposed rate distortion approach for semi-superviSBés optimizes the following con-
strained optimization problem,

min 1(5.(),po(yx)) st. D(5(x¥),mi(po(ylx)) + AU (0) < d 4)

The rationale for this formulation can be seen from an infation-theoretic perspective using the
rate distortion theory [14]. Assume we have a soutceith a source distributiop(x) and its com-

pressed representatidhthrough a probabilistic mapping (y|x). If there is a large set of features
(infinite in the extreme case), this probabilistic mappinghbe too redundant. We'd better look
for its minimum description. What determines the quality leé tompression is the information
rate, i.e. the average number of bits per message needeédifysgn element in the representation
without confusion. According to the standard asymptotguarents [14], this quantity is bounded

below by the mutual infOI’matiOIﬁ(p(X),pg(y|X)) since the average cardinality of the partition-
ing of X is given by the ratio of the volume oX to the average volume of the elementsof



that are mapped to the same representatidhroughpy (y|x), 21(X) /2H(XIY) — oI(X.Y)  Thus
mutual information is the minimum information rate and i®dss a good metric for clustering
[26, 27]. True distribution ofX should be used to compute the mutual information. Since it is
unknown, we use its empirical distribution on unlabeledads#tD" and the mutual information

I(ﬁu(x),pg(y|x)) instead. However, information rate alone is not enough tradterize good

representation since the rate can always be reduced byitty@way many features in the prob-
abilistic mapping. This makes the mapping likely too simaiel leads to distortion. Therefore
we need an additional constraint provided through a distorfiunction which is presumed to be
small for good representations. Apparently there is a tHdeetween minimum representation
and maximum distortion. Since joint distribution gives tlistribution for the pair ofX and its

representation”, we choose the log likelihood ratityg % plus a regularized complexity

term of 0, A\U(0), as the distortion function. Thus the expected distort®thé non-negative term
D (p(x, ¥), p(X)pg(y|x)) + AU (6). Again true distributiong(x, y) andp(x) should be used here,

but they are unknown. In semi-supervised setting, we hdweléd data available which provides
valuable information to measure the distortion: we use thgigcal distributions on labeled data set

D! and the expected distortian (p'l (x,¥), P1(xX)po (y|x)) + AU (0) instead to encode the informa-

tion provided by labeled data, and add a distortion congtvee should respect for data compression
to help the clustering. There is a monotonic tradeoff betwtbe rate of the compression and the
expected distortion: the larger the rate, the smaller isatttéevable distortion. Given a distortion

measure betweeX andY on the labeled data s@&', what is the minimum rate description re-

quired to achieve a particular distortion on the unlabelet detD“? The answer can be obtained

by solving (4).

Following standard procedure, we convert the constraimpgidnzation problem (4) into an uncon-
strained optimization problem which minimizes the follogiobjective:

RLy(0) = 1(5.(),po (y1)) + (D (u(x,y). pu(x)po(ylx) ) + AU (0)) (5)
wherex > 0, which again is equivalent to minimizing the following objwe (withy = %)1:
RL\i(0) = D(ﬁz (x,¥), Bi(x)po (yIX)) + AU (0) +~TI (ﬁu(X),pe(YIX)) (6)

If (4) is a convex optimization problem, then for every smatd to Eq. (4) found using some
particular value ofi, there is some corresponding valueyoin the optimization problem (6) that
will give the sam@). Thus, these are two equivalent re-parameterizationseagdime problem. The
equivalence between the two problems can be verified usingegaanalysis [8] by noting that the
Lagrangian for the constrained optimization (4) is exattilyobjective in the optimization (5) (plus
a constant that does not depend®nwherex is the Lagrange multiplier. Thus, (4) can be solved
by solving either (5) or (6) for an appropriateor . Unfortunately (4) is not a convex optimization

problem, because its objectiﬁ{ﬁu(x), Do (y|x)> is not convex. This can be verified using the same
argument as in the minimum conditional entropy regulaideatase [15, 16]. There may be some
minima of (4) that do not minimize (5) or (6) whatever the \&abf x or v may be. This is however

not essential to motivate the optimization criterion. Maver there are generally local minima in
(5) or (6) due to the non-convexity of its mutual informati@gularization term.

Another training method for semi-supervised CRFs ismfaximum entropgpproach, maximizing
conditional entropy (minimizing negative conditional ety) over unlabeled daf®“ subject to the
constraint on labeled dafa’,

min (- > Bu(OH (poy1x))) st D(B(x,y), 5 (Xpo(ylx)) +AU@O) <d (7)

again following standard procedure, we convert the coms&daoptimization problem (7) into an
unconstrained optimization problem which minimizes théofeing objective:

RLmuxcr(0) = D(5u(x,y), 51 (00po(y1x) ) + AU(©0) =7 >~ u(x)H (po(ylx)) ®)

xeDuv

'For the part of unlabeled data, the MMIHMM algorithm [24] maximizes mutirdormation,
I(pu(x), pe(x]y)), of a generative models (x|y) instead, which is equivalent to minimizing conditional en-
tropy of a generative modeb (z|y), sincel (p.(x), pe(x|y)) = H(pu(x)) — H(po(x|y)) and H (p.(x)) is
a constant.



Again minimizing (8) is not exactly equivalent to (7); hovegyit is not essential to motivate the
optimization criterion. When comparing maximum entropy raggh with minimum conditional
entropy approach, there is only a sign change on conditemabpy term.

For non-parametric models, using the analysis developgs B 7, 25], it can be shown that maxi-
mum conditional entropy approach is equivalent to rateodisin approach when we compress code
vectors in a mass constrained scheme [25]. But for parameioidels such as CRFs, these three
approaches are completely distinct.

The difference between our rate distortion approach foi-seipervised CRFs (6) and the minimum
conditional entropy regularized semi-supervised CRF&(2pt only on the different sign of condi-
tional entropy on unlabeled data but also the additionahtelentropy ofpg(y) on unlabeled data.
It is this term that makes direct computation of the derixeatf the objective for the rate distortion
approach for semi-supervised CRFs intractable. To see whyake derivative of this term with
respect td@, we have:

%(—H(pe(y») = D hu(x)D pelyx)f(xy 10g( > pu(x)ps Y|X)
xeD™ y xEDU
=3 Al Y mlvbtos (3 uGom(yb) Y mely b s6x,v)

In the case of structured prediction, the number of sums Bvisrexponential, and there is a sum
inside thelog. These make the computation of the derivative intractabés dor a simple chain
structured CRF.

An alternative way to solve (6) is to use the famous algoriftbnthe computation of the rate distor-
tion function established by Blahut [6] and Arimoto [3]. @aneanu and Jaakkola [12, 13] proposed
a distributed propagation algorithm, a variant of Blahuirfoto algorithm, to solve their problem.
However as illustrated in the following, this approach i sttractable for structured prediction in
our case.
By extending a lemma for computing rate distortion in [14prametric models, we can rewrite
the minimization problem (5) of mutual information regudd semi-supervised CRFs as a double
minimization,

minmin ¢g(0,7(y)) where

0 r(y)

00,70 = 3 Y syl los Y i (D (i, y) ux)po (v o) + AU (6))

e 5 r(y)

We can use an alternating minimization algorithm to find aleainimum of RL,;(0). First, we
assign the initial CRF model to be the optimal solution of shpervised CRF on labeled data and

denote it agy ) (y|x). Then we define(®) (y) and in generat® (y) for ¢ > 1 by
rOy) = > puX)pen (yx) 9)

zeDU

In order to define, ) (y|x) and in genergb,, (y|x), we need to find thgy (y|x) which minimizes
g for a givenr(y). The gradient ofy(0, r(y)) with respect td is

M

%gw,vm) =3 =) (COVpg(y|x<f>>[f(X(i)J)]@ —Zpe<y|x“>>f<x“‘>,y> log r(y) (10)

i=N+1

+>  po(yx™) logr(y Zpeylx )) (11)

N
_m;ﬁl(x(i)) <f(x(i)7y(i>) _ zy:PG(yx<i))f(X(i),y)) n KA%U(@) (12)

Even though the first term in Eq. (10) and (12) can be efficiecdimputed via recursive formu-
las [16], we run into the same intractable problem to comth#esecond term Eq. (10) and Eq. 11)
since the number of sums ov&r is exponential and implicitly there is a sum inside the due

to r(y). This makes the computation of the derivative in the altémgaminimization algorithm
intractable.



3 A variational training procedure

In this section, we derive a convergent variational alg¢onitto train rate distortion based semi-
supervised CRFs for sequence labeling. The basic idea oErityrbased variational inference is

to make use of Jensen’s inequality to obtain an adjustalperupound on the objective function

[17]. Essentially, one considers a family of upper boundexed by a set of variational parameters.
The variational parameters are chosen by an optimizatiocegpiure that attempts to find the tightest
possible upper bound.

Following Jordan et al. [17], we begin by introducing a vAoaal distributiong(z) to bound
H (po(y)) using Jensen’s inequality as the following,

H(poly)) = =) Z Pu(x)pe(y|x) log < 3 Pu(x y|x)q(x))
= ~u(x(l>) ( |x<l))

Thus the desideratum of finding a tight upper boundréfy;;(0) in Eq. (6) translates directly into
the following alternative optimization problem:

0%,q") = 1191'1n U@, q) where
»q
UuBb,q) =

N
fZﬁz(x(”)lnge(y“)\x +AU(0 ’YZ Zp xNgx") " po(yx) log pe(yx ") (13)

j=N+411=N+1 y
M . Pu(xD) M v v .
— Z Pl (J) Z q(x( )) log W + Z Zﬁu (X(J))pg (y|x(1)) log po (y|X(J)) (14)
J=N+1 I=N—+1 q J=N+1 y

Minimizing U with respect ta; has a closed form solution,
Bu(x D) exp (S 41 Xy Bu(x P )po(yIx) log po(y[x))
SAL u(x®) exp (L1 Xy u(x0))pa(y|x) log pa(y[x(®))

It can be shown that

a(xV) = vx® ep" (15)

U0,q) > RLwa(0) + Z z Du(x)po(y|x) Z D( N x|y)) 0 (16)
y xeDv xeDv
wheregy(x|y) = —2x0Jpey) vy ¢ pv. Thusy/ is bounded below, the alternative mini-

X K . erpu pu(x)-pg (y‘x)
mization algorithm monotonically decreagésnd converges.

In order to calculate the derivative &f with respect t&, we just need to notice that the first term
in Eq. (13) is the log-likelihood in CRF, and the first term ig.E14) is a constant and second term
in Eq. (14) is the conditional entropy in [16]. They all candféciently computed [16, 21]. In the
following, we show how to compute the derivative of the lasht in Eq.(13) using an idea similar
to that proposed in [21]. Without loss of generality, we assiall the unlabeled data are of equal
lengths in the sequence labeling case. We will describe bdwandle the case of unequal lengths in
Sec. 4.

If we define A(y, xﬂ xW) =37 pe(ylxU))log po(y[x)) in (13) for a fixed (j,1) pair,

where we assume() and x() form two linear-chain graphs of equal lengths, we can calcu-

late the derivative ofd(y,x), x() with respect to the:-th paramete#),,, where all the terms
can be computed through standard dynamic programming itgeds in CRFs except one term

>y po(y|xU)) log po(y[xV) fe(x7),y). Nevertheless similar to [21], we compute this term as
follows [21]: we first definepairwise subsequence constrained entropy(x), x(!)) (as suppose
to thesubsequence constrained entra@fined in [21]) as:

@) %Oy =

ch'rl(yf(a..b)|ya“b7x y ())

Z P0(Y—(ar.t)|Ya.b, 7)) 10g DO (Y —(a..5) [Ya..br T

Y—(a..b)



wherey_ (.4 Is the label sequence with its subsequenge fixed. If we haveH?, for all (a,b),

then the termd_ py (y|x7)) log po (y[x") £ (x1), y) can be easily computed. Using the indepen-
dence property of linear-chain CRF, we have the following:

Z P0(Y—(a..b)s Ya.o| X)) 10g Do (¥ —(a..6) Ya..b|x")
Y_(a..b)

= Po(Ya..s|x9) 10g po (Ya. 5|x) + po(Ya..o X VHS (Y1 (a—1)|ya, x7), x1)
+po (yab'X(J))H]ﬁl (y(b+1)..n‘yb7 X(j)7 X(l))

Given H(-) ande[’;(-), any sequence entropy can be computed in constant time@2hhputing
H£(+) can be done using the following dynamic programming [21]:
Hii(yrilyirn, x7,x®) =3 " pa(yilyir, ) log po (yiyiss, x)

Yi

+ Zpe(yv:|y1:+17 <N HS (v - nlyi, x9, x1)

Yi

The base case for the dynamic programming/j$(0|y:,x\),x(1)) = 0. All the probabilities (i.e.,

po(vilyir1,%7)) needed in the above formula can be obtained using beliefagmion.Hjﬂl(-) can
be similarly computed using dynamic programming.

4 Experiments

We compare our rate distortion approach for semi-supeteaning with one of the state-of-the-art
semi-supervised learning algorithms, minimum conditi@mropy approach and maximum condi-
tional entropy approach on two real-world problems: texégarization and hand-written character
recognition. The purpose of the first task is to show the &ffecess of rate distortion approach
over minimum and maximum conditional entropy approachesnaiio approximation is needed in
training. In the second task, a variational method has todeel o train semi-supervised chain
structured CRFs. We demonstrate the effectiveness of thalistortion approach over minimum
and maximum conditional entropy approaches even when axéppation is used during training.

4.1 Text categorization

We select different class pairs from the 20 newsgroup detaseconstruct our binary classification
problems. The chosen classes are similar to each other aadh#ind for classification algorithms.
We use Porter stemmer to reduce the morphological word fofffos each label, we rank words
based on their mutual information with that label (whethg@rédicts label 1 or 0). Then we choose
the top 100 words as our features. For each problem, we dé&gebf the training data, almost 150
instances, as the labeled training data and select thealathdata from the remaining data. The
validation set (for setting the free parameters, e\gand~) contains 100 instances. The test set
contains about 700 instances. We vary the ratio betweemtloeiiat of unlabeled and labeled data,
repeat the experiments ten times with different randomlgcsed labeled and unlabeled training
data, and report the mean and standard deviation overetifféiials. For each run, we initialize the
model parameter for mutual information (MI) regularizatiand maximum/minimum conditional
entropy (CE) regularization using the parameter learnenh fal,-regularized logistic regression
classifier. Figure 1 shows the classification accuraciebedd four regularization methods versus
the ratio between the amount of unlabeled and labeled dadéferent classification problems. We
can see that mutual information regularization outperfothe other three regularization schemes.
In most cases, maximum CE regularization outperforms mininCE regularization and the base-
line (logistic regression witli; regularization) which uses only the labeled data. Althotlgg
randomly selected labeled instances are different foeufit experiments, we should not see a sig-
nificant difference in the performance of the learned mobteaked on the baseline; since for each
particular ratio of labeled and unlabeled data, the peréorre is averaged over ten runs. We suspect
the reason for the performance differences of the baseatiekels in Figure 1 is due to our feature
selection phase.

2http://people.csail.mit.edu/jrennie/20Newsgroups.
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Figure 1. Results on five different binary classification problems in text categorizdteft to right):
comp.os.ms-windows.misc vs comp.sys.mac.hardware; tes.as rec.motorcycles; rec.sport.baseball vs
rec.sport.hockey; talk.politics.guns vs talk.politics.misc; sci.ele@igovs sci.med.
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Figure 2:Results on hand-written character recognition: (left) sequence labelight] multi-class classifi-
cation.

4.2 Hand-written character recognition

Our dataset for hand-written character recognition costa6000 handwritten words with average
length of~8 characters. Each word was divided into characters, earlacter is resized to¥ x 8
binary image. We choose600 words as labeled dataf00 words as validation dat&a,2000 words
as test data. Similar to text categorization, we vary thie tagtween the amount of unlabeled and
labeled data, and report the mean and standard deviatioiassHification accuracies over several
trials.

We use a chain structured graph to model hand-written ctearsscognition as a sequence labeling
problem, similar to [29]. Since the unlabeled data may hafferdnt lengths, we modify the mu-
tual information ad = )", I,, wherel, is the mutual information computed on all the unlabeled
data with lengtlY. We compare our approach (Ml) with other regularizationaXimum/minimum
conditional entropy/s). The results are shown in Fig. 2 (left). As a sanity check,haee also
tried solving hand-written character recognition as a iwaldtss classification problem, i.e. without
considering the correlation between adjacent charaateasniord. The results are shown in Fig. 2
(right). We can see that Ml regularization outperforms max@inCE and; regularizations in
both multi-class and sequence labeling cases. There arificagt gains in the structured learning
compared with the standard multi-class classificatiorirgett

5 Conclusion and future work

We have presented a new semi-supervised discriminativaitepalgorithm to train CRFs. The
proposed approach is motivated by the rate distortion freariein information theory and utilizes
the mutual information on the unlabeled data as a regulaizéaerm, to be more precise a data
dependent prior. Even though a variational approximatesth be used during training process for
even a simple chain structured graph, our experimentaltseshiow that our proposed rate distortion
approach outperforms supervised CRFs Witregularization and a state-of-the-art semi-supervised
minimum conditional entropy approach as well as semi-stped maximum conditional entropy
approach in both multi-class classification and sequertoelifey problems. As future work, we
would like to apply this approach to other graph structudesielop more efficient learning algo-
rithms and illuminate how reducing the information ratepgsejeneralization.
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