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Abstract

While many advances have already been made in hierarchassification learn-
ing, we take a step back and examine how a hierarchical fitaggin problem
should be formally defined. We pay particular attention # féct that many ar-
bitrary decisions go into the design of the label taxononat th given with the
training data. Moreover, many hand-designed taxonomiesuabalanced and
misrepresent the class structure in the underlying dataldion. We attempt
to correct these problems by using the data distributiifite calibrate the hi-
erarchical classification loss function. This distribatibased correction must be
done with care, to avoid introducing unmanageable stedilstiependencies into
the learning problem. This leads us off the beaten path afrbial-type estima-
tion and into the unfamiliar waters of geometric-type estilon. In this paper,
we present a new calibrated definition of statistical riskHi@rarchical classifi-
cation, an unbiased estimator for this risk, and a new algwit reduction from
hierarchical classification to cost-sensitive classiizat

1 Introduction

Multiclass classification is the task of assigning labetsrfra predefined label-set to instances in a
given domain. For example, consider the task of assignirapiz to each document in a corpus.
If a training set of labeled documents is available, then &iohass classifier can be trained using
a supervised machine learning algorithm. Often, largeldabts can be organized in a taxonomy.
Examples of popular label taxonomies are the ODP taxonormmedfpages [2], the gene ontology
[6], and the LCC ontology of book topics [1]. A taxonomy is @tarchical structure over labels,
where some labels define very general concepts, and otteds éfine more specific specializations
of those general concepts. A taxonomy of document topickidnalude the labelsusic, CLAS-
SICAL MUSIC, andPOPULAR MUSIG where the last two are special cases of the first. Some label
taxonomies form trees (each label has a single parent) whiilers form directed acyclic graphs.
When a label taxonomy is given alongside a training set, th#ictass classification problem is
often called aierarchical classificatiorproblem. The label taxonomy defines a structure over the
multiclass problem, and this structure should be used Indtrei formal definition of the hierarchical
classification problem, and in the design of learning athams to solve this problem.

Most hierarchical classification learning algorithms tis@ taxonomy as an indisputable definitive
model of the world, never questioning its accuracy. Howem@rst taxonomies are authored by
human editors and subjective matters of style and taste @lamajor role in their design. Many

arbitrary decisions go into the design of a taxonomy, andnahaltiple editors are involved, these
arbitrary decisions are made inconsistently. Figure 1 shtaw versions of a simple taxonomy, both
equally reasonable; choosing between them is a matter sbpal preference. Arbitrary decisions
that go into the taxonomy design can have a significant infleem the outcome of the learning
algorithm [19]. Ideally, we want learning algorithms thaie ammune to the arbitrariness in the
taxonomy.



The arbitrary factor in popular label taxonomies is a welbwn phenomenon. [17] gives the ex-
ample of theLibrary of Congress Classificatiogystem (LCC), a widely adopted and constantly
updated taxonomy of “all knowledge”, which includes theegatrywoRLD HISTORY and four of

its direct subcategories:SIA, AFRICA, NETHERLANDS, andBALKAN PENINSULA. Thereis a clear
imbalance between the the level of granularityagiA versus its siblingBALKAN PENINSULA.
The Dewey Decimal ClassificatiofbDC), another widely accepted taxonomy of “all knowledge”
defines ten main classes, each has exactly ten subclasdescof those again has exactly ten sub-
classes. The rigid choice of a decimal fan-out is an arlyitoale, and stems from an aesthetic ideal
rather than a notion of informativeness. Incidentally, tine subclasses &fELIGION in the DDC
include six categories about Christianity and the add#tiaategoryoTHER RELIGIONS demon-
strating the editor’s clear subjective predilection foriGtianity. The ODP taxonomy of web-page
topics is optimized for navigability rather than informesihess, and is therefore very flat and often
unbalanced. As a result, two of the direct children of theelaiaMES are vVIDEO GAMES (with
over42,000 websites listed) andAPER AND PENCIL GAMES(with only 32 websites). These ex-
amples are not intended to show that these useful taxon@redtawed, they merely demonstrate
the arbitrary subjective aspect of their design.

Our goal is to define the problem such that it is invariant townaf these subjective and arbitrary
design choices, while still exploiting much of the avaimbiformation. Some older approaches to
hierarchical classification do not use the taxonomy in thindien of the classification problem
[12, 13, 18, 9, 16]. Namely, these approaches consider adkification mistakes to be equally
bad, and use the taxonomy only to the extent that it reducegputational complexity and the
number of classification mistakes. More recent approad®\e, b, 4] exploit the label taxonomy
more thoroughly, by using it to induce a hierarchy-dependtess function, which captures the
intuitive idea that not all classification mistakes are diguzad: incorrectly classifying a document
asCLASSICAL MusIC when its true topic is actuallyazz is not nearly as bad as classifying that
document aOMPUTER HARDWARE When this interpretation of the taxonomy can be made,
ignoring it is effectively wasting a valuable signal in th@plem input. For example, [8] define the
loss of predicting a label when the correct label igas the number of edges along the path between
the two labels in the taxonomy graph.

Additionally, a taxonomy provides a very natural framewdéok balancing the tradeoff between
specificity and accuracy in classification. Ideally, we veblilke our classifier to assign the most
specific label possible to an instance, and the loss funstimuld reward it adequately for doing
so. However, when a specific label cannot be assigned wifttiguttly high confidence, it is often
better to fall-back on a more general correct label thanti esssign an incorrect specific label. For
example, classifying a document azz as the broader topi@usic is better than classifying it as
the more specific yet incorrect topl©UNTRY MUSIC. A hierarchical classification problem should
be defined in a way that penalizes both over-confidence angrwamhfidence in a balanced way.

The graph-distance based loss function introduced by [Biucas both of the ideas mentioned
above, but it is very sensitive to arbitrary choices thatmo the taxonomy design. Once again
consider the example in Fig. 1: each hierarchy would induckffarent graph-distance, which
would lead to a different outcome of the learning algoritiive can make the difference between
the two outcomes arbitrarily large by making some regiontheftaxonomy very deep and other
regions very flat. Additionally, we note that the simple drapistance based loss works best when
the taxonomy is balanced, namely, when all of the splits éntdxonomy convey roughly the same
amount of information. For example, in the taxonomy of Figthe children ofcLASSICAL MU-
SIC areVIVALDI andNON-VIVALDI , where the vast majority of classical music falls in thedatt
If the correct label isNON-VIVALDI and our classifier predicts the more general lahelssicAL
MUSIC, the loss should be small, since the two labels are esdgradlivalent. On the other hand,
if the correct label is/IVALDI then predictingcLASSICAL MUsIcC should incur a larger loss, since
important detail was excluded. A simple graph-distancetsss will penalize both errors equally.

On one hand, we want to use the hierarchy to define the prol@danthe other hand, we don’t want
arbitrary choices and unbalanced splits in the taxonomate la significant effect on the outcome.
Can we have our cake and eat it too? Our proposed solutionléate the taxonomy structure
as-is, and to stick with a graph-distance based loss, buittoduce non-unifornedge weights
Namely, the loss of predicting when the true label ig is defined as the sum of edge-weights
along the shortest path fromto y. We use the underlying distribution over labels to set thgeed
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Figure 1: Two equally-reasonable label taxonomies. Naesttbjective decision to include/exclude
the labelrock, and note the unbalanced split of ASSICAL to the small classIvaLDI and the
much larger classON-VIVALDI .

weights in a way that adds balance to the taxonomy and corafgenor certain arbitrary design
choices. Specifically, we set edge weights using the infdonaheoretic notion ofonditional self-
information[7]. The weight of an edge between a lahednd its parent.’ is the log-probability of
observing the label given that the example is also labeledBy

Others [19] have previously tried to use the training datdix3 the hierarchy, as a preprocessing
step to classification. However, it is unclear whether itagistically permissible to reuse the training
data twice: once to fix the hierarchy and then again in theah&tarning procedure. The problem
is that the preprocessing step may introduce strong stalistependencies into our problem. These
dependencies could prove detrimental to our learning d@hgor which expects to see a set of inde-
pendent examples. The key to our approach is that we canagstoar distribution-dependent loss
using the same data used to define it, without introducingségmificant bias. It turns out that to
accomplish this, we must deviate from the prevalent binbtyj@e estimation scheme that currently
dominates machine learning and turn to a more peculiar gematistribution-type estimator. A
binomial-type estimator essentially counts things (susimastakes), while a geometric-type esti-
mator measures the amount of time that passes before soigettturs. Geometric-type estimators
have the interesting property that they might occasiorfallywhich we investigate in detail below.
Moreover, we show how to control the variance of our estimégthout adding bias. Since em-
pirical estimation is the basis of supervised machine leggrwe can now extrapolate hierarchical
learning algorithms from our unbiased estimation techeigBpecifically, we present a reduction
from hierarchical classification to cost-sensitive mugtss classification, which is based on our new
geometric-type estimator.

This paper is organized as follows. We formally set the mobln Sec. 2 and present our new
distribution-dependent loss function in Sec. 3. In Sec. 4liseuss how to control the variance of
our empirical estimates, which is a critical step towardsléarning algorithm described in Sec. 5.
We conclude with a discussion in Sec. 6. We omit technicadfsrdue to space constraints.

2 Problem Setting

We now define our problem more formally. L&tbe an instance space andTebe a taxonomy of
labels. For simplicity, we focus on tree hierarchigsis formally defined as the paii/, 7), where
U is afinite set of labels andis the function that specifies tiparentof each label iri/. ¢/ contains
both general labels and specific labels. Specifically, warassthat/ contains the special label
ALL, and that all other labels i1 are special cases ei.L. 7 : U — U is a function that defines
the structure of the taxonomy by assigning a parénf to each label. € &/. Semanticallyr(u) is

a more general label thanthat contains; as a special case. In other words, we can say tha “
a specific type ofr(u)". For completeness, we defirgALL) = ALL. Then'th generation parent
functionz™ : U — U is defined by recursively applyingto itself n times. Formally

() = w(n(...7w(uw)...)) .
——

For completeness, definé€ as the identity function over. 7 is acyclic namely, for allu # ALL
and for alln > 1 it holds thatr™(u) # w. Theancestor functionr*, maps each label to its set of
ancestors, and is defined@as(u) = | J,—_,{7"(u)}. In other wordsz* (u) includesu, its parent, its
parent’s parent, and so on. We assume th& connectednd specifically thahLL is an ancestor



of all labels, meaning thatLL € 7*(u) for all w € Y. The inverse of the ancestor function is the
descendent function, which mapsu € U to the subsefu’ € U : v € n*(v/)}. In other words,
u is a descendent af’ if and only if v’ is an ancestor ofi. Graphically, we can depicf as a
rooted treel{ defines the tree nodesi L is the root, and (u, w(u)) : u € U \ ALL} is the set of
edges. In this graphical representatiofy) includes the nodes in the subtree rooted.dt)sing this
representation, we define tgeaph distancdetween any two label v, u') as the number of edges
along the path betweenandu’ in the tree. Thdowest common ancestor functian & x U — U
maps any pair of labels to their lowest common ancestor inakenomy, where “lowest” is in the
sense of tree depth. Formally(u, u’) = 77 (u) wherej = min{i : 7(u) € 7*(u’)}. In words,
A(u, ) is the closest ancestor afthat is also an ancestordf. It is straightforward to verify that
AMu,u’) = Mu', u). Theleavesof a taxonomy are the labels that are not parents of any atbetd.
We denote the set of leaves Byand note thaly c U.

Now, letD be a distribution on the product spa&ex ). In other wordsD is a joint distribution
over instances and their corresponding labels. Note thasseme that the labels that occur in the
distribution are always leaves of the taxonoffiy This assumption can be made without loss of
generality: if this is not the case then we can always add fadeaach interior node, and relabel
all of the examples accordingly. More formally, for eachdbb € ¢/ \ ), we add a new nodgto

U with 7(y) = u, and whenever we samp(g, u) from D then we replace it witlix, ). Initially,

we do not know anything abo@, other than the fact that it is supported &nx ). We samplen
independent points fror®, to obtain the sampl8 = {(x;, y:)} ™.

A classifieris a functionf : X — U that assigns a label to each instancé&fofNote that a classifier
is allowed to predict any label it¥, even though it knows that only leaf labels are ever observed
in the real world. We feel that this property captures a funeiatal characteristic of hierarchical
classification: although the truth is always specific, a goedarchical classifier will fall-back to a
more general label when it cannot confidently give a speaiédigtion. The quality of is measured
using aloss functior? : U/ x Y — R.,. For any instance-label paix, y), the los<(f(x), y) should
be interpreted as the penalty associated with predictiadgthel f (x) when the true label ig. We
requirel to be weakly monotonic, in the following senseuiflies along the path from to y then
(v, y) < L(u,y). Although the error indicator functiofi(u, y) = 1., Satisfies our requirements,
it is not what we have in mind. Another fundamental charastierof hierarchical classification
problems is that not all prediction errors are equally bad, the definition of the loss should reflect
this. More specifically, ifu’ lies along the path from to y andw is not semantically equivalent to
u’, we actually expect thd(v', y) < (u, y).

3 A Distribution-Calibrated Loss for Hierarchical Classifi cation

As mentioned above, we want to calibrate the hierarchiadsification loss function using the
distributionD, through its empirical proxys. In other words, we warib to differentiate between
informative splits in the taxonomy and redundant ones. Wievio[8] in using graph-distance to
define the loss function, but instead of setting all of theeadgights tol, we define edge weights
usingD.

For eachy € ), let p(y) be the marginal probability of the labglin the distributionD. For
eachu € U, definep(u) = Zyeym,(u)p(y). In words, for anyu € U, p(u) is the probability of
observing any descendentof We assume henceforth thafu) > 0 for all uw € U. With these
definitions handy, define the weight of the edge betweemdr(u) aslog (p(m(u))/p(u)). This
weight is essentially the definition of conditional selfonhation from information theory [7].

The nice thing about this definition is that the weighted frdfstance between labetsand y
telescopes betweenand)(u, y) and betweem and\(u, y), and becomes

((u,y) = 2log (p(AM(u,y))) —log (p(u)) —log (p(y)) - @

Since this loss function depends only @ny, and\(u, y), and their frequencies accordingm it

is completely invariant to the the number of labels alongghth fromw or y. It is also invariant
to inconsistent degrees of flatness of the taxonomy in differegions. Finally, it is even invariant
to the addition or subtraction of new leaves or entire s@streo long as the marginal distributions
p(u), p(y), andp(A(u, y)) remain unchanged. This loss also balances uneven splits taxonomy.



Recalling the example in Fig. 1 wheteASSICAL is splitintovivALDI andNON-VIVALDI , the edge
to the former will have a very high weight, whereas the edghddatter will have a weight close to
zero.

Now, define the risk of a classifiér asR(f) = Ex y)~p[¢(f(X),Y)], the expected loss over
examples sampled froM. Our goal is to obtain a classifier with a small risk. Howeb&fore we
tackle the problem of finding a low risk classifier, we addtassntermediate task of estimating the
risk of a given classifieff using the sampl&. The solution is not straightforward since we cannot
even compute the loss on an individual examp{¢(x;), v:), as this requires knowledge &f. A
naive way to estimaté( f(x;), y;) using the sampl#' is to first estimate each(y) by >"" | 1,,.—,
and to plug these values into the definitionfofThis estimator tends to suffer from a strong bias,
due to the non-linearity of the logarithm, and is considarede unreliablé Instead, we want an
unbiased estimator.

First, we write the definition of risk more explicitly usinige definition of the loss functionin Eq. (1).
Defineq(f,u) = Pr(f(X) = u), the probability thatf outputsu whenX is drawn according to
the marginal distribution oD over X'. Also definer(f,u) = Pr(A(f(X),Y) = u), the probability
that the lowest common ancestorfX) andY is v, when(X,Y) is drawn fromD. R(f) can be
rewritten as

R(f) = D (2r(fiu) —q(f,w) log(p(w)) = > p(y)log (p(y)) - )
ueU yey
Notice that the second term in the definition of risk is a canstindependent of. This constant
is simply H(Y'), the Shannon entropy [7] of the label distribution. Ourméite goal is to compare
the risk values of different classifiers and to choose thé dras, so we don't really care about this
constant, and we can discard it henceforth. From here onpwesfon estimating the augmented
risk R(f) = R(f) — HY).

The main building block of our estimator is the estimatiochigique presented in [14]. Assume for
a moment that the sampleis infinite. Recall that the harmonic numbey is defined as "
with hg = 0. Define the random variables; andB; as follows

A;=min{j e N : y,1; € 7(f(x:))} — 1

Bi=min{j €N : yiy; € 7(A(f(xi), )} — 1
For example,A; + 2 is the index of the first example aftéx,,y,) whose label is contained in
the subtree rooted aft(x;), and B; + 2 is the index of the first example aft€x;,y;) whose
label is contained in the subtree rooted\&f (x;),y1). Note thatB; < A;, sinceX(u,y) is, by

definition, an ancestor af, soy’ € 7(u) impliesy’ € 7(A(u,y)). Next, define the random variable
Li=ha, —2hp,.

Theorem 1. L, is an unbiased estimator @& f).

zlz

Proof. We have that
E[Ly | f(X0) =w Yo =y] = plu) 3_hs(1=p(w)’= 20(A(w,9)) Dby (1 = pA(w,0))” -

Using the fact that for any € [0, 1) it holds that) " ) h,a™ = —w we getE[L;|f(X1) =
u, Y] =y| = —log (p(u)) + 2log (p(/\(u,y))) Therefore,
ElLi] = Y icudyeyPr(f(X)=uwY =y) E[L:|f(X1) = u,Y1 = y]
= Yueu 2r(fiu) —a(fiu)log (p(u)) = R(f) - =
We now recall that our samplg is actually of finite sizen. The problem that now occurs is that

A; and B; are not well defined whelfi(X;) does not appear anywherel¥h, ..., Y,,. When this
happens, we say that the estimafgrfails. If f outputs a label: with p(u) = 0 thenL; will fail

1The interested reader is referred to the extensive litezatn the closely related problem of estimating the
entropy of a distribution from a finite sample.



with probability1. On the other hand, the probability of failure is negligisleenm is large enough,
and whenf does not output labels with tiny probabilities. Formalgt,#(f) = min,.q(f,u)>0 p(u)
be the smallest probability of any label thfabutputs.

Theorem 2. The probability of failure is at mogt—("—1A(f),

The estimatoE|[L, [no-fail is no longer an unbiased estimatoff), but the bias is small. Specif-
ically, since we are after a classifiéwith a small risk, we prove an upper-bound®Bif).
Theorem 3. It holds thatE [ L, |no-fail] > R(f)

(mil)efﬁ(f)(mfl)
o B2(f)

For example, with3 = 0.01 andm = 2500, the bias term in Thm. 3 is less thar0004. With
m = 5000 it is already less thaih0 4.

4 Decreasing the Variance of the Estimator

Say that we havé classifiers and we want to choose the best one. The estithatsuffers from

an unnecessarily high variance because it typically usé®u prefix of the samplé and wastes
the remaining examples. To reliably comparempirical risk estimates, we need to reduce the
variance of each estimator. The exact valu&aff(L,) depends on the distributiopsg, andr in a
non-trivial way, but we can give a simple upper-boundam(L, ) in terms of3(f).

Theorem 4. Var(L,) < —9log (8(f)) + 9log” (B(f))-

We reduce the variance of the estimator by repeating theastin multiple times, without reusing
any sample points. Formally, defit® = 1, and define for ali > 2 the random variableS; =
Si—1 + As,_, +2,andL; = has, — 2hp, . In words: the first estimatof, starts atS; = 1
and usesd; + 2 examples, namely, the examples. ., (A; + 2). Now, S; = A; + 3 is the first
untouched example in the sequence. The second estimatstarts at examplg, and usesig, +2
examples, namely, the exampl®s . . ., (S2+ Ag, +1), and so on. If we had an infinite sample and
chose some thresholdthe random variableB,, . . ., L; would all be unbiased estimators®{ f),
and therefore the aggregate estimdtos % 22:1 L; would also be an unbiased estimateyff).

SincelLq, ..., L; are also independent, the variance of the aggregate estimatild be%Var(Ll).

In the finite-sample case, aggregating multiple estimasanst as straightforward. Again, the event
where the estimation fails introduces a small bias. Adddity, the number of independent estima-
tions that fit in a sample of fixed size is itself a random variabl@. Moreover, the value of’
depends on the value of the risk estimators. In other wofds,,iL., .. . take large values theh
will take a small value. The precise definition’Bfshould be handled with care, to ensure that the
individual estimators remain independent and that theexgge estimator maintains a small bias.
For example, the first thing that comes to mind is to’Beb be the largest numbeérsuch that
S < m - this is a bad idea. To see why, note thal'it= 2 and A; = m — 4 then we know with
certainty thatds, = 0. This clearly demonstrates a strong statistical deperedbatween’, Lo
andT', which both interferes with the variance reduction andodtrces a bias. Instead, we defifie
as follows: choose a positive integex m and sefl” using the last examples inS, as follows, set

T = min{teN: S 1 >m-1} . 3)

In words, we think of the last examples inS as the “landing strip” of our procedure: we keep
jumping forward in the sequence of samples, frtnto S, to S3, and so on, until the first time we
land on the landing strip. Our new failure scenario occursmbur last jump overshoots the strip,
and noS; falls on any one of the lagtexamples. IfZ. does not fail, define the aggregate estimator as

L= Zle L;. Note that we are summin; rather than averaging them; we explain this later on.

Theorem 5. The probability of failure of the estimatdr is at moste—"3(f).

We now prove that our definition @f indeed decreases the variance without adding bias. We give a
simplified version of the analysis, assuming thas infinite, and assuming that the limit is merely

a recommendation. In other wordsjs still defined as before, but estimation never fails, ewehé

rare case wherfr + Ag, + 1 > m (the index of the last example used in the estimation exceeds
the predefined limitn). We note that a very similar theorem can be stated in thefsample case,



INPUTS: a training setS = {(x;,y;)},, alabel taxonomy .

1 fori=1,....m

2 generate random permutatign: {1,...,(m—1)} - {1,...,(i—1),(¢ +1),...,m}.
3 foru=1,...,d

4 a:—l—i—min{je{l,...,(m—l)} : yd,(j)eﬁ'(u)}

5 b:—l—l—min{je{l,...,(m—l)} L Yu() ET()\(u,yi))}
6 M(i,u)=pm7r + g5+ + =

OuTpPUT. M

Figure 2: A reduction from hierarchical multiclass to cesfisitive multiclass.

at the price of a significantly more complicated analysise €bmplication stems from the fact that
we are estimating the risk @f classifiers simultaneously, and the failure of one estima¢épends
on the values of the other estimators. We allow ourselvegrtore failures because they occur with
such small probability, and because they introduce anrifgignt bias.

Theorem 6. Assuming thaftS is infinite, butT" is still defined as in Eq. (3), it holds thm[L] =
E[TR(f) andVar(L) < E[T]o?, wheres? = Var(L;).

The proof follows from variations on Wald’s theorem [15].

Recall that we havé competing classifiersfy, .. ., fx, and we want to choose one with a small
risk. We overload our notation to support multiple concntrestimations, and defirig( f;) as the
stopping time (previously defined &sin Eq. (3)) of the estimation process f&(f;). Also let
L;(f;) be thei'th unbiased estimator dR(f;). To conduct a fair comparison of theclassifiers,
_____ :T(f;), and letL(f;) = ZiTzl L;(f;). In other words, we aggregate
the same number of estimators for each classifier. We theosehitne classifier with the smallest
risk estimatearg min L(F};). Theorem 6 still holds for each individual classifier be@atre new
definition of T' remains a stopping time for each of the individual estimmapoocesses. Although
we may not know the exact valueBfT, it is just a number that we can use to reason about the bias
and the variance of. We note that finding that minimizesL(f;) is equivalent to finding that
minimizesL(f;)/E[T]. The latter, according to Thm. 6, is an unbiased estimaf(¢f. Moreover,
the variance of each(f;)/E[T] is Var (L(f;)/E[T]) = o2 /E[T], so the effective variance of our
unbiased estimate decreases liké&[T], which is what we would expect. Using the one-tailed
Chebyshev inequality [11], we get that for any 0, Pr (R(f;) > L(f;) + €) < 0%/(c?+E[T]€?).
The bound holds uniformly for akt classifiers with probability.o? /(o2 + E[T]e?) (using the union
bound). The variance of the estimation dependE[@r, and we expedE[T] to grow linearly with

m. For example we can prove the following crude lower-bound.

Theorem 7. E[T] > (m — 1) /c, wherec = k + Zle 1/6(f;).

5 Reducing Hierarchical Classification to Cost-Sensitive @ssification

In this section, we propose a method for learning low-risdrdichical classifiers, using our new
definition of risk. More precisely, we describe a reductiooni hierarchical classification twost-
sensitive multiclass classificatiomhe appeal of this approach is the abundance of existing cos
sensitive learning algorithms. This reduction is itsel&dgorithm whose input is a training set:af
examples and a taxonomy ovélabels, and whose output isdax m matrix of non-negative reals,
denoted byM. Entry M (4, j) is the cost of classifying examplavith labelj. This cost matrix, and
the original training set, are given to a cost-aware muassllearning algorithm, which attempts to
find a classifierf with a small empirical los§ """ | M (i, f(x;)).



For example, a common approach to multiclass problems rgito & modelf,, : X — R for each
labelu € U and to define the classifigi{x) = arg max, ¢y fu(x). An SVM-flavored way to train
a cost sensitive classifier is to assume that the functfigdise in a Hilbert space, and to minimize

d m
SR+ C D0 T [MGw) + fuloe) = ()] @
u=1 i=1 u#y;
whereC > 0 is a parameter anld]. = max{0, a}. The first term is a regularizer and the second is
an empirical loss, justified by the fact thk(i, f(x;)) < 32, [M (6, u) + fu(xi) = fi.(x3)] -
Coming back to the reduction algorithm, we generéfeusing the procedure outlined in Fig. 2.
Based on the analysis of the previous sections, it is easgddtst, for all, M (i, f(x;)) is an
unbiased estimator of the rigR(f). This holds even ii) (as defined in Fig. 2) is a fixed function,
because the training set is assumed to be i.i.d. Therefoe; M (i, f(x;)) is also an unbiased
estimator ofR(f). The cost-sensitive learning algorithm will try to minireithis empirical esti-
mate. The purpose of the random permutation at each stephispefully decrease the variance
of the overall estimate, by decreasing the dependenciesbatthe different individual estimators.
We profess that a rigorous analysis of the variance of thimasor is missing from this work. Ide-
ally, we would like to show that, with high probability, thengirical estimate}z STM3i, f(xi)) IS
e-close to its expectation oR(f), uniformly for all classifiersf in our function class. This is a
challenging problem due to the complex dependencies indfiraator.

The learning algorithm used to solve this problem can (adish use the hierarchical structure to
guide its search for a good classifier. Our reduction to atructsired cost-sensitive problem should
not be misinterpreted as a recommendation not to use thetwteuin the learning process. For
example, following [10, 8], we could augment the SVM appitodescribed in Eq. (4) by replacing

the unstructured regulariz@izl || f.|I? with the structured regulariz@r:z:1 | fu=fr(wlI?» where
m(u) is the parent label ofi. [8] showed significant gains on hierarchical problems gighis
regularizer.

6 Discussion

We started by taking a step back from the typical setup of ealghical classification machine

learning problem. As a consequence, our focus was on thexfedtal aspects of the hierarchical
problem definition, rather than on the equally importanbatymic issues. Our discussion was
restricted to the simplistic model of single-label hietacal classification with single-linked tax-

onomies, and our first goal going forward is to relax theseragsions.

We point out that many of the theorems proven in this papeedémpn the value of(f), which

is defined asnin,.q.)>0 p(u). Specifically, if f occasionally outputs a very rare label, thefy)

is tiny and much of our analysis breaks down. This providesang indication that an empirical
estimate of3(f) would make a good regularization term in a hierarchicaligsy scheme. In other
words, we should deter the learning algorithm from choosimgassifier that predicts very rare
labels. As mentioned in the introduction, the label taxopqrovides the perfect mechanism for
backing off and predicting a more common and less risky @aace$that label.

We believe that our work is significant in the broader contéstructured learningMost structured
learning algorithms blindly trust the structure that theg given, and arbitrary design choices are
likely to appear in many types of structured learning. Theaief using the data distribution to
calibrate, correct, and balance the side-informationredggo other structured learning scenarios.
The geometric-type estimation procedure outlined in thisge may play an important role in those
settings as well.
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